
THE INTERLISP-D TESTING SYSTEM

The Interlisp-D testing system is an integrated system built for creating, managing and using a large set of

programmed tests for testing the correctness and the performance of the Interlisp-D programming

environment.

The system is consisted of three parts : The test driver, the data base management system, and a

graphic control tool. In addition, there are various tools for helping the test builders in the process of

creating new tests.

All parts of the system assumes the structure of a TEST which is a data type consists of several fields, of

which the most important are the expression which has to be evaluated, and a predicate which takes the

results of this evaluation and determines whether the test was a success or a failure (i.e. whether the

actual result is the same as the expected result).

The test driver is in principal a function which gets an object of type TEST, performs the test, and return

either success or failure plus some additional information. It includes facilities for monitoring the test

execution, tracing and recording the testing process to enable reproducing tests, Remote Eval protocols

to enable performing tests with two machines and more.

The data base management system works in two levels. In the low level, the "test cluster" level, the

system manages and organizes the tests in the file system, enable retrieving tests through a cashing

system, and allows concurrent access to test files using a simple locking scheme.

In the high level, the system enables each user to manipulate the database using its own VIEW of the

system. This view is implemented through the CONCEPT SPACE which is a directed acyclic graph that

will usually reflect the logic structure of the system as seen by the user.

The graphic control tool displays a concept space as a graph and allows the user to perform most of the

Test system operations by selecting nodes from the graph.

The tools for building and manipulating tests include test inspector (and editor), a random generator which

can generate random specified Lisp objects, Indirect reference to other tests in TEST fields for shrinking

the space of the tests themselves and avoiding redundant work when creating tests which share some of

their fields, and more .

In the next sections the different parts of the system will be described as well as the interaction between

them.

2

 The TEST data type

The TEST is the data type of test objects. Its structure reflects the various properties that tests have. It

includes the following fields:

TestID : The tests are identified by an integer.

Input : This field contains an expression that, when evaluated, will generate the list of arguments on which

the tested expression will be applied. There are several tools which help in creating this

entry. The random generator helps in generating random objects with specified

restrictions. The SYSTEMATIC operation helps in generating systematically all the

combinations over finite ranges.

Expression: It can contain a function name, a lambda expression or arbitrary sexpression. In the first two

cases it will be applied on the input.

Success Predicate: This field contains a lambda expression with two arguments - the ACTUAL input for

the test, and the result of the evaluation. It returns one of the two atoms: Success or

Failure. When performing tests with random input, some tricks may have to be used as

demonstrated in the examples in the end.

Timeout :This is a lambda expression which gets the ACTUAL input as an argument, and produces an

upper limit to the estimated time of evaluation.

EvalBefore and EvalAfter: expressions to be evaluated before and after the test execution. usually, before

the test we may want to set the appropriate environment for the test (like loading certain

files), and after the test we may want to clean up the environment (like deleting files

which the test created).

Pretests: Contains a list of links to other tests. These links may influence the order of an execution of a

set of tests. Currently there are two types of links. A STRONG link to other test means

that whenever the current test is going to be executed, the pretest must be executed first.

An example for such pretest may be tests for the tests themselves. If a test generates a

few thousands combinations of some arguments, it may be useful to test first if the test

itself works correctly by executing a simplified test which works only on one set of

arguments, and check that the test outcome is reasonable. A WEAK link to other test

means that whenever a SET of tests is being executed, and both the test and pretest are

in this set, the pretest will be executed before the test (thus it defines a partial order on

any set of tests). This link may be used in cases where there is logical order on the

execution of tests - for example, it is reasonable to test opening a file before testing

writing to a file.

The Test Driver

The test driver accept a test as its input and returns either success or failure. It will evaluate the input

and the tested expression itself on a remote machine if requested, or on the local machine otherwise. All

the process of the testing is recorded on a trace file, such that as much information as possible will be

available if needed.

