

1333333131331 3131333133132322131332321231213233232373

ell-voS

ROOMS™

300001
Medley Release
September 1988

Address comments to:
Envos Corporation

1157 San Antonio Road
Mountain View, CA 94043

ROOMS™

300001

Medley Release

September, 1988

Copyright © 1988 by Envos Corporation.

All rights reserved.

Envos is a trademark of Envos Corporation

Rooms™ is a trademark of Xerox Corporation

Xerox® is a registered trademark of Xerox Corporation.

Sun®is a registéred trademark of Sun MicroSystems Corporation

Sun Workstation® is a registered trademark of Sun MicroSystems
Corporation

Copyright cE)rotection includes material generated from the software
programsk isplayed on the screen, such as icons, screen display looks,
and the like.

The information in this document is subject to change without notice
and should not be construed as a commitment by Envos Corporation.
While every effort has been made to ensure the accuracy of this
document, Envos Corporation assumes no responsibility for any errors
that may appeat.

Text was written and produced on Xerox Artificial Intelligence
workstations using Xerox printers to produce text masters. The
typeface is Optima.

EEEEEEEELCELCEECEEELCELEEELCELCEEEECLELECECEECEER

M3A 32333733373

4373317

4 3

A 332737

A 3321231331321 2733217

TABLE of CONTENTS

Preface
1. Introduction 1-1
What is ROOMS 1-1
A Brief Explanation of Some ROOMS Features 1-1
Backgrounds 1-1
Inclusions 1-2
Suites 1-2
Pockets 1-2
Original 1-2
The Overview 1-2
Conventions 1-3
Use of Upper and Lower Case in Code Examples 1-3
Keyboard Conventions 1-3
2. Loading ROOMS Software 2-1
Loading the Software 2-1
Loading ROOMS from Floppy 2-1
Loading ROOMS and the Introduction Suite from Floppy 2-1
Loading ROOMS and/or the ROOMS Introduction into Medley 1.0-$ 2-2
Adding the ROOMS Introduction with ROOMS Loaded 2-3
3. Rooms 3-1
Manipulating Rooms 3-1
"Make Room"—Creating a Room 3-1
"Delete Room" 3-2
"Edit Room" —Changing a Room’s Appearance 3-2
(INCLUSIONS 3-3
How to Use Inclusions 3-4
"Include Room" 3-4
"Exclude Room" —Removing Inclusions 3-6
:BACKGROUND 3-7
:REGION 3-8
Specifying a Region 3-9
:SHADE—"Painting" or "Papering" a Region of the Screen 3-9
Putting a Border Around a Region 3-10
:TEXT—Writing Text in the Background 3-11

ROOMS, MEDLEY RELEASE

iii

TABLE OF CONTENTS

4. Placements

41

Manipulating Placements 4-1
Move a Placement from One Room to Another 4-1
Copy a Placement from One Room to Another 4-2
Closing a Placement 4-4
"Where is?" —Finding Which Room a Placement Is in 4-4
Modules and Applications That Reuse Windows 4-5

The "Retrieve Windows" Command 4-5
5. Navigation 5-1
"Go to Room" Menu Option 5-1
Doors 5-2
Creating Doors 5-2
Manipulating Doors 5-3
Using the MOVE Key 5-3

Using the COPY Key 5-3

Using the DEL{ETE) Key 5-4

Back Doors 5-4
Changing a Door’'s Appearance 5-5
Baggage 5-5
Creating Non-Door Buttons 5-6
Creating and Using Button Image Objects 5-7

6. The Overview 6-1
What the Overview Looks Like 6-1
How the Overview Works 6-2
Using the Overview 6-3
Manipulating Rooms 6-3
Enter a Room 6-3

Copy a Room 6-3

Delete a Room 6-3

Rename a Room 6-3

Edit a Room 6-4
Manipulating Placements 6-4
Copy a Placement 6-4

Move a Placement 6-4

Expand a Placement 6-5

Delete a Placement 6-5

Editing Placements Qutside the Overview 6-5

ROOMS, MEDLEY RELEASE

K EEEEEEEEKEREREEELCEEEELCLELELCEECELCREELCLLECS EC

133

13 312

A A 3333113131333 333332373723322777°

TABLE OF CONTENTS

7. Suites 7-1
Manipulating Suites 7-1
"Save Suite" —Creating and Saving a Suite 7-1
Creating a New Suite 7-1

"Restore Suite" —Loading a Suite File 7-3
Room Name Conflicts 7-3

"Delete Suite" 7-4
"Delete Room From Suite” 7-4

"Update Suite" 7-5
Updating a Suite and the File Manager 7-5

“Show Suite” 7-6
"Augment Suite" 7-6
Appendix A: Programmer’s Guide to ROOMS A-1
Rooms A-1
Executing Code When Entering and Exiting Rooms A-4
Inclusions A-5
Room Backgrounds A-6
Placements A-8
Hidden Windows A-9
Navigation A-10
The Overview A-10
Buttons A-11
Creating Buttons A-11
Defining Button Types A-13
Making Stretchy Buttons A-14

Examples of Using def-button-type A-15
Additional Button Variables and Functions A-16
Suites A-18
Suites and the File Manager A-18
Resetting ROOMS A-18
Text Shadows A-18
Examples A-19
Window Types A-20
Window Type Definitions A-21
Debugging Window Types A-22
Using il:deldef to Delete Window Types A-23

Examples of Window Type Definitions A-23

ROOMS, MEDLEY RELEASE

TABLE OF CONTENTS

Miscellaneous A-23
Note Windows A-23
Note Window Menu Interface A-24
Note Window Example A-24
Enhancing Who-line A-25
Glossary
Index

vi

ROOMS, MEDLEY RELEASE

E EEEKEEEFEILICEEEECCE EEEELCEECEELCEELECEEEEEELEE

4 1333313113313 33313313713233333J33I3T33J73323371T32317323

LIST of FIGURES

Figure Page
1-1 ROOMS background bitmaps 1-1
2-1 The ROOMS submenu 2-1
3-1 "Make Room" menu option 3-1
3-2 The "Delete Room" menu option 3-2
3-3 The "Delete" submenu 3-2
3-4 The "Edit Room" menu option 3-3
3-5 The "Edit" submenu 3-3
3-6 An SEdit window for the room Rooms 3-3
3-7 Two room names written one on top of another 3-4
3-8 A room'’s description without any text in it 3-4
3-9 The "Include Room" menu option 3-5
3-10 A sample "Include in" menu 3-5
3-11 The "Include in" menu with a room name as part of the menu’s title 3-5
3-12 :INCLUSIONS 3-6
3-13 _ The "Exclude Room" menu option 3-6
3-14 _ The "Exclude from" menu 3-6
3-15 The "Exclude from" menu with a room name as part of the menu’s title 3-7
3-16___ A new background added to the room named Hacking 3-8
3-17 A background bitmap added to the room Hacking 3-8
3-18 _ Saving a bitmap in a background description 3-8
3-19 Putting a bitmap in a region of a room 3-10
3-20 A room with two regions specified 3-10
3-21 _ Adding a border to a region 3-11
3-22 How the positioning of background text responds to changes in :ALIGNMENT 3-12
3-23 Changing the position of the background text 3-13
4-1 The window menu command to move a placement to another room 4-1
4-2 The "Move this placement to" menu 4-2
4.3 The "Move to pockets” submenu 4.2
4-4 The "Copy to another room" command 4.2
4-5 A "Copy this placement to" menu 4-3
4-6 The "Copy to this room" submenu 4-3
4-7 The "Delete?" placement menu A4
4-8 The "Where is?" command 4-5
4-9 The "Retrieve Windows" command 4-5

ROOMS, MEDLEY RELEASE

vii

LIST OF FIGURES

5-1 "Go to Room" selected 5-1
5-2 A "Go to room" menu 5-1
5-3 The "Make Door" command 5-2
5-4 The "Select Room" menu 5-2
5-5 The “Select Button Type" menu for door creation 5-3
5-6 The "Make Back Door" submenu 5-4
5-7 A back door 5-4
5-8 An SEdit description of a door 5-5
5-9 The button image object menu 5-7
6-1 A ROOMS Overview 6-1
6-2 The "Edit Placements" command 6-6
6-3 An example of an "Edit Placements" menu 6-6
6-4 A pictogram of a room 6-6
6-5 Placement editor with the "ReFetch" menu open 6-7
7-1 The ROOMS "Suite" command and the suite submenu 7-1
7-2 The "Save" menu as it appears if no suites are present 7-1
7-3 The "Select Room" menu 7-2
7-4 Suite debugger window with the proceed menu open 7-3
7-5 The "Delete" suite menu 7-4
7-6 The "Delete Room From Suite" submenu 7-4
7-7 An example of the "Delete room from" menu 7-5
7-8 An example of a "Select Room" menu 7-5
7-9 The "Update Suite" Menu 7-5
7-10 An example of an "Update" menu 7-5
7-11 The "Show" menu 7-6
7-12 An "Augment Suite" menu 7-6
A-1 Different button looks for different values of :shadows A-12
A-2 Examples of regular and inverted buttons A-13
A-3 How east-west bitmaps are stretched A-14
A-4 How north-south bitmaps are stretched A-14
A-5 How nsew bitmaps are stretched A-15
A-6 A "Go to Room" button A-17
A-7 Menu created incorporating with-button A-17
A-8 A VMEMSIZE button A-17
A-9 A "Go to Room" button A-19
A-10 The description of the "Go to Room" button A-19
A-11 The "Go to Room" button created with the new shadow specifications A-20
A-12 A variation on the shadowed button A-20

viii

ROOMS, MEDLEY RELEASE

kd
hd
k!
hd
hd
hd
hd
hd
hal
ha
d
hd
ud
d
lad
had
bl
bl
|
|
al
il
Sl
hal
|

sl

hd

]

|

|

i

W

LIST OF FIGURES

A-13 The Note window top level menu A-24
A-14 The Note window edit mode menu A-24
A-15 A Note window A-25
A-16 A Note window containing some text A-25

2311331311133 3323223232133317133 AT 3TJ33733J333337

ROOMS, MEDLEY RELEASE

LIST OF FIGURES

[This page intentionally left blank]

ROOMS, MEDLEY RELEASE

EEEEEILEEEEILEEEILILEELEELCEIILCELCILCELCEECECECELCEEECETEL

4111313113131 33131131333332332133373IJ33373I33373733333

LIST of TABLES

Table Page
6-1 Mapping of Overview Key Bitmaps to the keyboard 6-2
A-1 How Inclusions Work A-6

ROOMS, MEDLEY RELEASE

Xi

LIST OF TABLES

[This page intentionally left blank]

Xii

ROOMS, MEDLEY RELEASE

F EEEEEEILEEEILILEEE LLICILCELLCILCECELEEELCLEEECELCDLE

by [B

233

433273372773

43 32 2

333

1323217

A 3233212 AaA17

PREFACE
L |

Welcome to ROOMS, a sophisticated way to handle the problem
of a cluttered screen. ROOMS provides you with a new way to
manage your Envos Software Development Environment by
allowing you to create the equivalent of additional screens to
group windows used for a common task.

