
File created: 4-Aug-88 18:06:52 {ERIS}<TEST>MAIKO>HAND>MAIKO-ARRAY-TESTS.;9

changes to: (FUNCTIONS USER::POINTER-ARRAY-TESTS)

previous date: 22-Jun-88 13:52:22 {ERIS}<TEST>MAIKO>HAND>MAIKO-ARRAY-TESTS.;8

Read Table: XCL

Package: INTERLISP

Format: XCCS

(RPAQQ MAIKO-ARRAY-TESTSCOMS
(

;; Tests for AREF & ASET in Maiko

;; TO DO: Extendable arrays, Adjustable arrays, extend past 2**15 and make sure contents are still there. Vectors, strings.

;; Main test invokation function:

(FNS MAIKO-ARRAY-TESTS)

;; 1-dimensional array tests:

(FUNCTIONS USER::BIT-ARRAY-TESTS USER::BYTE-ARRAY-TESTS USER::CHAR-ARRAY-TESTS USER::FLOAT-ARRAY-TESTS
USER::POINTER-ARRAY-TESTS USER::XPOINTER-ARRAY-TESTS)

;; Simple AREF & ASET of 1-, 2-, 3-d # arrays:

(FNS SIMPLE-AREF-ASET-TESTS NEQP)

;; Test of past known failures

(FUNCTIONS USER::PAST-ARRAY-FAILURE-CASES)

;; Assure that we compile with CL:COMPILE-FILE:

(PROPS (MAIKO-ARRAY-TESTS FILETYPE))))

;; Tests for AREF & ASET in Maiko

;; TO DO: Extendable arrays, Adjustable arrays, extend past 2**15 and make sure contents are still there. Vectors, strings.

;; Main test invokation function:

(DEFINEQ

(MAIKO-ARRAY-TESTS
 (LAMBDA (LIMIT) ; Edited 22-Jun-88 13:51 by jds

;; Main entry point to the Maiko array op-code tests.

(|for| I |from| 1 |to| LIMIT |do| (PRINTOUT T T "Starting Maiko array op-code tests, iteration #" I T)
(USER::BIT-ARRAY-TESTS 2)
(USER::BYTE-ARRAY-TESTS 2)
(USER::CHAR-ARRAY-TESTS 2)
(USER::FLOAT-ARRAY-TESTS 2)
(USER::POINTER-ARRAY-TESTS 2)
(USER::XPOINTER-ARRAY-TESTS 2)
(PRINTOUT T " Starting #-array aref/set tests for 1-3 dims.")
(SIMPLE-AREF-ASET-TESTS)
(USER::PAST-ARRAY-FAILURE-CASES 1))))

)

;; 1-dimensional array tests:

(CL:DEFUN USER::BIT-ARRAY-TESTS (USER::LIMIT)
(FOR USER::LOOP-NO FROM 1 TO USER::LIMIT

COLLECT (CL:FORMAT T " Starting bit-array tests, iteration ~D~%" USER::LOOP-NO)
(FOR USER::MIN-LENGTH IN ’(1 9 17 33 32768) AS USER::MAX-LENGTH

IN ’(8 16 32 32767 65535) DO (LET* ((USER::LEN (RAND USER::MIN-LENGTH USER::MAX-LENGTH))
(USER::ZERO-ARRAY (CL:MAKE-ARRAY USER::LEN :ELEMENT-TYPE

’BIT :INITIAL-ELEMENT 0))
(USER::ONE-ARRAY (CL:MAKE-ARRAY USER::LEN :ELEMENT-TYPE

’BIT :INITIAL-ELEMENT 1)))
(CL:FORMAT T " Array size = ~D~%" USER::LEN)
(ERSETQ (CL:DO ((USER::I 0 (CL:1+ USER::I)))

((= USER::I USER::LEN))
(CL:WHEN (CL:/= (CL:AREF USER::ZERO-ARRAY USER::I)

0)
(CL:ERROR "**Zero-array wasn’t zero at

element ~d.~%" USER::I))
(CL:WHEN (CL:/= (CL:AREF USER::ONE-ARRAY USER::I)

1)
(CL:ERROR "**One-array wasn’t one at

element ~d.~%" USER::I))))
(ERSETQ (CL:DO ((USER::I 0 (CL:1+ USER::I)))

((= USER::I USER::LEN))
(CL:SETF (CL:AREF USER::ZERO-ARRAY USER::I)

(COND
((EVENP USER::I)
1)
(T 0)))

{MEDLEY}<test>maiko>obsolete>hand>MAIKO-ARRAY-TESTS.;1 (USER::BIT-ARRAY-TESTS cont.) Page 2

(CL:WHEN (CL:/= (CL:AREF USER::ZERO-ARRAY USER::I)
(COND

((EVENP USER::I)
1)
(T 0)))

(CL:ERROR "EVENP pattern fails at ~D.~%"
USER::I))))))))

(CL:DEFUN USER::BYTE-ARRAY-TESTS (USER::LIMIT)

;; Tests of byte arrays, for bytes of length 1, 8, 16, and 32 bits.

