File created: 4-aug-88 18:06:52 {ERIS}<TEST>MAIKO>HAND>MAIKO-ARRAY-TESTS.;9

changes to: (FUNCTIONS USER::POINTER-ARRAY-TESTS)
previous date: 22-Jun-88 13:52:22 {ERIS}<TEST>MAIKO>HAND>MAIKO-ARRAY-TESTS.;8
Read Table: XCL
Package: INTERLISP

Format: XCCS

(RPAQQ MAIKO-ARRAY-TESTSCOMS
(;; Tests for AREF & ASET in Maiko
;; TO DO: Extendable arrays, Adjustable arrays, extend past 2**15 and make sure contents are still there. Vectors, strings.
;; Main test invokation function:
(FNS MAIKO-ARRAY-TESTS)
;; 1-dimensional array tests:

(FUNCTIONS USER::BIT-ARRAY-TESTS USER::BYTE-ARRAY-TESTS USER::CHAR-ARRAY-TESTS USER::FLOAT-ARRAY-TESTS
USER: :POINTER-ARRAY-TESTS USER: :XPOINTER-ARRAY-TESTS)

;; Simple AREF & ASET of 1-, 2-, 3-d # arrays:

(FNS SIMPLE-AREF-ASET-TESTS NEQP)

;; Test of past known failures

(FUNCTIONS USER: :PAST-ARRAY-FAILURE-CASES)
;; Assure that we compile with CL:COMPILE-FILE:
(PROPS (MAIKO-ARRAY-TESTS FILETYPE))))

;; Tests for AREF & ASET in Maiko
;; TO DO: Extendable arrays, Adjustable arrays, extend past 2**15 and make sure contents are still there. Vectors, strings.
;; Main test invokation function:

(DEFINEQ
(MAIKO-ARRAY-TESTS
(LAMBDA (LIMIT) ; Edited 22-Jun-88 13:51 by jds

;; Main entry point to the Maiko array op-code tests.

(Iffor] T |from| 1 [to|] LIMIT |do| (PRINTOUT T T "Starting Maiko array op-code tests, iteration #" I T)
(USER::BIT-ARRAY-TESTS 2)
(USER::BYTE-ARRAY-TESTS 2)
(USER::CHAR-ARRAY-TESTS 2)
(USER::FLOAT-ARRAY-TESTS 2)
(USER::POINTER-ARRAY-TESTS 2)
(USER::XPOINTER-ARRAY-TESTS 2)
(PRINTOUT T " Starting #-array aref/set tests for 1-3 dims.")
(SIMPLE-AREF-ASET-TESTS)
(USER::PAST-ARRAY-FAILURE-CASES 1))))

)

;; 1-dimensional array tests:

(cL:pErFuN USER::BIT-ARRAY-TESTS (uskEr::LIMIT)
(FOR USER::LOOP-NO FROM 1 TO USER::LIMIT
COLLECT (CL:FORMAT T " Starting bit-array tests, iteration ~D~%" USER::LOOP-NO)
(FOR USER::MIN-LENGTH IN 7 (1 9 17 33 32768) AS USER::MAX-LENGTH
IN (8 16 32 32767 65535) DO (LET* ((USER::LEN (RAND USER::MIN-LENGTH USER::MAX-LENGTH))
(USER: : ZERO-ARRAY (CL:MAKE-ARRAY USER::LEN :ELEMENT-TYPE
’BIT :INITIAL-ELEMENT 0))
(USER: :ONE-ARRAY (CL:MAKE-ARRAY USER::LEN :ELEMENT-TYPE
’'BIT :INITIAL-ELEMENT 1)))
(CL:FORMAT T " Array size = ~D~%" USER::LEN)
(ERSETQ (CL:DO ((USER::I 0 (CL:1+ USER::I)))
((= USER::I USER::LEN))
(CL:WHEN (CL:/= (CL:AREF USER::ZERO-ARRAY USER::I)
0)
(CL:ERROR "**Zero—array wasn’t zero at
element ~d.~%" USER::I))
(CL:WHEN (CL:/= (CL:AREF USER::ONE-ARRAY USER::I)
1)
(CL:ERROR "**One-array wasn’t one at
element ~d.~%" USER::I))))
(ERSETQ (CL:DO ((USER::I 0 (CL:1+ USER::I)))
((= USER::I USER::LEN))
(CL:SETF (CL:AREF USER: :ZERO-ARRAY USER::I)
(COND
((EVENP USER::I)
1)
(T 0)))

