
This msg is stored on {eris}<lispcore>internal>library>do-test.tedit
The tester is on {eris}<lispcore>internal>library>do-test.dcom.

The main entries are the following:

(DO-TEST name forms)
A test succeeds if the final form returns a non-nil result. Name is just the name which can be an atom or string;
strings are preferred. Forms are presumed to be read with the Common Lisp reader in package XCL-TEST, which
uses LISP and XCL. If a test fails or an error occurs during evaluation, a message is printed to *ERROR-OUTPUT*.

(DO-TEST-GROUP name&options forms)
For associating a group of tests. For instance, a group of tests may all require the same setup and cleanup. If there
are any options (see below) then the CAR of name&options is the name and the CDR is a keyword/value list. All
forms must be DO-TEST forms.

(EXPECT-ERRORS error-types forms)
Error-types is a list of errors that may occur while executing the forms. If one of the listed errors occurs, EXPECT-
ERRORS returns (values t error-that-occurred), otherwise NIL. Normal use of this form is:

(DO-TEST "a test"
(EXPECT-ERRORS (type-of-error)

(THIS-FORM ’SHOULD ’ERROR)))

(DO-TEST-FILE filename)
Reads and executes a file of tests. All forms in the file are read before any are executed. The file should be clear
text (clearput in TEdit) and terminate with a STOP. The format for test names is
Chap#[-sec#[-subsec#]]-comment.TEST

(CL-READFILE filename)
Reads all forms in filename and returns a list of them. This function is used by DO-TEST-FILE to read test files;
test writers who want to see if their files are syntactically valid should first see if CL-READFILE will read them,
then see if DO-TEST-FILE will execute them.

(DO-ALL-TESTS &key (results *test-batch-results*)
 (patterns *test-file-pattern*)
 (sysout-type nil)
 (resume nil))

Calls DO-TEST-FILE on each file that matches patterns, which is a list of directory patterns, and prints the results
to a new version of a file named results. If results is T, results are printed to the window where DO-ALL-TESTS is
running. The header of the results file is a message of the date and time the tests are being run and the
MAKESYSDATE of the sysout; if sysout-type is supplied, a line for it goes out too. If resume is non-NIL, DO-ALL-
TESTS attempts to resume an interrupted test sequence, appending the results onto the latest version of results.

TEST-SETQ, TEST-DEFUN, TEST-DEFMACRO
These work like SETQ, DEFUN, and DEFMACRO, except that if they are executed within a DO-TEST-GROUP, their
effects are manually undone (old values are saved and then restored) upon leaving the DO-TEST-GROUP. Use these
in :BEFORE forms that a whole group of DO-TESTs want to see. DON’T use TEST-SETQ on locally-bound
variables or in loops.

Relevant variables:

TEST-MODE

 Default is :batch, which means to report test failures and errors on *ERROR-OUTPUT* (which is usually a
file), and continue. Other values possible are:

:interactive which means to print a message before running each test, print another message for test
failures, and produce a break window on errors.

:batch-verbose which means to generate all the messages of :interactive and do not break on errors.

TEST-BATCH-RESULTS

Defaults to "{eris}<lispcore>cml>test>test-results"

TEST-FILE-PATTERN

2

Defaults to ("{eris}<lispcore>cml>test>*.test;" "{eris}<lispcore>cml>test>*.x") which runs all the internal
tests.

TEST-COMPILE

If this switch is non-nil, DO-TEST compiles its forms before testing them. DO-ALL-TESTS will print a
message in its header if this switch is on.

ALL-FILES-REMAINING

While DO-ALL-TESTS is running, this variable contains a list of all the files remaining to be processed;
files are removed from it AFTER they are read and executed. To restart a test run that somehow crashes the test
driver, first clean up whatever blew up the run (if necessary, dump *ALL-FILES-REMAINING* to a file and get a
new sysout), then do
(DO-ALL-TESTS :RESUME T [:RESULTS "wherever"]).

Options to do-test-group.

:before allows for a setup form for a group of tests.
:after allows a form to be run after the tests without affecting results.

The normal form of a DO-TEST-GROUP using all its features is:
(DO-TEST-GROUP

("a test group"
:BEFORE (progn (before-form-1) (before-form-2)...)
:AFTER (progn (after-form-1) (after-form-2))
)
(DO-TEST "first test")
(DO-TEST "second test")

)