(FOR USER::LOOP-NO FROM 1 TO USER::LIMIT
COLLECT (CL:FORMAT T " Starting byte-array tests, iteration ~D~%" USER::LOOP-NO)

(FOR USER::BYTE-LEN IN ’(1 8 16 32) AS USER::MAX-VALUE IN ’(2 256 65535 65535)
DO (CL:FORMAT T " Byte length = ~D~%" USER::BYTE-LEN)

(FOR USER::MIN-LENGTH IN ’(1 9 17 33 32768) AS USER::MAX-LENGTH
IN ’(8 16 32 32767 65535) DO (LET* ((USER::LEN (RAND USER::MIN-LENGTH USER::MAX-LENGTH))

(USER::ZERO-ARRAY (CL:MAKE-ARRAY USER::LEN
:ELEMENT-TYPE
(LIST ’CL:UNSIGNED-BYTE

USER::BYTE-LEN)
:INITIAL-ELEMENT 0))

(USER::ONE-ARRAY (CL:MAKE-ARRAY USER::LEN
:ELEMENT-TYPE
(LIST ’CL:UNSIGNED-BYTE

USER::BYTE-LEN)
:INITIAL-ELEMENT 1)))

(CL:FORMAT T " Array size = ~D~%" USER::LEN)
(ERSETQ (CL:DO ((USER::I 0 (CL:1+ USER::I)))

((= USER::I USER::LEN))
(CL:WHEN (CL:/= (CL:AREF USER::ZERO-ARRAY

USER::I)
0)

(CL:ERROR "**Zero-array wasn’t zero
at element ~d.~%" USER::I))

(CL:WHEN (CL:/= (CL:AREF USER::ONE-ARRAY
USER::I)

1)
(CL:ERROR "**One-array wasn’t one at

element ~d.~%" USER::I))))
(ERSETQ (CL:DO ((USER::I 0 (CL:1+ USER::I)))

((= USER::I USER::LEN))
(CL:SETF (CL:AREF USER::ZERO-ARRAY USER::I)

(CL:REM USER::I USER::MAX-VALUE))
(CL:WHEN (CL:/= (CL:AREF USER::ZERO-ARRAY

USER::I)
(CL:REM USER::I

USER::MAX-VALUE))
(CL:ERROR "EVENP pattern fails at

~D.~%" USER::I)))))))))

(CL:DEFUN USER::CHAR-ARRAY-TESTS (USER::LIMIT)
(FOR USER::LOOP-NO FROM 1 TO USER::LIMIT

COLLECT (CL:FORMAT T " Starting bit-array tests, iteration ~D~%" USER::LOOP-NO)
(FOR USER::MIN-LENGTH IN ’(1 9 17 33 32768) AS USER::MAX-LENGTH

IN ’(8 16 32 32767 65535) DO (LET* ((USER::LEN (RAND USER::MIN-LENGTH USER::MAX-LENGTH))
(USER::ZERO-ARRAY (CL:MAKE-ARRAY USER::LEN :ELEMENT-TYPE

’CL:CHARACTER :INITIAL-ELEMENT #\D))
(USER::ONE-ARRAY (CL:MAKE-ARRAY USER::LEN :ELEMENT-TYPE

’CL:CHARACTER :INITIAL-ELEMENT
(CL:INT-CHAR (CHARCODE "41,133")))))

(CL:FORMAT T " Array size = ~D~%" USER::LEN)
(ERSETQ (CL:DO ((USER::I 0 (CL:1+ USER::I)))

((= USER::I USER::LEN))
(CL:WHEN (NEQ (CL:AREF USER::ZERO-ARRAY USER::I)

#\D)
(CL:ERROR "**Zero-array wasn’t zero at

element ~d.~%" USER::I))
(CL:WHEN (NEQ (CL:AREF USER::ONE-ARRAY USER::I)