The purpose of this manual is to give you a comprehensive guide
to using ROOMS at both the menu level and programmatically.
This manual includes a Programmer’s Guide that lets you take the
cover off a little (well tilt it up anyway). You don’t have to use
the Programmer’s Guide or even read it if you are content to use
ROOMS at the menu level. ROOMS provides a wide range of
functionality without using the Programmer's Guide.

What’s In the Manual

Chapter by chapter here’s what you'll find in the ROOMS
manual.

® Chapter 1, Introduction, gives you a brief overview of
ROOMS and some of its features.

* Chapter 2, Loading ROOMS Software, tells you how to load
the ROOMS software (from both floppy and tar tape), what
fonts are required and tells you how to load the ROOMS
on-line tutorial, the ROOMS Introduction.

* Chapter 3, Rooms, shows you how to create the virtual
workspaces called rooms and demonstrates how to
customize a room’s appearance using the Llisp structure
editor SEdit.

* Chapter 4, Placements, explains how ROOMS handles the
capability for displaying a window in more than one room.
Placements enhance the standard window system and this
chapter explains how that is done and how you can use it.

* Chapter 5, Navigation, shows you the various ways that
ROOMS provides for moving between rooms. Also included
is information on buttons.

e Chapter 6, The Overview, explains how to use the ROOMS
Overview, a special room that allows you see all your rooms
(and what’s in them) at once. Also included is information
on how to edit the placements of a room outside the
Overview.

* Chapter 7, Suites, explains the ROOMS suite interface.
Suites allow you to save sets of rooms on files and reload the
suite files thus allowing you to easily restore a past state.

®* Appendix A, Programmers Guide to ROOMS, is a
comprehensive reference to the programmatic interface to
rooms. Many of the things that you do in rooms using
menus you can duplicate using Lisp functions.

ROOMS, MEDLEY RELEASE

xiii

PREFACE

At the end of the manual there is a glossary of ROOMS terms
and an index.

How to Use this Manual

For first time users of ROOMS we recommend that you load and
use the ROOMS Introduction, an interactive tutorial that takes
you on a tour of ROOMS and introduces ROOMS features by
teaching you to use them,

Once you've gone through the tutorial you're ready to use
ROOMS to make your life easier. Use the manual as a reference,
referring to it when you need some instructions on how to do
something particularly vexing and not clear. Hopefully, we've
anticipated your confusion and you will find the answers to your
questions easily accessible.

Once you feel you've exhausted the possibilites of using what
ROOMS gives you, dive into the Programmer’s Guide for some
serious customizing. The Programmer’s guide assumes you are
familiar with the Common LISP style of programming as
presented in Common LISP the Language by Guy Steele.

Finally, enjoy yourself, ROOMS is so much fun to use you may
forget how much more efficient it makes you.

References
Lisp Release Notes, Medley Release, Appendix B, SEdit
Common LISP the Language by Guy Steele
interlisp-D Reference Manual, Volumes 1-3, Koto release
Medley 1.0-S User’s Guide

Acknowledgement

As with any other project of this type ROOMS is a collaborative
effort with many people contributing their skills to its
completion. First came Austin Henderson and Stu Card, pioneers
in user interface research at Xerox's Palo Alto Research Center
(Xerox PARC). Next came Doug Cutting a developer at Envos
(formerly Xerox Artificial Intelligence Systems) who reworked
much of the code to be more "Common LISPy." Mary Eward of
Envos took the early code listings and wrote the first draft of the
documentation. She handed her draft to Bob Weisblatt who
wrote the manual you are now reading. Acknowledgement is
also long overdue to Ron Clarke, the ROOMS project manager,

Xiv

ROOMS, MEDLEY RELEASE

ki
kd
&l
hd
had
hd
hd
¥
had
ad
ol
ald
5|
|
kad
!
fond
ad
fad
bl
bl
ind
bl
il
l
i
i
il
i
i
[
|

1 4 A3 3131121332373 3371J33I33J3J3J3A3TIT3IT33233333373

PREFACE

who steered the project through the shoals of development,
documentation, testing, and release. Also, thanks are owed to
Larry Harada for testing ROOMS and to Kat Kohlsaat who who
helped test ROOMS and handled the release of the product. We
on the ROOMS team are proud of the product we have
developed and hope that you have as much fun using ROOMS as
we had bringing it to you.

ROOMS, MEDLEY RELEASE

XV

PREFACE

[This page infentiona[ly left blank]

ROOMS, MEDLEY RELEASE

K XK EEFEEEEELEEFEELELIOCLCEELELCECEEREFEEEEEE

A 2331313311333 33373333133A3A3TA733333123217

1. INTRODUCTION
L

What Is ROOMS

ROOMS effectively increases the size of your display by allowing
you to create a set of virtual workspaces called rooms. Each
room is equivalent to having another screen; you can create a
new, empty room whenever you need more screen space.

Moreover, while each room you create can contain a unique set
of windows, the environment is the same for all rooms. The
number of rooms and the number of windows, either in a room
or in the entire ROOMS system, is limited only by system
constraints, e.g., VMem size.

ROOMS helps minimize the time you spend arranging windows.
it allows you to create rooms that group windows used for a
common task and to segregate one group of windows from
another. To allow easy movement between rooms you create
doors that lead from one room to another.

ROOMS also allows you to "paint the walls" of each room with a
different background. This further enhances the distinctiveness
of each room and thus its connection with a specific task.

ROOMS allows you to group rooms into suites and then save
these suites to a file. You can store the suite files on your local
disk, file server, or floppies and load them as you load any other
Lisp file.

A Brief Explanation of Some ROOMS Features

Backgrounds

A background is the appearance of the screen behind all the
windows. If you give each room a distinct background the time
you spend orienting yourself, as you travel from room to room,
decreases.

ROOMS software includes the background bitmaps, TILE-BITMAP,
RENAISSANCE-BITMAP, and SQUARES-BITMAP (Figure 1-1). In
addition you can create your own set of backgrounds.
Instructions on how to install backgrounds are in Chapter 3,
Rooms, "Edit a Room, :BACKGROUND. "

3 b
figure 1-1. ROOMS background bitmaps. Left
to right: TILE-BITMAP, RENAISSANCE-BITMAP,
and SQUARES-BITMAP.

ROOMS, MEDLEY RELEASE

1. INTRODUCTION

Inclusions

Suites

At times you may have windows that you want to include in
some rooms but not in others. With Inclusions, you can set up a
single room, called a "source' room that contains those
windows. You then include the source room in several other
rooms, called "destination" rooms. All the windows you put into
the source room appear in the destination rooms.

For information on how to include one room in another, see
Chapter 3, Rooms, "Edit A Room, :INCLUSIONS."

Pockets

ROOMS provides you with a suite facility that allows you to:
¢ Group a set of rooms together into a suite.
» Save the suite to a file.

* Load the suite file, reestablishing a set of rooms without
having to recreate each room individually.

Original

Pockets, a room automatically created when you first load
ROOMS, lets you have a set of windows appear in every room.
Pockets initially contains only the prompt window. Any window
you put in Pockets automatically appears in every room in the
system,

In general it is recommended that you use Inclusions rather than
Pockets to handle your need for a standard set of windows being
present in any room. This recommendation is based on the fact
that you cannot add Pockets to a suite. However if you wish you
can delete Pockets from the system in the Overview (see below).

The Overview

The Original room is automatically created when you load
ROOMS. If Original and Pockets are the only rooms present
then all the windows that normally appear on your screen are in
Original. You can delete Original from the system in the
Overview.

The Overview is a special room that allows you to see all existing
rooms at the same time. While in the Overview you can
manipulate rooms and windows using keyboard-mouse
combinations. A special feature of the Overview is that you can
delete the two rooms that ROOMS creates when it is first
loaded—Pockets and Original.

ROOMS, MEDLEY RELEASE

hd
hd
b
i
kd

E EEEEFEEEEIIEKEILDEDILILLCEELCEECEECELCEELCEETK K

A 3213121313117 333133333A333133333TIT133IJ31T31333312

1. INTRODUCTION

Conventions

Throughout this manual, you there are references to ROOMS and
to Rooms (or rooms). ROOMS in all uppercase letters refers to
the application itself; a word with lower case letters (Rooms or
rooms) refers to specific rooms within the ROOMS system.

Use of Upper and Lower Case in Code Examples

Keyboard Conventions

This manual uses two styles for showing code examples
depending on the context of the example itself. In the first
seven chapters the examples generally are illustrations that use
the Lisp structure editor, SEdit. Since SEdit displays typein in all
uppercase by default, the examples are given in all uppercase.

However, in Appendix A examples are illustrated using the
"Common Lisp" style, i.e., all lower case.

Keys that you press are in uppercase (e.g., COPY, for the Copy
key). A carriage return is displayed as <RETURN>.