{MEDLEY }<test>maiko>obsolete>hand>MATKO-ARRAY-TESTS.;1 (USER::BIT-ARRAY-TESTS cont.) Page 2

(CL:WHEN (CL:/= (CL:AREF USER::ZERO-ARRAY USER::1I)
(COND
((EVENP USER::I)
1)
(T 0)))
(CL:ERROR "EVENP pattern fails at ~D.~%"
USER::1))))))))

(cL:peruNn USER::BYTE-ARRAY-TESTS (USER::LIMIT)
;; Tests of byte arrays, for bytes of length 1, 8, 16, and 32 bits.
(FOR USER::LOOP-NO FROM 1 TO USER::LIMIT

COLLECT (CL:FORMAT T " Starting byte-array tests, iteration ~D~%" USER::LOOP-NO)
(FOR USER::BYTE-LEN IN 7 (1 8 16 32) AS USER::MAX-VALUE IN ’ (2 256 65535 65535)
DO (CL:FORMAT T " Byte length = ~D~%" USER::BYTE-LEN)

(FOR USER: :MIN-LENGTH IN 7 (1 9 17 33 32768) AS USER::MAX-LENGTH
IN 7 (8 16 32 32767 65535) DO (LET* ((USER::LEN (RAND USER::MIN-LENGTH USER::MAX-LENGTH))
(USER: : ZERO-ARRAY (CL:MAKE-ARRAY USER: :LEN
:ELEMENT-TYPE
(LIST 'CL:UNSIGNED-BYTE
USER: :BYTE-LEN)
:INITIAL-ELEMENT 0))
(USER: :ONE-ARRAY (CL:MAKE-ARRAY USER: :LEN
:ELEMENT-TYPE
(LIST ’"CL:UNSIGNED-BYTE
USER: :BYTE-LEN)
:INITIAL-ELEMENT 1)))
(CL:FORMAT T " Array size = ~D~%" USER::LEN)
(ERSETQ (CL:DO ((USER::I 0 (CL:1+ USER::I)))
((= USER::I USER::LEN))
(CL:WHEN (CL:/= (CL:AREF USER::ZERO-ARRAY
USER::1I)
0)
(CL:ERROR "**Zero—-array wasn’t zero
at element ~d.~%" USER::I))
(CL:WHEN (CL:/= (CL:AREF USER::ONE-ARRAY
USER::1I)
1)
(CL:ERROR "**One—array wasn’t one at
element ~d.~%" USER::I))))
(ERSETQ (CL:DO ((USER::I 0 (CL:1+ USER::I)))
((= USER::I USER::LEN))
(CL:SETF (CL:AREF USER::ZERO-ARRAY USER::TI)
(CL:REM USER::I USER::MAX-VALUE))
(CL:WHEN (CL:/= (CL:AREF USER::ZERO-ARRAY
USER::1I)
(CL:REM USER::I
USER: :MAX-VALUE))
(CL:ERROR "EVENP pattern fails at
~D.~%" USER::I)))))))))

(cL:pEruN USER::CHAR-ARRAY-TESTS (usEr::LIMIT)
(FOR USER::LOOP-NO FROM 1 TO USER::LIMIT
COLLECT (CL:FORMAT T " Starting bit-array tests, iteration ~D~%" USER::LOOP-NO)
(FOR USER::MIN-LENGTH IN 7 (1 9 17 33 32768) AS USER::MAX-LENGTH
IN (8 16 32 32767 65535) DO (LET* ((USER::LEN (RAND USER::MIN-LENGTH USER::MAX-LENGTH))

(USER: : ZERO-ARRAY (CL:MAKE-ARRAY USER::LEN :ELEMENT-TYPE
/CL:CHARACTER :INITIAL-ELEMENT #\D))

(USER: :ONE-ARRAY (CL:MAKE-ARRAY USER::LEN :ELEMENT-TYPE
/CL:CHARACTER :INITIAL-ELEMENT
(CL:INT-CHAR (CHARCODE "41,133")))))

(CL:FORMAT T " Array size = ~D~%" USER::LEN)
(ERSETQ (CL:DO ((USER::I 0 (CL:1+ USER::I)))
((= USER::I USER::LEN))
(CL:WHEN (NEQ (CL:AREF USER: :ZERO-ARRAY USER::I)
#\D)
(CL:ERROR "**Zero-array wasn’t zero at
element ~d.~%" USER::I))
(CL:WHEN (NEQ (CL:AREF USER::ONE-ARRAY USER::I)
(CL:INT-CHAR (CHARCODE "41,133")))
(CL:ERROR "**One—array wasn’t one at

element ~d.~%" USER::I))))))))