(CL:INT-CHAR (CHARCODE "41,133")))
(CL:ERROR "**One-array wasn’t one at

element ~d.~%" USER::I))))))))

(CL:DEFUN USER::FLOAT-ARRAY-TESTS (USER::LIMIT)
(FOR USER::LOOP-NO FROM 1 TO USER::LIMIT

COLLECT (CL:FORMAT T " Starting FLOAT-array tests, iteration ~D~%" USER::LOOP-NO)
(FOR USER::MIN-LENGTH IN ’(1 9 17 33 32768) AS USER::MAX-LENGTH

IN ’(8 16 32 32767 65535)
DO (LET* ((USER::LEN (RAND USER::MIN-LENGTH USER::MAX-LENGTH))

(USER::ZERO-ARRAY (CL:MAKE-ARRAY USER::LEN :ELEMENT-TYPE ’FLOAT :INITIAL-ELEMENT 0.0))
(USER::ONE-ARRAY (CL:MAKE-ARRAY USER::LEN :ELEMENT-TYPE ’FLOAT :INITIAL-ELEMENT 1.0)))

(CL:FORMAT T " Array size = ~D~%" USER::LEN)
(ERSETQ (CL:DO ((USER::I 0 (CL:1+ USER::I)))

((= USER::I USER::LEN))

{MEDLEY}<test>maiko>obsolete>hand>MAIKO-ARRAY-TESTS.;1 (USER::FLOAT-ARRAY-TESTS cont.) Page 3

(CL:WHEN (CL:/= (CL:AREF USER::ZERO-ARRAY USER::I)
0.0)

(CL:ERROR "**Zero-array wasn’t zero at element ~d.~%" USER::I))
(CL:WHEN (CL:/= (CL:AREF USER::ONE-ARRAY USER::I)

1.0)
(CL:ERROR "**One-array wasn’t one at element ~d.~%" USER::I))))

(ERSETQ (CL:DO ((USER::I 0 (CL:1+ USER::I)))
((= USER::I USER::LEN))

(CL:SETF (CL:AREF USER::ZERO-ARRAY USER::I)
(CL:SIN (CL:* USER::I (/ 3.1415927 USER::LEN))))

(CL:WHEN (CL:/= (CL:AREF USER::ZERO-ARRAY USER::I)
(CL:SIN (CL:* USER::I (/ 3.1415927 USER::LEN))))

(CL:ERROR "SIN pattern fails at ~D.~%" USER::I))))

;; Just create 1000 of floats into the array, and read them out, so we can run STORAGE later to see if they leaked.

(CL:DO ((USER::I 0 (CL:1+ USER::I))
(CL:ELT (RAND 0 (CL:1- USER::LEN))

(RAND 0 (CL:1- USER::LEN))))
((= USER::I 1000))

(CL:SETF (CL:AREF USER::ZERO-ARRAY CL:ELT)
(CL:SIN (CL:* USER::I (/ 3.1415927 USER::LEN))))

(CL:WHEN (CL:/= (CL:AREF USER::ZERO-ARRAY CL:ELT)
(CL:SIN (CL:* USER::I (/ 3.1415927 USER::LEN))))

(CL:ERROR "SIN pattern fails at ~D.~%" USER::I)))))))

(CL:DEFUN USER::POINTER-ARRAY-TESTS (USER::LIMIT)
(FOR USER::LOOP-NO FROM 1 TO USER::LIMIT

COLLECT (CL:FORMAT T " Starting pointer-array tests, iteration ~D~%" USER::LOOP-NO)
(FOR USER::MIN-LENGTH IN ’(1 9 17 33 32768) AS USER::MAX-LENGTH

IN ’(8 16 32 32767 65535) DO (LET* ((USER::LEN (RAND USER::MIN-LENGTH USER::MAX-LENGTH))
(USER::ZERO-ARRAY (CL:MAKE-ARRAY USER::LEN :INITIAL-ELEMENT 0

))
(USER::ONE-ARRAY (CL:MAKE-ARRAY USER::LEN :INITIAL-ELEMENT 1)

)
(USER::GC-ITEM (CREATE FMTSPEC))
USER::OLD-REFCNT)
(CL:FORMAT T " Array size = ~D~%" USER::LEN)
(ERSETQ (CL:DO ((USER::I 0 (CL:1+ USER::I)))

((= USER::I USER::LEN))
(CL:WHEN (CL:/= (CL:AREF USER::ZERO-ARRAY USER::I)