There are some keys and key combinations that have the same
effect as others (e.g., SHIFT has the same effect as COPY when
used analogously). Throughout this manual most differences and
alternatives have been ignored but they still work; that is you can
still use SHIFT for COPY, CONTROL-SHIFT for MOVE, etc.

ROOMS, MEDLEY RELEASE

1-3

1. INTRODUCTION

[This page intentionally left blank]

1-4

ROOMS, MEDLEY RELEASE

¥ EEEEEEIICILEEELCILLIILLCLIEEELCCECEEECEECEELECETLE

A A 2332131313113 31333373337J3J1333J3333T7373333127

2. LOADING ROOMS SOFTWARE

When you load ROOMS, you can either load only the software
or the software plus a ROOMS Introduction suite. You load
ROOMS and the Introduction from either floppies or a tar tape
depending on the hardware you are using. This chapter has
instructions for loading from both floppies and a tar tape.

Loading the Software

Loading ROOMS from Floppy

This procedure loads only the ROOMS software.

1. Set IL:DISPLAYFONTDIRECTORIES to the location of the
font HELVETICA18-MRR-C0.DISPLAYFONT.

2. With the ROOMS floppy disk in the disk drive, type to an
Exec:

DIR {FLOPPY}
3. After the floppy directory prints type in an Exec:
(LOAD "{FLOPPY}ROOMS.DFASL")

* Loading ROOMS.DFASL automatically loads all the other
necessary files.

When the load is finished, you have an initial set-up containing
two rooms: a room called Original that contains whatever would
normally be on your screen and a room called Pockets. The
purpose of the Pockets room is described in Chapter 1,
Introduction, "Pockets."

Most of what you do with ROOMS is controlled from the
ROOMS submenu (Figure 2-1). Each menu item is explained in
this manual.

Go to Room
Make Room
Edit Room B
Delete Aoom

*Retrieve Windows
Suites 2
Make Door 3

Figure 2-1. The ROOMS submenu

Loading ROOMS and the Introduction Suite from Floppy

This procedure loads both the ROOMS software and the ROOMS
Introduction. The Introduction introduces you to basic ROOMS
concepts through illustrations and exercises. We encourage new
users to load this tutorial.

Before loading the Introduction, you must make the following
font files accessible to ROOMS. These font files are supplied with
the Envos Lisp Software kit:

ROOMS, MEDLEY RELEASE

2-1

2. LOADING ROOMS SOFTWARE

HELVETICA12-MRR-CO0.DISPLAYFONT
HELVETICA14-MRR-CO.DISPLAYFONT
HELVETICA18-MRR-CO.DISPLAYFONT
HELVETICAD24-MRR-C0.DISPLAYFONT
MODERN24-MRR-C0.DISPLAYFONT

ROOMS uses the variable IL:DISPLAYFONTDIRECTORIES to
determine where to look for the fonts it needs.

1. To load the ROOMS Introduction type to an Exec:
DIR {FLOPPY}

2. After the floppy directory prints in the Exec type:
(LOAD "{FLOPPY}ROOMS-INTRO.DFASL")

The ROOMS Introduction contains nine rooms: a room called
Original that contains your regular screen image (with one
change), a room called Pockets, and seven rooms containing the
ROOMS Introduction. The Original room has a window placed
in the middle of the screen with the words "Enter Introduction”
written on it. Select this window with the left mouse button to
start the tutorial.

When you are finished with the ROOMS Introduction suite, you
can delete the suite from your environment with the "Delete
Suite" command (see Chapter 7, Suites).

Loading ROOMS and/or the ROOMS Introduction into Medley 1.0-S

The procedure in this section assumes that you have ROOMS on
a tar tape, that you need to copy the software from the tape so
you can load ROOMS into Medley 1.0-S, that you are familiar
with using Medley 1.0-S, and UNIX. You cannot load ROOMS
directly from the tape.

The following instructions show you how to copy the software to
your home directory and then load ROOMS into Medley 1.0-S.

1. Login to the C-Shell

* You cannot be logged in to more than one workstation on
the net.

2. Insert the tape into the drive.
3. Type to the C-Shell:
prompt% cd
and press <RETURN>.
* Connects you to your home directory.

4. Copy the ROOMS software from the tape. Indicate the
appropriate device abbreviation for your tape by replacing XX
in the example below with:

ar for the Archive drive
st for a SCSI tape drive
mt for the Tapemaster half-inch (1600 bpi) drive.

The command entry sequence is:

2-2

ROOMS, MEDLEY RELEASE

F FEEEEEILEEELEEILILI NP EEEECEECECEECEEE

A 2 1133231131333 3313313 3371373337333 333J7333332

2. LOADING ROOMS SOFTWARE

prompt% tar xvf /dev/rXX0
and press <RETURN >,

* Copies the contents of the tape to the connected
directory. The tape has the ROOMS software, the ROOMS
Introduction and the unsupported ROOMS Users’
Modules on it (You can load the ROOMS Users’ modules
from "{DSK}rooms/users/".)

4. To load ROOMS into Medley 1.0-S type in an Exec:
(LOAD "{DSK}rooms/system/rooms.dfas1")
5. To load the ROOMS Introduction type in an Exec:

(LOAD "{DSK}rooms/system/rooms-intro.dfasi")
* This loads ROOMS also if it's not already loaded.

Note: See the section "Loading ROOMS and the Introduction
Suite from Floppy" above for a list of the fonts that
ROOMS must have access to when you load the
introduction.

Adding the ROOMS Introduction with ROOMS Loaded

If you have already loaded the ROOMS software and would like
to add the ROOMS Introduction suite, you simply have to load
ROOMS-INTRO.DFASL. The Introduction suite is added to the
rooms already present and the "Enter Introduction" window
appears in the room you are in when you load the Introduction.

ROOMS, MEDLEY RELEASE

E

2. LOADING ROOMS SOFTWARE

[This page intentionally left blank]

F EFEEELEEILEELEELEEILILEEELCLCLEILCELCECECEECEEECELCCECCLC

ROOMS, MEDLEY RELEASE

4 3227317727777 333770

P I |

4 A 3371 3337373

I

A 223322222

3. ROOMS

A room is a virtual workspace that you create and design. As
such, it normally displays only those windows necessary for the
task associated with that workspace (though you are not limited
to the windows present in any room). Therefore, you move from
room to room in order to move from one task to another.
Descriptions of how to move around are given in Chapter 5,
Navigation.

This chapter covers:

* How to create a room.

® How to delete a room.

* How to change a room’s appearance.

* How to include one or more rooms in other rooms.

You can also manipulate rooms from the Overview, a
representation of all rooms in the environment. For an
explanation of the Overview see Chapter 6, The Overview.

Note: When you are designing rooms and deciding what
windows to put into them you should include a prompt
window in each room. ROOMS makes extensive use of
the prompt window to print messages about what is going
on. Also, if you go into Idle from a room that doesn’t
have a prompt window when you attempt to exit Idle
there is no prompt window visible to enter your name and
password. You can still login: just type your name and
password. But you won't be able to see what's being
printed in the prompt window because it's in another
room.

Manipulating Rooms

"Make Room"—Creating a Room

To create a new room select "Make Room" on the ROOMS
submenu (Figure 3-1).

Edit Hoom
Delete Hoom

JRetrieve Windows
Suites S
Make Door -

figure 3-1. "Make Room" menu option

ROOMS asks you for the name of the new room in the prompt
window. Type in the name and press <RETURN>; ROOMS adds
the room to the current set. You are not moved to that room.

ROOMS, MEDLEY RELEASE

3-1

)

3. ROOMS

"Delete Room"

Initially, a new room contains only those windows that are in
Pockets. If you've deleted Pockets then a new room contains
nothing and has the default light gray background.

Deleting a room removes it from the current set of rooms.

To delete a room select "Delete Room" on the ROOMS
submenu (Figure 3-2).

Go to Room
Make Room
Edit Hoom
Delete Hoom

EXEG) Retrieve Windows
PSW Suites »
Make Door ¥

Figure 3-2. The "Delete Room" menu option

ROOMS responds with a menu of all the existing rooms that are
not part of a suite (Figure 3-3). After selecting the room to
delete press the left mouse button to confirm the deletion.
Pressing the middie or right mouse button aborts the deletion.

Utilities

Figure 3-3. The "Delete" submenu

Note: Deleting a room also deletes the placements that are in
the room.

See Chapter 6, Suites for information on deleting a room that is
part of a suite.

"Edit Room" —Changing a Room’s Appearance

Each room has a keyword list associated with it that contains
information on the room’s appearance. In order to change the
appearance of a room you edit this keyword list using SEdit the
Envos Lisp structure editor (see the Release Notes, Appendix B,
SEdit). You do not have to be in a room to edit it.

You can add your own properties to a room using SEdit. You
can also add a property programmatically, see Appendix A, The
Programmer's Guide to ROOMS "Rooms" (the function
room-prop).

To open an SEdit window with a room’s description first select
"Edit Room" from the ROOMS submenu (Figure 3-4).

Note: The "Edit This Room" command allows you to edit the
room you're in (called the current room). "Exclude
Room" and "Inciude Room" are explained below in
":inclusions." "Edit Placements" is explained in Chapter 6,
The Overview.

ROOMS, MEDLEY RELEASE

¥ FE EEEEEREEEELEEEERELEICELRE ECEER EREEEECEE E

1313737373

|

A A4 2313133272333 A 33T 3 ATJ3233A7733

3. ROOMS

:INCLUSIONS

Go to Hoom
Make Hoom
Edit Boom
Delete Room

Retrieve Windows

4 Edit This Room

Edit Placements
Exclude Room »

include Room ¥

Suites 4

Make Door ¥

Figure 3-4.
option

The "Edit Room" menu

All-purpose
Hacking

Original
Pockets
Rooms
Snap Room
Template
Utilities

My Other Room
My own room

Figure 3-5. The "Edit" submenu

SEdit HFooms Package; X ZL-LJZER

(:INCLUSIONS ("All-purpose") :BAGKGROUND
((:WHOLE -SCREEN 436058)
(:REGION (0 0 1.0 1/4) :SHADE

I BITMAR & 658,59644>)
(:TEXT "Booms")))

Figure 3-6. An SEdit window for the room

Rooms

When you select "Edit Room," a menu opens listing all the
existing rooms including those rooms contained in suites (Figure
3-5). Selecting the room you what to edit from the "Edit" menu
(using any mouse button) opens an SEdit window with that
room’s description (Figure 3-6).