(cL:peruN USER::FLOAT-ARRAY-TESTS (usEr::LIMIT)
(FOR USER::LOOP-NO FROM 1 TO USER::LIMIT
COLLECT (CL:FORMAT T " Starting FLOAT-array tests, iteration ~D~%" USER::LOOP-NO)
(FOR USER::MIN-LENGTH IN 7 (1 9 17 33 32768) AS USER::MAX-LENGTH
IN " (8 16 32 32767 65535)
DO (LET* ((USER::LEN (RAND USER::MIN-LENGTH USER::MAX-LENGTH))
(USER: : ZERO-ARRAY (CL:MAKE-ARRAY USER::LEN :ELEMENT-TYPE ’FLOAT
(USER: :ONE-ARRAY (CL:MAKE-ARRAY USER::LEN :ELEMENT-TYPE ’FLOAT
(CL:FORMAT T " Array size = ~D~%" USER::LEN)
(ERSETQ (CL:DO ((USER::I 0 (CL:1+ USER::I)))
((= USER::I USER::LEN))

:INITIAL-ELEMENT 0.0))
:INITIAL-ELEMENT 1.0)))

{MEDLEY }<test>maiko>obsolete>hand>MATIKO-ARRAY-TESTS.;1 (USER::FLOAT-ARRAY-TESTS cont.) Page 3

(CL:WHEN (CL:/= (CL:AREF USER::ZERO-ARRAY USER::I)
0.0)
(CL:ERROR "**Zero—array wasn’t zero at element ~d.~%" USER::I))
(CL:WHEN (CL:/= (CL:AREF USER::ONE-ARRAY USER::I)
1.0)
(CL:ERROR "**One—array wasn’t one at element ~d.~%" USER::I))))
(ERSETQ (CL:DO ((USER::I 0 (CL:1+ USER::I)))
((= USER::I USER::LEN))
(CL:SETF (CL:AREF USER::ZERO-ARRAY USER::I)
(CL:SIN (CL:* USER::I (/ 3.1415927 USER::LEN))))
(CL:WHEN (CL:/= (CL:AREF USER::ZERO-ARRAY USER::I)
(CL:SIN (CL:* USER::I (/ 3.1415927 USER::LEN))))
(CL:ERROR "SIN pattern fails at ~D.~%" USER::I))))

;; Just create 1000 of floats into the array, and read them out, so we can run STORAGE later to see if they leaked.

(CL:DO ((USER::I 0 (CL:1+ USER::I))
(CL:ELT (RAND O (CL:1- USER::LEN))
(RAND 0 (CL:1- USER::LEN))))
((= USER::I 1000))
(CL:SETF (CL:AREF USER::ZERO-ARRAY CL:ELT)
(CL:SIN (CL:* USER::I (/ 3.1415927 USER::LEN))))
(CL:WHEN (CL:/= (CL:AREF USER::ZERO-ARRAY CL:ELT)
(CL:SIN (CL:* USER::I (/ 3.1415927 USER::LEN))))
(CL:ERROR "SIN pattern fails at ~D.~%" USER::I)))))))

(cL:pErFuN USER::POINTER-ARRAY-TESTS (uSER::LIMIT)
(FOR USER::LOOP-NO FROM 1 TO USER::LIMIT
COLLECT (CL:FORMAT T " Starting pointer-array tests, iteration ~D~%" USER::LOOP-NO)
(FOR USER::MIN-LENGTH IN 7 (1 9 17 33 32768) AS USER::MAX-LENGTH
IN (8 16 32 32767 65535) DO (LET* ((USER::LEN (RAND USER::MIN-LENGTH USER::MAX-LENGTH))
(USER: : ZERO-ARRAY (CL:MAKE-ARRAY USER::LEN :INITIAL-ELEMENT 0
))
(USER: :ONE-ARRAY (CL:MAKE-ARRAY USER::LEN :INITIAL-ELEMENT 1)
)
(USER: :GC-ITEM (CREATE FMTSPEC))
USER: : OLD-REFCNT)
(CL:FORMAT T " Array size = ~D~%" USER::LEN)
(ERSETQ (CL:DO ((USER::I 0 (CL:1+ USER::I)))
((= USER::I USER::LEN))
(CL:WHEN (CL:/= (CL:AREF USER::ZERO-ARRAY USER::I)
0)
(CL:ERROR "**Zero-array wasn’t zero at
element ~d.~%" USER::I))
(CL:WHEN (CL:/= (CL:AREF USER::ONE-ARRAY USER::I)
1)
(CL:ERROR "**One—-array wasn’t one at
element ~d.~%" USER::I))))
(ERSETQ (CL:DO ((USER::I 0 (CL:1+ USER::I)))
((= USER::I USER::LEN))
(CL:SETF (CL:AREF USER::ZERO-ARRAY USER::I)