0)
(CL:ERROR "**Zero-array wasn’t zero at

element ~d.~%" USER::I))
(CL:WHEN (CL:/= (CL:AREF USER::ONE-ARRAY USER::I)

1)
(CL:ERROR "**One-array wasn’t one at

element ~d.~%" USER::I))))
(ERSETQ (CL:DO ((USER::I 0 (CL:1+ USER::I)))

((= USER::I USER::LEN))
(CL:SETF (CL:AREF USER::ZERO-ARRAY USER::I)

(COND
((EVENP USER::I)
1)
(T 0)))

(CL:WHEN (CL:/= (CL:AREF USER::ZERO-ARRAY USER::I)
(COND

((EVENP USER::I)
1)
(T 0)))

(CL:ERROR "EVENP pattern fails at ~D.~%"
USER::I))))

;; Make sure that putting a pointer to something into an array adds to the refcount.

(ERSETQ (CL:SETQ USER::OLD-REFCNT (\\REFCNT USER::GC-ITEM))
(CL:DO ((USER::I 0 (CL:1+ USER::I)))

((= USER::I USER::LEN))
(CL:SETQ USER::OLD-REFCNT (\\REFCNT USER::GC-ITEM))
(CL:SETF (CL:AREF USER::ZERO-ARRAY USER::I)

USER::GC-ITEM)
(OR (EQ (CL:AREF USER::ZERO-ARRAY USER::I)

USER::GC-ITEM)
(CL:ERROR "Filling array with GC sample item

failed at ~D.~%" USER::I))
(CL:WHEN (CL:/= (\\REFCNT USER::GC-ITEM)

(CL:1+ USER::OLD-REFCNT))
(CL:ERROR "ASET doesn’t bump ref-count at

~D.~%" USER::I)))
(CL:DO ((USER::I 0 (CL:1+ USER::I)))

((= USER::I USER::LEN))
(CL:SETQ USER::OLD-REFCNT (\\REFCNT USER::GC-ITEM))
(CL:SETF (CL:AREF USER::ZERO-ARRAY USER::I)

NIL)
(OR (NOT (CL:AREF USER::ZERO-ARRAY USER::I))

(CL:ERROR "Filling array with NIL failed at
~D.~%" USER::I))

(CL:WHEN (CL:/= (\\REFCNT USER::GC-ITEM)

{MEDLEY}<test>maiko>obsolete>hand>MAIKO-ARRAY-TESTS.;1 (USER::POINTER-ARRAY-TESTS cont.) Page 4

(CL:1- USER::OLD-REFCNT))
(CL:ERROR "ASET to NIL doesn’t decrement

ref-count at ~D.~%" USER::I))))))))

(CL:DEFUN USER::XPOINTER-ARRAY-TESTS (USER::LIMIT)

;; Tests of arrays of XPOINTERs.

(FOR USER::LOOP-NO FROM 1 TO USER::LIMIT
COLLECT (CL:FORMAT T " Starting xpointer-array tests, iteration ~D~%" USER::LOOP-NO)

(FOR USER::MIN-LENGTH IN ’(1 9 17 33 32768) AS USER::MAX-LENGTH
IN ’(8 16 32 32767 65535)
DO (LET* ((USER::LEN (RAND USER::MIN-LENGTH USER::MAX-LENGTH))

(USER::ZERO-ARRAY (CL:MAKE-ARRAY USER::LEN :ELEMENT-TYPE ’XPOINTER :INITIAL-ELEMENT 0)
)

(USER::ONE-ARRAY (CL:MAKE-ARRAY USER::LEN :ELEMENT-TYPE ’XPOINTER :INITIAL-ELEMENT 1))
(USER::GC-ITEMS (LIST (CREATE FMTSPEC)

100000 3.55 (CONS 3 4)
(COMPLEX 3.4 5)
4/5
#’(CL:LAMBDA (USER::X)

(CL:PRINT (USER::DATE USER::X)))
(CL:MAKE-ARRAY 5)))

USER::GC-ITEM USER::OLD-REFCNT)
(CL:FORMAT T " Array size = ~D~%" USER::LEN)
(ERSETQ (CL:DO ((USER::I 0 (CL:1+ USER::I)))

((= USER::I USER::LEN))
(CL:WHEN (CL:/= (CL:AREF USER::ZERO-ARRAY USER::I)

0)
(CL:ERROR "**Zero-array wasn’t zero at element ~d.~%" USER::I))