4045

When you change a room’s description, its appearance changes
as soon as you end the edit session.

in many, but not all, rooms.

:INCLUSIONS allow you to include one or more rooms (called
source rooms) and all their windows in other rooms (called
- destination rocoms).

Inclusions are useful when you have a set of windows (e.g., an
Exec, a mail watcher, the Who-line, etc.) that you want to appear
Thus inclusions are distinguished
from Pockets in that any window present in Pockets appears in
every room.

In addition, a permanent, dynamic link is set up between the
source and destination rooms:
modified all destination rooms that include it are automatically
modified. Editing a destination room has no effect on a source

when the source room is

ROOMS, MEDLEY RELEASE

3-3

3. ROOMS

How to Use Inclusions

room. However, if you close or move a window that is actually
from the source room the change is propagated back to the
source room and then to any other rooms that include the
source room. Copying or moving an included window first
moves the placement for that window into the current room
before executing the action.

"Include Room"

Let's say you create two rooms, one called Template and the
other Hacking. Template contains an Exec, a mail watcher, the
Who-line and a prompt window. Hacking contains nothing. If
you include Template in Hacking then all the windows in
Template also appear in Hacking.

But Template’s name is also included in Hacking. So in the lower
left comer where you probably want just Hacking you have
Hacking written over Template (Figure 3-7).

Figure 3-7. Two room names written one on top
of another

To correct the problem you need to remove the text from the
background description of Template (Figure 3-8).

SEdit Template Package: XCL-UTSER
(:INCLUSIONS NIL :BACKGROUND NIL}

Figure 3-8. A room’s description
without any text in it

If you move or close one of the three included windows in
Hacking the action is duplicated in Template (and vice versa). |If
you want one (or more) of the included windows to be in
different positions in each room you can copy windows into
Hacking (see Chapter 4, Placements.)

You can also include backgrounds in rooms. See the
‘BACKGROUND section below for information on how to "paint"
your rooms with different "colors" or "paper the walls" with
"patterns."

You can include rooms by selecting "Include Room" from the
ROOMS submenu (Figure 3-9) (Selecting "In this Room" allows
you to include rooms in the current room.)

3-4

ROOMS, MEDLEY RELEASE

hd
kel
Y]
bl
hd
kl
¥ |
hd
hal
hd
M
ud
bd
hd
bl
|
bl
i
had
ad
il
bl
l
bl
i
el
M
nl
|
|
N
u

A A 23313111 JFTJIJIJAIJIIJIIIJIJTITI3I33I33ITI33133133327

3. ROOMS
Go to Hoom
Make Room Edit This Hoom
Edit Hoom Edit Placements
Delete Aoom Exclude Room »
=N This Room
Retrieve Windows aathEiielu Ihis Floom

Suites ¥
Make Door H

Figure 3-9. The "Include Room" menu option

When you release the right mouse button after selecting
“Include Room" the "Include in . . ." menu opens. This menu
lists all the rooms in the environment (Figure 3-10).

include in ...
Control Panel
Final Doc Prep
Hacking
Maxtor
My own room
PCE
Rooms
Snap Room
Tech Prod Description

Template
<new room>

Figure 3-10. A sample "Include in" menu

The room that you choose (for illustrative purposes "Hacking"
was chosen) in the "Include in" menu becomes the destination
room (if you select <new room> the new room becomes the
destination room); ROOMS deletes it from the menu and
reopens the menu with the destination room as part of the
menu’s title (Figure 3-11).

Include in Hacking
Gontrol Panel
Final Doc Prep
Maxtor
My own room
PCE
Rooms
Snap Room
Tech Prod Description
Template
{new room>

figure 3-11. The "Include in" menu with a room
name as part of the menu’s title

The room you select from this menu is the source room; it is
included in the first room you chose.

You can also include one room in another using SEdit to edit the
room description. Figure 3-12 shows the SEdit window of the
room Hacking with Template included.

ROOMS, MEDLEY RELEASE

3. ROOMS

"Exclude Room" —Removing Inclusions

SEdit Hacking Parkage: ©ZL-USER

(:INCLUSIONS
("Template")
:‘BACKGROUND
(C:TEXT "Hacking")))

Figure 3-12. :INCLUSIONS

Inclusions are inherited. For example if the room Tech Prod
Description is included in Template, then Hacking would also
include the room Tech Prod Description. For a complete
explanation of how ROOMS handles inherited inclusions please
consult Appendix A, Programmer's GCuide to ROOMS,
"Inclusions."

You can also use the ROOMS submenu to remove source rooms
from destination rooms. First select "Exclude Room" from the
Edit Room submenu (Figure 3-13). Selecting "In This Room"
allows you to exclude rooms from the current room.

[Edit This Room

Go to Hoom Edit Placements

Idie Make Room de Roo -
SaveVM ot B0 aciude Room _&Frum This Room|

Delete Room

Retrieve Windows
Suites ¥
Make Door b

Figure 3-13. The "Exclude Room'" menu option

When you release the right mouse button the "Exclude from"
menu opens (Figure 3-14).

Ezclude fram ...
Gontrol Panel
Final Doc Prep
Hacking
Maxtor
My own room
PGE
Rooms
Snap Room
Template

Figure 3-14. The "Exclude from" menu

Pick the room you want to exclude a room from, that is you are
picking the destination room from this first menu. Remember,
rooms are destination rooms if some other room is included in
them. For illustrative purposes the room Hacking was chosen
from this menu,

When you've picked the destination room, the name of that
room is added to the menu’s title and a menu opens listing all of
the rooms that are included in the room you picked (Figure
3-15).

¥ ¥ EEEEEEILEEEEELCLECRELCEECEECCEECEECECEL

ROOMS, MEDLEY RELEASE

4 1133133323331 733JT33I3T3IJ1733IJ33IJ3333331337337317

3. ROOMS

:BACKGROUND

Exclude frorm Hackinog
Template

Figure 3-15. The "Exclude from" menu with a
room name as part of the menu’s title

Select the room you want to exclude. ROOMS deletes it from
the :INCLUSIONS list. Any windows that were in the destination
room only by virtue of being in the source room are removed.
However they remain in the source room.

:EVAL

:WHOLE-SCREEN

:BORDER
: BORDER-SHADE

Use :BACKGROUND to specify the look of the background in a
room. lts value is a series of sublists, where each sublist defines
a unique part of the background. Some examples of the values
of :BACKGROUND are given below.

Note: Because of the way that ROOMS handles backgrounds you
should not use IL:CHANGEBACKGROUND when specifying
how you want a background to look.

any time you need to do an evaluation in a background
specification use :EVAL. For example, (... :BACKGROUND
(:EVAL IL:MY-BACKGROUND)...) evaluates the variable
IL:MY-BACKGROUND to find the background bitmap to use in
that room. :EVAL is used only within the :BACKGROUND
description. You can put any expression you want evaluated
after :EVAL.

follow this keyword with a bitmap, shade or texture in order to
change the background of the room. If you use a variable whose
value is a bitmap, shade or texture, then you must use : EVAL.
Examples;

(:WHOLE-SCREEN 43605)

Changes the background to the shade given by 43605
(IL:GRAYSHADE).

(:WHOLE-SCREEN (:EVAL IL:MYBITMAP))

Tiles the background with the bitmap that is the value of the
variable IL:MYBITMAP,

You can put a border around the entire background using
:BORDER and specify a border shade using : BORDER-SHADE.

in pixels; defaults to zero (0).

a shade; defaults to IL:BLACKSHADE.

(:WHOLE-SCREEN (:EVAL IL:MYBITMAP) :BORDER 4
:BORDER-SHADE (:EVAL IL:GRAYSHADE))

Tiles the background with the bitmap that is the value of the
variable IL:MYBITMAP and puts a gray border four pixels wide
around the screen.

Thus, if you want to give the room Hacking (see above) a new
background you would change Hacking’s description (Figure
3-16).

ROOMS, MEDLEY RELEASE

3-7

3. ROOMS

:REGION

SEdit Hacking Package: CL-USER

(INGLUSIONS (“Template") :BAGKGROUND

((:WHOLE-SCREEN (:EVAL IL:GRAYSHADE))
(:TEXT “Hacking")))

" Figure 3-16. A new background added to the
room named Hacking

Instead of just a plain gray background you may want something
a little more exciting. Hacking can be pretty messy so let's put
tile up in the room! One of the bitmaps that comes with
ROOMS is called TILE-BITMAP. To change the background of
Hacking from gray to tiles you need to change Hacking’s
description again (Figure 3-17).

SEditHacking Fackage: XCL-USER
(:INCLUSIONS ("Template"} :BAGKGROUND
((:WHOLE -SCREEN
(:EVAL ROOMS:TILE -BITMAP))
(:TEXT "Hacking")))

Figure 3-17. A background bitmap added to
the room Hacking

Note: If you used your own bitmap for the background of
Hacking and you wanted to save the room as part of a
suite (see Chapter 6, Suites) you would need to ensure
that the bitmap was available when you loaded ROOMS or
put the actual bitmap into the background description by
mutating (Meta-Z) your bitmap by eval (Figure 3-18). For
an explanation of how to use SEdit's mutate feature see
the Lisp Release Notes, Appendix B, SEdit

Mutate by function: EVAL
SEditHacking Package; W ZL-USER
(:INGLUSIONS ("Template") :BACKGROUND
((:WHOLE -SCREEN # <!L:BITMAF @ 55,56416))
(:TEXT "Hacking")))

Figure 3-18. Saving a bitmap in a background
description

:REGION lets you paint different regions of the screen with
different shades, bitmaps, or textures. You can also specify each
region to have different size and shaded borders. :REGION can
have four arguments: a list specifying the region; a shade,
bitmap or texture to fill that region of the screen (:SHADE); a
border (:BORDER); and a border shade (: BORDER-SHADE).