(COND
((EVENP USER::I)
1)
(T 0)))
(CL:WHEN (CL:/= (CL:AREF USER::ZERO-ARRAY USER::I)
(COND
((EVENP USER::I)
1)
(T 0)))

(CL:ERROR "EVENP pattern fails at ~D.~%"
USER::1))))

;; Make sure that putting a pointer to something into an array adds to the refcount.

(ERSETQ (CL:SETQ USER::OLD-REFCNT (\\REFCNT USER::GC-ITEM))
(CL:DO ((USER::I O (CL:1+ USER::I)))
((= USER::I USER::LEN))
(CL:SETQ USER::OLD-REFCNT (\\REFCNT USER::GC-ITEM))
(CL:SETF (CL:AREF USER::ZERO-ARRAY USER::I)
USER: :GC-ITEM)
(OR (EQ (CL:AREF USER::ZERO-ARRAY USER::I)
USER: :GC-ITEM)
(CL:ERROR "Filling array with GC sample item
failed at ~D.~%" USER::I))
(CL:WHEN (CL:/= (\\REFCNT USER::GC-ITEM)
(CL:1+ USER::OLD-REFCNT))
(CL:ERROR "ASET doesn’t bump ref-count at
~D.~%" USER::I)))
(CL:DO ((USER::I O (CL:1+ USER::I)))
((= USER::I USER::LEN))
(CL:SETQ USER: :0OLD-REFCNT (\\REFCNT USER::GC-ITEM))
(CL:SETF (CL:AREF USER::ZERO-ARRAY USER::I)
NIL)
(OR (NOT (CL:AREF USER::ZERO-ARRAY USER::I))
(CL:ERROR "Filling array with NIL failed at
~D.~%" USER::1I))
(CL:WHEN (CL:/= (\\REFCNT USER::GC-ITEM)

{MEDLEY }<test>maiko>obsolete>hand>MATIKO-ARRAY-TESTS.;1 (USER::POINTER-ARRAY-TESTS cont.) Page 4

(CL:1- USER::OLD-REFCNT))
(CL:ERROR "ASET to NIL doesn’t decrement
ref-count at ~D.~%" USER::I))))))))

(cL:pEFUN USER::XPOINTER-ARRAY-TESTS (Uskr::LIMIT)
;; Tests of arrays of XPOINTERs.

(FOR USER: :L0OP-NO FROM 1 TO USER::LIMIT
COLLECT (CL:FORMAT T " Starting xpointer-array tests, iteration ~D~%" USER::LOOP-NO)
(FOR USER::MIN-LENGTH IN 7 (1 9 17 33 32768) AS USER::MAX-LENGTH
IN " (8 16 32 32767 65535)
DO (LET* ((USER::LEN (RAND USER::MIN-LENGTH USER::MAX-LENGTH))
(USER: : ZERO-ARRAY (CL:MAKE-ARRAY USER::LEN :ELEMENT-TYPE ’XPOINTER :INITIAL-ELEMENT 0)
)
(USER: :ONE-ARRAY (CL:MAKE-ARRAY USER::LEN :ELEMENT-TYPE ’XPOINTER :INITIAL-ELEMENT 1))
(USER: :GC-ITEMS (LIST (CREATE FMTSPEC)
100000 3.55 (CONS 3 4)
(COMPLEX 3.4 5)
4/5
#’ (CL:LAMBDA (USER::X)
(CL:PRINT (USER::DATE USER::X)))
(CL:MAKE-ARRAY 5)))
USER: :GC-ITEM USER: :0OLD-REFCNT)
(CL:FORMAT T " Array size = ~D~%" USER::LEN)
(ERSETQ (CL:DO ((USER::I 0O (CL:1+ USER::1I)))
((= USER::I USER::LEN))
(CL:WHEN (CL:/= (CL:AREF USER::ZERO-ARRAY USER::I)
0)
(CL:ERROR "**Zero—array wasn’t zero at element ~d.~%" USER::I))
(CL:WHEN (CL:/= (CL:AREF USER::ONE-ARRAY USER::I)
1)
(CL:ERROR "**One—array wasn’t one at element ~d.~%" USER::I))))
(ERSETQ (CL:DO ((USER::I 0O (CL:1+ USER::I)))
((= USER::I USER::LEN))
(CL:SETF (CL:AREF USER::ZERO-ARRAY USER::I)
(COND
((EVENP USER::I)
1)