(CL:WHEN (CL:/= (CL:AREF USER::ONE-ARRAY USER::I)
1)

(CL:ERROR "**One-array wasn’t one at element ~d.~%" USER::I))))
(ERSETQ (CL:DO ((USER::I 0 (CL:1+ USER::I)))

((= USER::I USER::LEN))
(CL:SETF (CL:AREF USER::ZERO-ARRAY USER::I)

(COND
((EVENP USER::I)
1)
(T 0)))

(CL:WHEN (CL:/= (CL:AREF USER::ZERO-ARRAY USER::I)
(COND

((EVENP USER::I)
1)
(T 0)))

(CL:ERROR "EVENP pattern fails at ~D.~%" USER::I))))

;; Make sure that putting a pointer to something into an array adds to the refcount.

(FOR USER::GC-ITEM IN USER::GC-ITEMS
DO (CL:SETQ USER::OLD-REFCNT (\\REFCNT USER::GC-ITEM))

(ERSETQ (CL:DO ((USER::I 0 (CL:1+ USER::I)))
((= USER::I USER::LEN))

(CL:SETF (CL:AREF USER::ZERO-ARRAY USER::I)
USER::GC-ITEM)

(OR (EQ (CL:AREF USER::ZERO-ARRAY USER::I)
USER::GC-ITEM)

(CL:ERROR "Filling array with GC sample item failed at ~D.~%"
USER::I))

(CL:WHEN (CL:/= (\\REFCNT USER::GC-ITEM)
USER::OLD-REFCNT)

(CL:ERROR "ASET bumps ref-count at ~D.~%" USER::I)))
(CL:DO ((USER::I 0 (CL:1+ USER::I)))

((= USER::I USER::LEN))
(CL:SETF (CL:AREF USER::ZERO-ARRAY USER::I)

NIL)
(OR (NOT (CL:AREF USER::ZERO-ARRAY USER::I))

(CL:ERROR "Filling array with NIL failed at ~D.~%" USER::I))
(CL:WHEN (CL:/= (\\REFCNT USER::GC-ITEM)

USER::OLD-REFCNT)
(CL:ERROR "ASET to NIL decrements ref-count at ~D.~%" USER::I))

)))))))

;; Simple AREF & ASET of 1-, 2-, 3-d # arrays:

(DEFINEQ

(SIMPLE-AREF-ASET-TESTS
 (LAMBDA NIL ; Edited 9-Jun-88 19:02 by jds

;; Just run thru AREF and ASET on simple 1- 2- and 3-d arrays of numbers and make sure they look reasonable.

(LET ((|array1d| (CL:MAKE-ARRAY ’(10)
:INITIAL-CONTENTS
’(0 1 2 3 4 5 6 7 8 9)))

(|array2d| (CL:MAKE-ARRAY ’(3 10)
:INITIAL-CONTENTS
’((0 1 2 3 4 5 6 7 8 9)

(10 11 12 13 14 15 16 17 18 19)

{MEDLEY}<test>maiko>obsolete>hand>MAIKO-ARRAY-TESTS.;1 (SIMPLE-AREF-ASET-TESTS cont.) Page 5

(20 21 22 23 24 25 26 27 28 29))))
(|array3d| (CL:MAKE-ARRAY ’(2 3 10)

:INITIAL-CONTENTS
’(((0 1 2 3 4 5 6 7 8 9)

(10 11 12 13 14 15 16 17 18 19)
(20 21 22 23 24 25 26 27 28 29))

((100 101 102 103 104 105 106 107 108 109)
(110 111 112 113 114 115 116 117 118 119)
(120 121 122 123 124 125 126 127 128 129)))))

(|array1d-0| (CL:MAKE-ARRAY ’(10)
:INITIAL-ELEMENT "ASDF"))

(|array2d-0| (CL:MAKE-ARRAY ’(3 10)
:INITIAL-ELEMENT 3.5))

(|array3d-0| (CL:MAKE-ARRAY ’(2 3 10)
:INITIAL-ELEMENT
’|array3d-0|)))

;; 1 d array ref

(|for| \i |from| 0 |to| 9 |do| (NEQP \i (CL:AREF |array1d| \i)
’(CL:AREF |array1d| \i)))

;; 2 d array ref

(|for| \j |from| 0 |to| 2 |do| (|for| \i |from| 0 |to| 9 |do| (NEQP (+ (TIMES \j 10)
\i)

(CL:AREF |array2d| \j \i)
’(CL:AREF |array2d| \j \i))))