ROOMS, MEDLEY RELEASE

¥F I EEEEEEEILIELCELEILCLCEE FFIILCEEECEEEECECEREECE

4 3313131333131 11313J3377133I3 3733333 3J1IJT333IJI33333317

3. ROOMS

Specifying a Region

Note: If you specify a region and give it a shade you must also
specify a value for :WHOLE-SCREEN (see above). ROOMS
first paints the entire background with the shade you give
to :WHOLE-SCREEN and then paints the separately defined
region.

INTEGER

FRACTION or
FLOATING POINT

The list giving the dimensions of the region should be in the
form (LEFT BOTTOM WIDTH HEIGHT), where LEFT and BOTTOM
specify the position of the lower left-hand comer of the region
and WIDTH and HEIGHT specify the size of the region.

You can use integers, fractions or floating point numbers to
specify each part of the region list. In fact, you can mix different
types of numbers together in any region’s specification. You can
also specify more than one region in a room’s description (Figure
3-20).

For example:

(:REGION (0 3/4 1.0 1/4) . . .)
Defines as a region the top quarter of the screen.
(:REGION (1/4 1/4 1/2 1/2) . . .)

Defines the region as a square centered in the middle of the
screen,

In general the different types of numbers you use to specify the
region’s dimensions do the following:

specifies size or position in pixels

specifies size or position in proportion to entire screen (1.0 is
the entire screen).

Note: All positions can be specified proportionally.

Using IL:GETREGION. One way to specify regions, especially
small ones, of the screen is by using IL:GETREGION. That is,
include in your :REGION specification something like:

(:REGION (IL:GETREGION). . .)

Select IL:GETREGION (including the parentheses) and then
mutate it by eval. You are asked to sweep out a region of the
screen. The dimensions of that region are automatically placed
in the :REGION specification in place of IL:GETREGION (see
the Interlisp-D Reference Manual, Chapter 28 Windows and
Menus, "Section 28.3 Interactive Display Functions" for
information on using IL:GETREGION.)

:SHADE—"Painting"or "Papering" a Region of the Screen

: SHADE works similarly to :WHOLE-SCREEN but is used to paint
regions smaller than the entire screen. You supply a shade,
bitmap, or texture. If you want to use a variable use : EVAL.

For example:

ROOMS, MEDLEY RELEASE

3-9

W

3. ROOMS

(:REGION (0 3/4 1.0 1/4) :SHADE (:EVAL IL:MYBITMAP))

Putting a Border Around a Region

Tiles the top quarter of the screen with IL:MYBITMAP.
And,

(:REGION (1/4 1/4 1/2 1/2) :SHADE 65535)

Fills a square in the middle of the screen with the shade 65535
(IL:BLACKSHADE).

Now you can make the room Hacking even fancier. First let’s
make TILE-BITMAP fill just the bottom quarter of the screen
(Figure 3-19).

TEdit Hacking Fackanoe: W CL-UZER
(INGLUSIONS ("Template") :BACKGROUND
((:WHOLE -SCREEN 436035)
(:REGION (0 0 1.0 1/4) :SHADE
(:EVAL ROOMS:TILE -BITMAP))
(:TEXT “Hacking"}})
Figure 3-19. Putting a bitmap in a region of a
room

Let's keep going and put RENAISSANCE-BITMAP up the right
quarter of the screen, but above the tile (Figure 3-20).

SEdit Hacking Package: xCL-UZER
(:INCLUSIONS ("Template") :BACKGAOUND
({:WHOLE -SGREEN 43605}
(:REGION (0 0 1.0 1/4) :SHADE
(:EVAL ROOMS:TILE -BITMAP))
(:BEGION (3/4 1/4 1/4 3/4) :SHADE
(:EVAL ROOMS:RENAISSANCE -BITMAP))
CTEXT "Hackigg")))

Figure 3-20. A room with two regions
specified

:BORDER
:BORDER-SHADE

You can put a border around a region using :BORDER and
specify a border shade using :BORDER-SHADE.

in pixels; defaults to zero (0).

a shade; defaults to IL:BLACKSHADE.

You specify a border and shade for a region by putting these
keywords inside a : REGION argument to :BACKGROUND (Figure
3-21).

3-10

ROOMS, MEDLEY RELEASE

hd
hd
Y
hd
hd
Ad
hd
ki
hd
A
hd
hd
b
d
hd
hd
hd
kd
had
ol
i
had
b
il
hd
|
Wl
™
™
i
-
™

2327322137317

A

4 A A A3 3332333332377 172732773

i |

A B 3 A

3. ROOMS

:TEXT—~Writing Text in the Background

SECitHacking Paclage, WCL-JSER
(INCLUSIONS ("Template™) BACKGROUND
{((:WHOLE -SCREEN 436045)
(-AEGION (0 0 1.0 1/4) :SHADE
(:EVAL ROOMS:TILE -BITMAP))
(BEGION {374 1/4 1/4 3/4) :SHADE
((EVAL BOOMS:REMNAISSANGE -BITMAP)
:BORDER 4 :BORDER-SHADE
(EVAL L:WHITESHADE))
(:TEXT "Hackingf)))

figure 3-21. Adding a border to a region

:POSITION

:ALIGNMENT

:TEXT lets you write text anywhere on the screen. The text
written becomes part of the background; that is, it cannot be
edited and can only be changed by modifying the room
definition. When a room is first created : TEXT has as its default
value the name of the room with the text placed in the lower left
corner of the room.

:TEXT has one mandatory and four optional arguments. The
mandatory argument is the text itself. The optional arguments
are: the position of the text on the screen (:POSITION), the
relative relationship between the position and the text
(:ALIGNMENT), the font of the text (:FONT), and the text’s
shadows (:SHADOWS).

Note: You can use :TEXT as many times as you want in a
background description but if you don’t specify different
positions all the text is written one on top of the other in
the lower left comer.

provides the position of the text, given in the dotted pair
notation of (LEFT . BOTTOM). When you specify :POSITION
you can use integers and floating point numbers. You may also
specify a position using fractions to specify a relative position.
For example, a position of (0 . 500) places the text on the left
hand side, a little over halfway up the height of the screen. A
specification of (1/2 . 1/2) places the text at a position half the
screen width from the left and half the screen height from the
bottom.

Your screen size can be determined from the values of
IL:SCREENWIDTH and IL:SCREENHEIGHT.

gives the relationship of :POSITION to the text. If the text has
shadows, the alignment is calculated using the shadows. Its
value is one of :LEFT-BOTTOM (default), :LEFT-TOP,
:CENTER, :RIGHT-BOTTOM or :RIGHT-TOP. For example, to
write text in the lower right-hand corner of the screen, you
would use :RIGHT-BOTTOM. Remember, it's the position in
relation to the text, not the text in relation to the position (Figure
3-22).

ROOMS, MEDLEY RELEASE

3-11

3. ROOMS

:FONT

: SHADCOWS

: IIGHT-IIIITUM HEFT-BOTTOM

l

Hacking Hacking
(0,100) - :cewmer___,. Hacking
Hacking Hacking

:RIGHT.TOP :LEFT.TOP

1

(0,0 (100,0)

Figure 3-22. How the positioning of background
text responds to changes in :ALIGNMENT

specifies the font of the text. Civen in the form of (FAMILY SIZE
FACE). For example text fonts might be, (MODERN 18 BRR) or
(CLASSIC 24 MRR). Defaults to the value of:
default-background-text-font which is initially 36
point, TimesRomand medium.

Note: For information on how to change
default-background-text-font see Appendix A,
Programmer’s Guide to ROOMS, "Room Backgrounds."

Sample uses of the : TEXT keyword:

(:TEXT "Sample Text" :POSITION (500 . 500)
:ALIGNMENT :CENTER :FONT (CLASSIC 24 MRR))

Writes the string "Sample Text" centered near the middie of the
screen.

(:TEXT “"Help String" :POSITION (500 . 800))

Writes the string "Help String" centered near the top of the
screen.

specifies shadows for the text written on the background.
Usually one of:

T Specifies that shadows are present. £

NIL Specifies that shadows are not present.
The default value is T.

See Appendix A, Programmer's Guide "Text Shadows" for how
to specify other shadows.

Thus, you can move the text around in Hacking using :TEXT and
its arguments (Figure 3-23). You can change the text entirely if
you wish but the name of the room remains the same.

ROOMS, MEDLEY RELEASE

E E LI EELKELELCELCECECEKECLECEEREET K

¥F EEEEEKEEEEE

A 3322331237333 IFI3T3A723T13TI3333I37372737233237737713170

3. ROOMS

SEdit Hacking Package, <CL.USER
(:INGLUSIONS ("Template") :BACKGROUND

((:WHOLE -SCREEN 43605)

(:REGION (0 0 1.0 1/4) :SHADE
(:EVAL ROOMS:TILE -BITMAP))

(:REGION (3/4 1/4 1/4 3/4) :SHADE
(:EVAL ROOMS:RENAISSANGE -BITMAP)
:‘BORDER 4 :BORDER-SHADE
(:EVAL IL:WHITESHADE))

(:TEXT "Hacking" :POSITION (1/2 . 1/3) :ALIGNMENT

BIGHT -BOTTOM :FONT (HELVETIGAD 24 MRR))

figure 3-23. Changing the position of the
background text

ROOMS, MEDLEY RELEASE

3-13

3. ROOMS

[This page intentionally left blank]

3-14

ROOMS, MEDLEY RELEASE

K EEEEEIEKEELEE LI ILOCIN EEE FEEEEEEEEEEEEE

A3 3771773732337 373173IJT3IT1I3ITI133333I333337

4. PLACEMENTS
b

ROOMS supports windows appearing in more than one room by
using placements. Placements are structures that maintain
information on a window (in the form of a pointer) and on a
window’s location in a particular room. There is a separate
placement for every window in every room allowing ROOMS to
display the same window using different regions in different
rooms.