3

The driver evaluates the EVALBEFORE form, evaluates the input expression to generate the input for the

tested expression, applies the tested expression on the generated input, applies the success predicate on

the result and the generated input, and evaluates the EVALAFTER form. After some of the above stages

the appropriate information is written on the trace file. The most important one is the input generated,

especially in cases of random input.

All the evaluation done by the driver uses the Interlisp-D ERRORSET command, thus allowing evaluation

that will not break under error condition. The error type may be used by the success predicate to

determine if the result is a success or a failure. Thus one test for many arithmetic functions can be to

supply them with non numeric arguments and to check that the error reported will the right one.

The evaluation of the tested expression is done as a separated process, such that the driver will be able

to try to interrupt it in case where the time of execution is larger then the value of TIMEOUT field of the

test. This interrupt will work only if the test execution process will release voluntarily the cpu (when waiting

on I/O for example) since Interlisp-D uses non preemptive scheme for process scheduling.

Remote evaluation will not benefit us much in this type of problems. If the remote machine is in infinite

loop for example, it will not listen to interrupt attempts as well. The advantages of using remote machine

are two: If a long sequence of tests are executed, and the machine "freezes", a remote test will freeze

the remote machine and the local machine will be able to call for help and resume operation (as soon as

the remote machine does not respond for more then some estimated limit of time, the local machine

sends messages to a preset distribution list and asking for human help). A second benefit of remote

evaluation is when we need to evaluate the tested expression in a different environment than the Testing

system resides. We will want the testing system to work in considerably nvironment (software release),

while we are testing an experimental different environment.

The data base management system: the "test cluster" level.

The user can retrieve a test by calling the GetTest function. The low level of the dbms is responsible for

performing the appropriate operations to retrieve the requested test. If the test is not already loaded it will

be loaded from its file. There is a limit on the number of the tests that are loaded, and if these number is

exceeded a replacement will take place and a test will be removed. The replacement policy is LRU (least

recently used) and is implemented by moving each test being referenced to the front of the list of the

loaded tests. Thus the last test in the list will be the one to be removed. The limit on the number of

loaded tests is dynamically modified according to the amount of the available memory.

The Interlisp-D testing system is designed to work with several users uses it concurrently. There are no

problems if the users were only retrieving tests from the data base. Problems may occur if two users

modify the same part of the data base in the same time.

For such cases a locking scheme was integrated into the system. There is a special designated file which

is the "gate" for the data base. Users can obtain write LOCKS on tests. The file contains the list of users

with their locked tests. The basic locking function is ObtainDatabaseWriteLock(testnumber) which checks

the LOCK file, and registers the tests that are not already locked . The user has the option of

4

automatically generated messages that will be sent to the locking users, inform them that somebody is

waiting for their locked test s and request them to release them as soon as they are not needed.

Thus, either automatically or manually, whenever a user edits a test, he will first obtain LOCK on tests.

The locking scheme will work only if the users will follow the rules and will not try to access tests not

through the testing system.

The basic operation - ObtainDatabaseWriteLock is "atomic" in the sense that the LOCK file is opened for

read and write throughout the execution of this procedure, and thus no other user will be able to open it.

The time interval in which the file is opened is very short.

Another problem that may arise from concurrent access to the data base is test numbering. As mentioned

above, each test has a unique integer as an ID. Thus there is a file which contains the last ID issued,

and the procedures for creating new tests will access and update this file.

 The "Concept Space" level.

What is the "thing" which is being tested by the test? it may be a specific low level system function, a

library package, or a new representation scheme for integers. It is hard to find a common class to which

all these entities belong. Thus the testing system assumes that it is some CONCEPT of the Interlisp-D

system that is being tested.

While it is true that when a test is CREATED, its creator intent to test a specific concept, the test itself is

not necessarily a test only for this concept. A test that was built for testing the READ function, may

actually test also the NS communication protocols, the OPENFILE function etc.