(T 0)))
(CL:WHEN (CL:/= (CL:AREF USER::ZERO-ARRAY USER::I)
(COND
((EVENP USER::I)
1)

(T 0)))
(CL:ERROR "EVENP pattern fails at ~D.~%" USER::I))))

;; Make sure that putting a pointer to something into an array adds to the refcount.

(FOR USER::GC-ITEM IN USER::GC-ITEMS
DO (CL:SETQ USER::0LD-REFCNT (\\REFCNT USER::GC-ITEM))
(ERSETQ (CL:DO ((USER::I 0 (CL:1+ USER::I)))
((= USER::I USER::LEN))
(CL:SETF (CL:AREF USER::ZERO-ARRAY USER::I)
USER: :GC-ITEM)
(OR (EQ (CL:AREF USER: :ZERO-ARRAY USER::I)
USER: :GC-ITEM)
(CL:ERROR "Filling array with GC sample item failed at ~D.~%"
USER::I))
(CL:WHEN (CL:/= (\\REFCNT USER::GC-ITEM)
USER: :OLD-REFCNT)
(CL:ERROR "ASET bumps ref-count at ~D.~%" USER::I)))
(CL:DO ((USER::I 0 (CL:1+ USER::I)))
((= USER::I USER::LEN))
(CL:SETF (CL:AREF USER: :ZERO-ARRAY USER::I)
NIL)
(OR (NOT (CL:AREF USER::ZERO-ARRAY USER::I))
(CL:ERROR "Filling array with NIL failed at ~D.~%" USER::I))
(CL:WHEN (CL:/= (\\REFCNT USER::GC-ITEM)
USER: :OLD-REFCNT)
(CL:ERROR "ASET to NIL decrements ref-count at ~D.~%" USER::I))
)))))))

;; Simple AREF & ASET of 1-, 2-, 3-d # arrays:

(DEFINEQ
(SIMPLE-AREF-ASET-TESTS
(LAMBDA NIL ; Edited 9-Jun-88 19:02 by jds
;; Just run thru AREF and ASET on simple 1- 2- and 3-d arrays of numbers and make sure they look reasonable.
(LET ((|arrayld| (CL:MAKE-ARRAY ’ (10)

:INITIAL-CONTENTS
(012345678 29)))
(|array2d| (CL:MAKE-ARRAY ’ (3 10)
:INITIAL-CONTENTS
((01234567809)
(10 11 12 13 14 15 16 17 18 19)

{MEDLEY }<test>maiko>obsolete>hand>MATIKO-ARRAY-TESTS.;1 (SIMPLE-AREF-ASET-TESTS cont.)

(20 21 22 23 24 25 26 27 28 29))))
(|array3d| (CL:MAKE-ARRAY ’ (2 3 10)
: INITIAL-CONTENTS
7(((001234567829)
(10 11 12 13 14 15 16 17 18 19)
(20 21 22 23 24 25 26 27 28 29))
((100 101 102 103 104 105 106 107 108 109)
(110 111 112 113 114 115 116 117 118 119)
(120 121 122 123 124 125 126 127 128 129)))))
(|arrayld-0| (CL:MAKE-ARRAY ' (10)
:INITIAL-ELEMENT "ASDF"))
(|array2d-0| (CL:MAKE-ARRAY ’ (3 10)
:INITIAL-ELEMENT 3.5))
(|array3d-0| (CL:MAKE-ARRAY ’ (2 3 10)
:INITIAL-ELEMENT
" |array3d-0])))
;; 1darray ref
(Ifor] \i |from| 0 |to] 9 |do| (NEQP \i (CL:AREF |arrayld| \i)
’ (CL:AREF |arrayld]| \i)))
;; 2d array ref
(Ifor| \3 |from| 0 |to|] 2 |do| (|for| \i [from| O |to] 9 |do|] (NEQP (+ (TIMES \j 10)
\1)
(CL:AREF |array2d| \j \1)
" (CL:AREF |array2d| \j \i))))
;3 3d aref
(|for] \k |[from| 0 |to] 1 |do| (|for| \j |from| 0 |to| 2
|do| (|for| \i |from| 0 [to]| 9
|do|] (NEQP (+ (TIMES \k 100)
(TIMES \j 10)
\1i)
(CL:AREF |array3d| \k \j \i)
’ (CL:AREF |array3d| \k \j \i)))))
;; 1d array set
([for] \i [from| 0 |to] 9 |do| (CL:SETF (CL:AREF |arrayld-0]| \i)
(DIFFERENCE 10 \i)))