For example, you may want to have an Exec in every room.
However, you probably don't want a different Exec for every
room as this would require more system overhead, in the form of
many Exec processes, than you might want to incur. Therefore,
you need the ability for several rooms to share the same window;
placements provide this.

For a more technical explanation of placements see Appendix A,
Programmer’s Guide to ROOMS, "Placements."

Manipulating Placements

Since window functionality is only enhanced by ROOMS, all of
the standard window functions still apply (for example, closing a
window and moving a window around on the screen). In
ROOMS these functions apply to placements. The window
manipulation functions described below are additional features
that are executed within the rooms themselves. The Overview
allows for additional window functionality; those commands are
described in Chapter 6, Overview.

Move a Placement From One Room to Another

ROOMS allows you to move a placement from one room to
another using the standard right mouse button window menu
(Figure 4-1),

Close
Snap
Paint
Clear
Bury

Hedlsplaykl Mlose: 111 GroITor Eni e
Hardcopy :
MR Copy 19 another room »
Where is?
Shape

| Shrink |

Figure 4-1. The window menu command to
move a placement to another room

After you select "Move to another room," ROOMS opens a
menu with all the existing rooms on it (Figure 4-2). 1f you select
<new room> you are prompted for the name of the new roam,
it is created and then the placement is moved to the new room.
Using any mouse button select the room to which you want to

ROOMS, MEDLEY RELEASE

|

4. PLACEMENTS

move the placement. ROOMS moves the placement into the
room that you select, puts the placement in the same screen
location as in the current room, and deletes the placement from
the current room.

Miows thiz nlacement to
4045
All -purpose
Hacking
My Other Room
My own room
Original
Rooms
Snap Room
Template
{new room>

Figure 4-2. The "Move this placement
to" menu

Another way to move a placement is by using Pockets; select
"Move to pockets' (Figure 4-3). A placement in Pockets
automatically engenders a placement in every room. Thus, a
placement you move from the current room to Pockets doesn’t
disappear. Rather, ROOMS moves the placement to Pockets at
the current screen position, deletes the placement from the
current room, then propagates the placement throughout all
rooms. The window appears not to move at all.

Glose
Snap
Paint
Glear
Bury
Hedlsplay
Hardcop

&h 4 Muve to another room¥
ape 'Gopy to another room »
Shrink Where is?

figure 4-3. The "Move to pockets" submenu

Move to pockets

Copy a Placement From One Room to Another

ROOMS allows you to create a copy of a placement and put it
into another room using the right mouse button window menu
(Figure 4-4).

Glose
Snap
Paint
Clear
Bury
Hedlsplay
Hardcopy ¥

Shrink
Where is?

Figure 4-4. The "Copy to another
room" command

ROOMS, MEDLEY RELEASE

d
R
hd
kd
hd
bd
bl
&d
Al
ki
hud
d
hd
had
Ad
y
bl
b
id
al
d
=
il
M
hal
hal
"
ha
hal
il
ﬁ
H

A1 313I 3333337171 TI3J733T223T3733IJI3171333713327

4. PLACEMENTS

When you select "Copy to another room" the "Copy this
placement to" menu opens listing all existing rooms (Figure 4-5).
Select the room in which you want to put a copy of the
placement. ROOMS creates a copy of the placement and puts it
into the room you selected (at the same screen location as it had
in the current room).

Copy this placement.ta
4045
All-purpose
Hacking
My Other Room
My own room
Original
Aooms
Snap Room
Template
{new room>

Figure 4-5. A "Copy this placement
to" menu

You can also make a copy of a placement in the current room if
the placement does not originate there. For example, you may
have a set of placements in room "A" (called the destination
room) that originate from room "B," (called the source room)
i.e., you have included room "B" in room "A." In fact, let's say
that you have included room "B" in two other rooms, "C" and
IIDlI'

It is a property of included placements that they have the same
position in all the rooms they are included in. Thus, an Exec
positioned in the upper left corner of room "B" (the source
room) will also appear in the upper left corner of rooms "A,"
"C," and "D." Moreover, if you move that Exec to another
location in any of the four rooms, it changes location in alf the
rooms.

If you want the included Exec to appear in the lower right corner
of room "A" but remain untouched in rooms "B," "C," and "D*"
you would:

1. Go to room "A."

2. Make a copy of the included Exec by selecting "Copy to this
room" (Figure 4-6).

3. Move the included Exec to the lower right corner of room
IIA.II

The included Exec stays in the upper left corner of rooms "B,"
IIC'II and “D.“

Close
Snap
Paint
Clear
Bury
Redisplay
Hardcopy »

dMove to another room?
P to another room »
Shrink Where is?

Figure 4-6. The "Copy to this room" submenu

Gopy te this room

ROOMS, MEDLEY RELEASE

4. PLACEMENTS

Closing a Placement

"Where is?" —Finding Which Room

Since a placement can appear in more than one room, a conflict
arises when you attempt to close a placement in one room that
has copies in others. That is, ROOMS needs to know: do you
want to close only this copy of the placement or do you want to
close every existing copy of that placement in the ROOMS
environment?

Closing a placement removes the placement from a room. A
window is closed only when all the placements are closed.
Closing all the placements is the same as closing a window using
the right mouse button window menu.

Let's continue with the example from "Copy a Placement"
above.

When you close the copy of the Exec in room "A" ROOMS
opens a menu asking whether or not you want to close just the
placement in room "A" or the placements in all the rooms where

it occurs (Figure 4-7).
’ All placements \
Just this placement

Figure 4-7. The ‘'"Delete?"
placement menu

Selecting "All placements" closes every instance of the
placement. Selecting "Just this placement" closes only the
placement in the current room.

Note: Pressing a mouse button with the cursor outside the
"Delete?" menu aborts the deletion operation.

So, if you choose to close just the placement of the Exec in
room "A" the Exec in the lower right corner disappears.
However, the Exec opens in the upper left corner. This Exec is
in room "A" by virtue of being in the included room "B."

When you close an included placement ROOMS asks you to
confirm the action before the placement is closed. The message,
"This placement is in the included room " <room name>". Are
you sure you want to delete it?" prints in the prompt window.
Press the left mouse button to confirm closing the placement.
Press any other mouse button to abort the operation.

a Placement Is In

After you've copied a few placements to the current room you
may need to find out to which room a placement actually
belongs, especially if you've included several rooms in the
current room. ROOMS provides a "Where is" facility for finding
out this information.

To use the "Where is" facility, open the right mouse button
window menu and select "Where is?" from the Move submenu
(Figure 4-8). ROOMS prints a message in the prompt window
telling you the location of the actual placement for the window.

ROOMS, MEDLEY RELEASE

K FEEIKEEELCECILEILCICLILLF EF EE R EEEREFEELCCDETLE

33133371333 T3733T3T1TI3ITT7TITIJ1I17373713T333313323127

4. PLACEMENTS

Close
Snap
Paint
Clear
Bury
Redisplay
Hardcopy »

Move to another room?
Copy to another room »

L)
Shape
Shrink

Figure 4-8. The "Where is?" command

A window that appears in more than one room because you
specifically copied it to each one has an actual placement in each
room.

Modules and Applications that Reuse Windows

Modules and applications that reuse windows (the Library
module Chat is a notable example) can be induced to start in a
room other than the current room. For example, if you open a
Chat window in room "A"; quit Chat, but leave the window
open. Go to room "B". Restart Chat: the Chat window in room
"A" is activated but is not brought to the current room. This
occurence is a general effect of the interaction between ROOMS
and modules and applications that reuse windows.

If you want to prevent this from happening close windows that
are reused when you're done with them. Then, when you
reactivate the application or module, the window opens in the
current room.,

The "Retrieve Windows" Command

If an error occurs, you could have a placement in a room that is
not visible when you enter that room; the placement is
considered "lost." If you believe that you have some windows
that should be visible but are not, select "Retrieve Windows"
from the ROOMS submenu (Figure 4-9).

Go to Room
Make Room
Edit Room ¥
Delete Room

jHetrieve Windows |
Dump Suite
Make Door

Figure 4-9. The "Retrieve Windows" command

Note: [t is very hard to "lose" windows just by using ROOMS at
the menu level. in general you probably won't need to
use "Retrieve Windows" unless you are manipulating
ROOMS programatically.

ROOMS, MEDLEY RELEASE

4-5

4. PLACEMENTS

All windows that ROOMS determines are not assigned to any
room are brought into the current room. If ROOMS detects no
unassigned windows then the message "All windows are in some
room." prints in the prompt window.

4-6

ROOMS, MEDLEY RELEASE

K EEICELCEEEEELCLCEEILCICLCLCE EE EF EEEEREEEEEETCLC

] T A I I A1 JIITI I I I3 I3IIJIII3J33IT33J3JII33333317

5. NAVIGATION
h

ROOMS provides several aids to help you navigate between
rooms and move windows from one room to another. Using the
ROOMS submenu is one way to move around:; using buttons are
another.

Buttons are a unique user-interface device that provide for the
execution of commands at the click of the mouse. One way to
move between rooms is through doors. Doors are just buttons
that take you to another room. Also, using the baggage utility,
you can take windows with you when you move between rooms.

For complete information on the use of buttons as other than

doors see Appendix A, Programmer's Guide to ROOMS,
"Buttons."

"Go to Room" Menu Option

One way to go to another room is by selecting "Go to Room"
from the ROOMS submenu (Figure 5-1) .