For this reason the tested concept is not considered to be a part of the test itself. There is a separated

knowledge strpace" which is the way that the user views the test cluster. A concept space is an acyclic

directed graph of CONCEPTS. Each node of the graph is of type CONCEPT which has four fields: The

concept name, the tests that tests this concept, the subconcepts and the superconcepts.

The main purpose of the concept space is to enable the user to group tests in a logical way and to

perform operations on these sets of tests. The semantic of a concept node is : "the tests which tests this

concept are the tests of the concept itself plus the tests that tests its subconcepts (recursively)".

Such a definition allows us to build concept spaces which view the tests from different points of view. We

may have a concept named "Arithmetic system" with subconcepts "Integer arithmetic", "Flote

arithmetic"and "Arithmetic functions". The "Arithmetic functions" will have as subconcepts, the concepts

"IPLUS", "FPLUS", "PLUS" etc. "IPLUS" is also a subconcept of "Integer arithmetic", and "FPLUS" of

"Float arithmetic". Thus, if a new representation for the integers was introduced to the system, we will

test the "Integer Arithmetic" concept, while in other cases we may want to test the "Arithmetic Functions".

From the above example and from the more detailed example at the end, we can conclude that the

organization of the test system should be very flexible, since there can be many parallel views into the

same part of the system. We can also see why a tree structure would not be sufficient as a

representation scheme. The Testing system supports the the co-existence of several concept spaces,

and thus each user can build and use his own concept space(s) to reflect his view of the system.

5

THE CONCEPT SPACE BROWSER

Most of the operations of the Interlisp-D testing system are done through the "Concept Space Browser".

The browser is a graphic tool which is applied on a concept space.

It has a few types of operations. Any operation that require a concept as an argument will get it by a

selection from the displayed graph.

The first type of operations are operations for modifications of the concept space itself. There are

commands to add new concept, to delete a concept, to ad and delete a link and to add and delete a test

to a concept.

Second type of operations are data base operations. The user can edit a test selected from specific

concept, can hardcopy all (or part of) the tests of a selected concept, and can request to lock all (or part

of) the tests of a concept.

A third type are display op can be specified, a browser of a subgraph can be created, and the tests can

be dre are commands to execute all (or part of) the tests of a certain concept, with different modes of

execution .

The browser also allows to copy subgraphs between two displayed concept spaces, and to get all the

tests of a node by a copy selection so that functions that are not available in the browser can use the

concept space as well.

.

6

Test creation tools and misc tools

There are several tools that were created to help the tests builders in their task.

In each field of a test the user can write (& n) when n is a test number. This tells the system that to

retrieve the value for this field it should refer to the same field in test n. This was done since many tests

share values for some of their fields.

The test inspector is built on the top of the Interlisp-D inspector. The user can inspect and modify the

various fields of a test. In addition he can call the inspector on indirect referenced tests.

There are functions which keep tracks of changes done to tests, and functions which stores modified

tests.

7

The Random Generator is a very important tool for creating a test. It has many entries for different Lisp

objects which he can generate randomly. These set of possible entries will grow constantly as test

builders will need more types of random objects.

The random generator function gets as an argument an object type and a list of modifiers. The test

builder can specify in the input field of a test a call like (GenerateRandom ’LARGE-INTEGER), or

(GenerateRandom ’WINDOW) or (GenerateRandom ’(LIST-OF-ITEMS WINDOW 50 100)) to get a

random list of length between 50 and 100 of windows.

From the experiments done with the Testing system it was clear that random tests are an important part

of any testing and can discover bugs that would be hard to find otherwise.

Another tool is the SYSTEMATIC input generator. Many times we want to test a function if it works right

with all the possible combinations of values of its arguments, or to find out whether an library package

works with all possible settings for its flags. For such cases the test builder can specify in the input field

that he wants a systematic test, and supply the expressions that produces the ranges of values to

combine.

8

 TEST EXAMPLES:

EXAMPLE 1

9

EXAMPLE 2

10

EXAMPLE 3

11

EXAMPLE 4