;; 1 darray ref

(Ifor] \i [from| 0 |to|] 9 |do| (NEQP (DIFFERENCE 10 \1i)
(CL:AREF |arrayld-0| \i)
" (CL:AREF |arrayld-0| \i)))

;; 2 d array set
(Ifor] \j |from| 0 |to] 2 |do| (|for|] \i |from| 0 |to| 9 |dO| (CL:SETF (CL:AREF |array2d-0| \j \i)

(PLUS \j (TIMES \i 10)))))
;;2d aref
(|for] \3 |from| 0 [to] 2 |do| (|for| \i [from| 0 |to| 9 |do| (NEQP (PLUS \j (TIMES \i 10))

(CL:AREF |array2d-0| \j \i)

* (CL:AREF |array2d-0] \j \i))))
;; 3darray set
(|ffor| \k |from| 0 |to|] 1 |do| (|for|] \j [from| 0 |to] 2

|do| (|for| \i |from| 0 |to|] 9 |do| (CL:SETF (CL:AREF |array3d-0| \k \j \i)
(PLUS \k (TIMES \j 10)
(TIMES \i 100))))))
;; 3d aref
(|ffor| \k |from| 0 |to|] 1 |do| (|for|] \j [from| 0 |to] 2
|do| ([for| \i |from| O |to| 9
|do| (NEQP (PLUS \k (TIMES \j 10)
(TIMES \i 100))
(CL:AREF |array3d-0| \k \j \i)
’ (CL:AREF |array3d-0] \k \j \i))))))))

(NEQP

(LAMBDA (A B ERROR-MSG) ; Edited 12-Jun-88 18:13 by sybalsky
;; if the two numbers A and B are not equal then halt with error message ERROR-MSG
(OR (EQP A B)
(ERROR ERROR-MSG))))

)

;; Test of past known failures

(cL:pEruN USER::PAST-ARRAY-FAILURE-CASES (uskr::LIMIT)
;; Repository for past known failure cases, gleened from hand tests, ARs, and failed runs of this test suite.

(CL:FORMAT T " Starting test of past failure syndromes.~%")
(LET ((CL:ARRAY (CL:MAKE-ARRAY 57296 :ELEMENT-TYPE ’ (CL:UNSIGNED-BYTE 8)
:INITIAL-ELEMENT 1)))

Page 5

{MEDLEY }<test>maiko>obsolete>hand>MATKO-ARRAY-TESTS.;1 (USER::PAST-ARRAY-FAILURE-CASES cont.)

(CL:FORMAT T " Test of array of 57296
(CL:DO ((USER::I O (CL:1+ USER::I)))
((= USER::I 57295))
(CL:WHEN (CL:/= (CL:AREF CL:ARRAY USER::I)
1)
(CL:ERROR "Array of ones wasn’t 1 at element ~D.~%" USER::I)))))

(unsigned-byte 8)s inited to 1ls.~%")

;; Assure that we compile with CL:COMPILE-FILE:
(PUTPROPS MAIKO-ARRAY-TESTS FILETYPE :COMPILE-FILE)
(PUTPROPS MAIKO-ARRAY-TESTS COPYRIGHT (NONE))

Page 6

{MEDLEY }<test>maiko>obsoleteshand>MAIKO-ARRAY-TESTS.;1 9-Oct-2024 02:37:51
—— Listed on 9-Oct-2024 02:49:57 ——

FUNCTION INDEX

USER: :BIT-ARRAY-TESTS 1 MAIKO-ARRAY-TESTS 1 SIMPLE-AREF-ASET-TESTS
USER: :BYTE-ARRAY-TESTS 2) 5 USER: : XPOINTER-ARRAY-TESTS
USER: :CHAR-ARRAY-TESTS 2 USER: :PAST-ARRAY-FAILURE-CASES ...5
USER: :FLOAT-ARRAY-TESTS 2 USER: :POINTER-ARRAY-TESTS 3

PROPERTY INDEX

MAIKO-ARRAY-TESTS 6