Go to Hoom
Make Hoom
Edit Room
Delete Room

"Retrieve Windows
Suites
Make Door

Figure 5-1. "Go to Room" selected

When you release the right mouse button the "Go to room"
menu opens listing all the known rooms and a "new room" jtem
that allows you to create a room and then immediately go to it
(Figure 5-2). Select the room you want to go to using any

mouse button.
Final Doc Prep

Maxtor
My own room
No purpose
Original
PCE
Pockets
Rooms
Snap Room
<{new room>

figure 5-:2. A "Go to room" menu

ROOMS, MEDLEY RELEASE

5-1

5. NAVIGATION

Doors

Creating Doors

A door is a specialized placement that takes you from one room
to another room with the click of a mouse button. A door takes
you to the room whose name is printed on it. See Figure 5-5 for
the way the standard doors look.

Figure 5-3. The "Make Door" command

s 5 Go to RBoom
SaveVM Make Room
Snap Edit Room
Hardcopy Delete Room
Egﬁ: §Hetrieve Windows
Hooms Suites
Make Door

Maxtor

My own room

No purpose
Original
PCE
Pockets
Hooms
Snap Room
{new room>

Figure 5-4.

The "Select Room" menu

¥

¥

You create doors using the ROOMS submenu (Figure 5-3). Door
creation is described below; manipulating and changing doors is
described in Appendix A. The Programmer’s Guide to ROOMS,

Selecting "Make Door" opens a menu that is a list of all the
existing rooms and a "new room" item that allows you to create
a room and a door to it at the same time (Figure 5-4).

IFinaI Doc Prep

Using any mouse button, select the room for which you want a
door. After you select the room the "Select Button Type" menu
opens with all the known button types (Figure 5-5).
also illustrates all the standard button types.

This menu

5-2

ROOMS, MEDLEY RELEASE

d
hd
v
A
v
h
v
v
v
v
v
d
d
hd
M
v
d
hd
.
W
¥
b
d
b
hd
i
m
b
=
i
=
i

i3 3313313133331 333I3IJ7113JT33333133733333371327

5. NAVIGATION

Manipulating Doors

3200 Q
" ° oA S o
Q [RIUT P SR
Q Q
299009

Shadowed §

LrAUSpaTE N

figure 5-5. The "Select Button Type" menu for
door creation

Selecting one of the button types causes the button you chose
to appear (in outline form) at the position of the cursor. Move
the outlined door to the position on the screen where you want
it and press the left mouse button. The button, with the name
of the room you selected printed on it, appears.

Doors in general and Back Doors in particular can have the name
of a room that no longer exists. ROOMS does not automatically
delete doors when you delete a room. If you try to use a door
to a nonexistent room ROOMS prints the message: "No room
named " <room name >" exists."

Note: You can define your own button types. See Appendix B,
Programmer’s Guide to ROOMS, "Buttons."

Using the MOVE Key

Doors are contained in windows and selecting a door using the
right mouse button opens the standard window menu. Using
this menu you can move, copy, and close doors in the same way
you can other placements (see Chapter 4, Placements). You can
also use the MOVE and COPY keys to manipulate doors.

Using the COPY Key

Holding down the MOVE key while you select a door using the
middle mouse button has the same effect as selecting "Move"
on the window menu.

After you select the door you want to move you can release the
MOVE key (but keep the mouse button down). When the door
is positioned where you want it, release the middle mouse
button.

Holding down the COPY key while you select a door using the
middle mouse button creates a copy of the door (If the TTY is in

ROOMS, MEDLEY RELEASE

5-3

5. NAVIGATION

Using the DEL(ETE) Key

a TEdit or Sketch window a button image object is inserted into
the TEdit or Sketch window at the point of the caret. See the
section "Creating and Using Button Image Objects" below for
more information on button image objects.)

When you use the COPY key to copy a door whose placement
originates in another room no message prints in the prompt
window as it does when you use the "Copy to another room"
command.

Holding down the DEL(ETE) key while you select a door using
the middle mouse button deletes the door from the room.

Back Doors

After entering a room, it is quite natural to want to go back to
the room that you just came from. If you don’t remember the
name of the previous room this could result in a time-consuming
search. ROOMS provides back doors that retumn you to the
previous room. You can make back doors by selecting "Make
Back Door" (Figure 5-6).

Go to Hoom
ide ¥ Make Room
SaveVM Edit Room »
Snap Delete Room
Hardcopy?
EXEC Retrieve Windows
PSW Suites b
Hooms > Make Door (¥ PVeRPrgfinny

Figure 5-6. The "Make Back Door" submenu

Selecting "Make Back Door" creates a special door (Figure 5-7).
The door is inverted to differentiate it from other types of doors.
When you select a back door with either the left or middle
mouse button, you go to the room that you were last in. In
addition, ROOMS updates the door on every future entrance to
the room so that it always takes you to the last room you were
n.

Figure 5-7. A back door

ROOMS, MEDLEY RELEASE

i
hd
hd
hd
hd
Ad
d
hed
hd
hd
hd
hd
hd
hd
hd
kd
hd
"
had
had
hd
hd
had
hal
bl
hd
hd
hd
|
ol
bl
hal

A 2 3331311313133 33733371333733I373I3TJ13373337333733172

5. NAVIGATION

Changing a Door’s Appearance

While it is probably easier to just create a new door than change
the description of an existing one, you can edit a door. To
change the description of a door, hold down the EDIT (or
PROPS) key while selecting it using middle mouse button. This
opens an SEdit window with that door’s description (Figure 5-8).

SEGt Qriginal Package: XCL-USER

(:TEXT "Original" :FONT

(IL:HELVETICA 12 (IL:BOLD IL:REGULAR IL:REGULAR))

:SHADOWS :ARK :TYPE :STRETGHY -ARK :HELP

"Go to room named \"Original\"" :ACTION

(ROOMS:INTERAGTIVE -GO -TO-ROOM -NAMED
"Originai")

INVERTED? NiL)

Figure 5-8. An SEdit description of a door

You can find the meaning of the various keywords in a door’s
description in Appendix A, Programmers Guide to ROOMS,
"Buttons" (in the description of make-button).

Baggage

Baggage is a utility that lets you carry windows with you as you
travel from one room to another. When you are carrying
windows as baggage you can either take a copy with you and
delete the original (MOVE) or take the copy and leave the
original alone (COPY).

There are two ways to use the baggage utility:

1. Hold down the MOVE or COPY key as you select a door
using the left mouse button. The cursor changes to a

cross-hairs (@); using the left mouse button select the
window(s) that you want to take with you.

When you are finished selecting windows, either click with the
left mouse button on the background or release the MOVE or
COPY key before you select the last window. ROOMS moves
you through the door and the windows that you selected go
with you.

2. Use only the MOVE key, interacting with the ROOMS "Go to
Room" menu selection.

a. Open the background menu,

b. Open ROOMS submenus until you can select "Go to
Room."

¢. When the "Go to Room" menu listing all the rooms in the
environment opens press and hold the MOVE key.

ROOMS, MEDLEY RELEASE

5-5

5. NAVIGATION

d. Select the room you want to go to.

From this point on the behavior is the same as above, to wit:
the cursor changes to cross-hairs indicating that you are to
select, using the left mouse button, the window(s) you want to
take with you.

When you are finished selecting windows, either press the left or
middle mouse button on the background or release the MOVE
key before you select the last window. ROOMS moves you to
the room you selected from the menu. The windows that you
selected go with you.

Even if you don’t select any windows when you press the left (or
middle) mouse button with the cursor in the background, you go
to the room you chose.

Creating Non-Door Buttons

ROOMS allows you to create buttons that are not doors and
which can take the place of selecting ROOMS commands from
the ROOMS submenu.

For example you can create a "Go to Room'" button that
operates identically to the "Go to Room" menu command.

1. Open the background menu.

2. Select ROOMS from the background menu but do not open
the submenu.

3. Press and hold the COPY key.

4. Open the ROOMS submenu. You should still have the
COPY key held down.

5. Select "Go to Room" from the submenu and release the
right mouse button.

¢ An outline of a button appears at the position of the
cursor.

6. Release the COPY key.

7. Position the button’s outline where you want it on the
screen and press the middle or left mouse button.

e A "Go to Room" button appears. Selecting this button
(with the left or middle mouse button) opens the "Go to
rootm" menu listing all the existing rooms.

This procedure works for all the ROOMS submenu commands
except "Make Door" and "Make Back Door." Selecting "Rooms"
from the background menu creates a button that takes you to
the Overview.

For complete information on making and using non-door buttons
see Appendix A, Programmer’s Guide to ROOMS, "Buttons."

ROOMS, MEDLEY RELEASE

hd
hd
hd
hd
hd
i
hd
hd
M
hd
bd
hal
had
hd
M
kd
hl
hd
-l
el
hal
d
bl
bl
al
M
|
nl
|
i
|
]

o |

A 3333237333333 27337337377333

A 3332333333373

5. NAVIGATION

Creating and Using Button Image Obijects

You can create button image objects to put into TEdit or Sketch
files (For information on Interlisp image objects please consult
the Interlisp-D Reference Manual, Chapter 27, "27.16 Image
Objects.")

To create button image objects do the following:

1. Give the TTY to either Sketch or TEdit (i.e., the caret should
be in a TEdit or Sketch window).

2. Press and hold the COPY key.
3. Select a button using the middle mouse button.
4. Release the COPY key.

The fully active button, as a button image object, is inserted into
the TEdit or Sketch window. Once the button image object is in
TEdit or Sketch, selecting it using the left mouse button activates
the button’s action. Selecting it with the middle button opens a
menu (Figure 5-9).

Edit Button
opy to Screen

Figure 5-9. The bution image object menu

When you select "Edit Button" from the menu an SEdit window
opens with the button’s description; select "Copy to Screen"
and a copy of the button is created. Press the left or middle
mouse button when the copy is where you want it on the
screen.

Remember, if the TTY is not in a TEdit or Sketch window then
pressing the COPY key while selecting a button using the middle
mouse button makes a copy of the button to be placed on the
background.