;; 3 d aref

(|for| \k |from| 0 |to| 1 |do| (|for| \j |from| 0 |to| 2
|do| (|for| \i |from| 0 |to| 9

|do| (NEQP (+ (TIMES \k 100)
(TIMES \j 10)
\i)

(CL:AREF |array3d| \k \j \i)
’(CL:AREF |array3d| \k \j \i)))))

;; 1 d array set

(|for| \i |from| 0 |to| 9 |do| (CL:SETF (CL:AREF |array1d-0| \i)
(DIFFERENCE 10 \i)))

;; 1 d array ref

(|for| \i |from| 0 |to| 9 |do| (NEQP (DIFFERENCE 10 \i)
(CL:AREF |array1d-0| \i)
’(CL:AREF |array1d-0| \i)))

;; 2 d array set

(|for| \j |from| 0 |to| 2 |do| (|for| \i |from| 0 |to| 9 |do| (CL:SETF (CL:AREF |array2d-0| \j \i)
(PLUS \j (TIMES \i 10)))))

;; 2 d aref

(|for| \j |from| 0 |to| 2 |do| (|for| \i |from| 0 |to| 9 |do| (NEQP (PLUS \j (TIMES \i 10))
(CL:AREF |array2d-0| \j \i)
’(CL:AREF |array2d-0| \j \i))))

;; 3 d array set

(|for| \k |from| 0 |to| 1 |do| (|for| \j |from| 0 |to| 2
|do| (|for| \i |from| 0 |to| 9 |do| (CL:SETF (CL:AREF |array3d-0| \k \j \i)

(PLUS \k (TIMES \j 10)
(TIMES \i 100))))))

;; 3 d aref

(|for| \k |from| 0 |to| 1 |do| (|for| \j |from| 0 |to| 2
|do| (|for| \i |from| 0 |to| 9

|do| (NEQP (PLUS \k (TIMES \j 10)
(TIMES \i 100))

(CL:AREF |array3d-0| \k \j \i)
’(CL:AREF |array3d-0| \k \j \i))))))))

(NEQP
 (LAMBDA (A B ERROR-MSG) ; Edited 12-Jun-88 18:13 by sybalsky

;; if the two numbers A and B are not equal then halt with error message ERROR-MSG

(OR (EQP A B)
(ERROR ERROR-MSG))))

)

;; Test of past known failures

(CL:DEFUN USER::PAST-ARRAY-FAILURE-CASES (USER::LIMIT)

;; Repository for past known failure cases, gleened from hand tests, ARs, and failed runs of this test suite.

(CL:FORMAT T " Starting test of past failure syndromes.~%")
(LET ((CL:ARRAY (CL:MAKE-ARRAY 57296 :ELEMENT-TYPE ’(CL:UNSIGNED-BYTE 8)

:INITIAL-ELEMENT 1)))

{MEDLEY}<test>maiko>obsolete>hand>MAIKO-ARRAY-TESTS.;1 (USER::PAST-ARRAY-FAILURE-CASES cont.) Page 6

(CL:FORMAT T " Test of array of 57296 (unsigned-byte 8)s inited to 1s.~%")
(CL:DO ((USER::I 0 (CL:1+ USER::I)))

((= USER::I 57295))
(CL:WHEN (CL:/= (CL:AREF CL:ARRAY USER::I)

1)
(CL:ERROR "Array of ones wasn’t 1 at element ~D.~%" USER::I)))))

;; Assure that we compile with CL:COMPILE-FILE:

(PUTPROPS MAIKO-ARRAY-TESTS FILETYPE :COMPILE-FILE)

(PUTPROPS MAIKO-ARRAY-TESTS COPYRIGHT (NONE))

{MEDLEY}<test>maiko>obsolete>hand>MAIKO-ARRAY-TESTS.;1 9-Oct-2024 02:37:51
-- Listed on 9-Oct-2024 02:49:57 --

FUNCTION INDEX

USER::BIT-ARRAY-TESTS1 MAIKO-ARRAY-TESTS1 SIMPLE-AREF-ASET-TESTS4
USER::BYTE-ARRAY-TESTS2 NEQP5 USER::XPOINTER-ARRAY-TESTS4
USER::CHAR-ARRAY-TESTS2 USER::PAST-ARRAY-FAILURE-CASES ...5
USER::FLOAT-ARRAY-TESTS2 USER::POINTER-ARRAY-TESTS3

PROPERTY INDEX

MAIKO-ARRAY-TESTS6