ROOMS, MEDLEY RELEASE

5.7

K EEEEYELELILELILEE IEELCEILCLEEENCEEEEEEERCLECLE

5. NAVIGATION

[This page intentionally left blank]

5-8 ROOMS, MEDLEY RELEASE

2133

233373717

4 A A3 A31132131332333733733333333372

6. THE OVERVIEW

The Overview lets you view all existing rooms at once. From the
Overview you can perform operations on both placements and
rooms (e.g., copy and move placements between rooms, edit
rooms, etc.), and look at the contents of any room.

What the Overview Looks Like

The Overview lays out every room in your ROOMS environment,
in alphabetical order, through the use of pictograms. In the
Overview a pictogram is used as an active, shrunken
representation of a room and all it contains.

i

B =

Rooms " Overview

Copyright (c) | nyos Gorporations, 1988; Pate

Figure 6-1. A ROOMS Overview

You enter the Overview by selecting "Rooms" from the
background menu. When you enter the Overview the name of
the room you were last in is in gray letters; all other room names
are in white letters.

Note: A pictogram reflects the state of a room after its last
update. A room is updated whenever it is exited.

ROOMS, MEDLEY RELEASE

6. THE OVERVIEW

How the Overview Works

Getting things done in the Overview relies on the coordinated
use of the mouse and the keyboard. Since you can operate on
both placements and rooms in the Overview there are aids and
conventions to follow to help you accomplish your task.

In order to differentiate between operations intended to affect
placements and those directed at rooms, the Overview uses the
following conventions:

Left mouse button: selects placements
Middle mouse button: selects rooms

Six keyboard keys are used together with the mouse to operate
on placements and rooms. In general, the keys do what they are
labeled, that is the DEL(ETE) key deletes rooms and placements,
the COPY key copies them, etc. See Table 6-1 for the
cotrelation between the bitmap representations, the keyboard
keys, and the actions taken.

Note to Sun Workstation Users: Figure 6-1 represents how the
Overview is laid out on Xerox 1186 and 1108/9workstations. [f
you are running the Envos Medley 1.0-S on a Sun workstation the
keyboard is laid out differently and the Overview you see reflects
those spatial differences. All functionality remains the same. For
information on how the Sun keyboard is laid out for Medley
1.0-S please consult the Medley 1.0-S User’s Guide.

The bitmap representations of the keys used in the Overview are
at the bottom of the Overview; they are mouse sensitive.
Pressing one of the keys or selecting the bitmap using either the
left or right mouse button activates each operation. Each key
selected remains active until you either select another key or
leave the Overview.

When you use a mouse-button-key combination that the
Overview does not recognize (like attempting to edit a
placement), ROOMS prints a message in the prompt window.

Table 6-1. Mapping of Overview key bitmaps to the keyboard

Key Bitmap Representation Placement Operation Room Operation

DEL(ETE) Deletes Deletes

CorpyY Copies/Prompts for positioning Copies/Prompts for name

MOVE Moves/Prompts for positioning Copies/Deletes old/Prompts
for name

EDIT Opens SEdit window

SPACE BAR Enters room (preselected
when Qverview entered)

EXPAND Brings representation of None

placement into Overview

6-2

ROOMS, MEDLEY RELEASE

¥
ol
(%]
el
hd
hd
kel
hd
kud
kd
kd
kd
b
hd
el
had
ad
fad
bl
il
~ |
Nl
d
hd
|
|
|
al
l
l
|
=

4323277372737

4332323313230 32337370717

3333337333373

6. THE OVERVIEW

Using the Overview

Manipulating Rooms

Enter a Room

This section tells you how to manipulate rooms from the
Overview. Ali selections are done using the middle mouse
button.

Copy a Room

To enter a room, press the space bar and select the room you
want to enter. ROOMS moves you to that room. When you first
enter the Overview the space bar is pre-selected.

Delete a Room

To copy a room:
1. Press COPY and select the room you want to copy.

* ROOMS prompts you (in the prompt window) for the
name of the new room.

2. Type the name of the new room and press <RETURN >,

* The new room, an exact replica of the selected room, is
added to your environment.

If you give the new room the same name (the names are case
sensitive) as an existing room, ROOMS tells you that a room of
that name already exists and the copy command is cancelled.

Rename a Room

To delete a room:
1. Press DEL(ETE).
2. Select the room you want to delete.
* You are asked to confirm the deletion.
3. Press the left mouse button to confirm the deletion.

Pressing any other mouse button during the confirmation aborts
the deletion process.

To rename a room:
1. Press MOVE.
2. Select the room you want to rename.,

3. Enter the new name in the prompt window and press
<RETURN >,

The room you selected is renamed.

ROOMS, MEDLEY RELEASE

6-3

|

6. THE OVERVIEW

Edit a Room

Manipulating Placements

To edit a room:
1. Press EDIT (or PROPS).

2. Select the room you want to edit.

ROOMS opens an SEdit window containing the room
description. If you make any changes, when you end the editing
session both the room and the pictogram are updated to reflect
them.

Copy a Placement

This section tells you how to manipulate placements from the
Overview. All selections are done using the left mouse button.

Move a Placement

To copy a placement:
1. Press the COPY key.

2. Select the placement you want to copy.

* The cursor changes to a crosshairs D).

3. Move the cursor until the new placement is positioned
where you want it (either in the same or a different room).

4. Press the left mouse button.
* The placement is copied to the new paosition.

If you press the left mouse button when the cursor is not in any
room (after you have selected a placement to copy), the error
message "Invalid destination" prints in the prompt window and
the command is cancelled.

Copying a placement to or from a room that is included in other
rooms automatically propagates the change to all rooms that
include that room (see Chapter 3, Rooms, ":INCLUSIONS").

To move a placement from one room to another or within a
room:

1. Press the MOVE key.

2. Select the placement that you want to move.

¢ The cursor changes to a crosshairs (GB).

3. Move the cursor until the placement is positioned where you
want it (either in the same or a different room).

4. Press the left mouse button.

* The placement is moved to the new position.

6-4

ROOMS, MEDLEY RELEASE

EFfFILCELCILIEL ECLCEEEECE EEKEEEKEKE EEEEEEEEEEEERECE

A 3133337333233 3 727172

4 A 131313133333 3F33T 33372

6. THE OVERVIEW

Expand a Placement

If you press the left mouse button when the cursor is not in any
room (after you have selected a placement to move), the error
message "Invalid destination" prints in the prompt window and
the command is canceled.

Moving a placement into (or from) a room that is included in
other rooms automatically propagates the change to all rooms
that include that room (see Chapter 3, Rooms, ":INCLUSIONS").

Delete a Placement

You can bring the small representations of placements that you
see in the pictograms into the Overview, and expand them to
the size they actually have in the rooms,

1. Press EXPAND.
2. Select the placement you want to expand.

The placement appears in the Overview, of the same size and at
the same screen position that it has in the room. Pressing the
left mouse button again closes the expanded placement.

To delete a placement:
1. Press the DEL(ETE) key.

2. Select the placement that you want to delete and press the
left mouse button.

. That placement is deleted.

if you press the left mouse button when the cursor is not in any
room (after you have pressed the DEL(ETE) key), nothing
happens.

Deleting a placement in a room that is included in other rooms
automatically propagates the change to all rooms that include
that room (see Chapter 3, Rooms, ":INCLUSIONS").

Deleting a placement removes the placement from a room. A
window is closed only when all the placements are deleted.
Deleting all the placements is the same as closing a window
using the right-button window menu,

Note: If you attempt to delete a type of window that requires
you to confirm the deletion (e.g., a TEdit window with
unsaved changes or a file browser with files marked for
deletion) you are asked to take that confirming action
before ROOMS deletes the window.

Editing Placements Outside the Overview

You can edit the placements, using the placement editor, for any
room without going to that room or the Overview. When you
select "Edit Placements" (Figure 6-2) a menu listing all the rooms

ROOMS, MEDLEY RELEASE

6. THE OVERVIEW

(including ones in suites) opens (Figure 6-3). Select the room
whose placements you want to edit. A pictogram, similar to
what you see in the Overview, opens in the room you are in; you
can see the placement arrangement for the selected room
(Figure 6-4).

Go to Aoom
dle Make Hoom
SaveVM Edit Hoom Edit P
Snap Delete Room 't acemants
Hardcopy» xclude Hoom »
. . Include Room »
EXEC »Retrieve Windows
PSW Suites Y
Make Door P

Figure 6-2. The "Edit Placements" command

M

J Edit_This Aoom

Edit Flacemants
4045
All=purpose
Hacking
My Other Room
My own room
Original
Pockets
Rooms
Snap Room
Template

Figure 6-3. An example of an “Edit Placements"

]

menu

Figure 6-4. A pictogram of a room

Using this pictogram, you can do the same operations on
placements as in the Overview but only within the named room.

With the cursor in the "title bar" of the pictogram (when not in
the Overview) pressing the middle mouse button opens the
"ReFetch" menu (Figure 6-5). Select "Refetch" and the
placements for that room are updated (See Chapter 4,
Placements).

6-6

ROOMS, MEDLEY RELEASE

EEICIEEEELEILCEELEELCEELCEEELELEL E F EFEEEEEEEKEEEETK

3 3 3

B [S |

m A 2 1132113133333 3J7J7371337J13313333373712

6. THE OVERVIEW

MYOWEEDGIT

figure 6-5. Placement editor with the "Refetch"
menu open

When you close a room’s pictogram, you are prompted with a
menu asking whether you want to close all placements for this
window. Select either option, only the pictogram opened by the
placement editor is closed.

ROOMS, MEDLEY RELEASE

6. THE OVERVIEW

[This page intentionally |left blank]}

6-8

ROOMS, MEDLEY RELEASE

¥ FFEIREEEEEIELCEEICELEELEECEEE F EREEECEECECECLCCL

3133133313337 3JJ13733J733J3T333IT733IJ313373I7313333333

7. SUITES

A suite is a grouping of rooms that you can save and load like
any Envos Lisp file. ROOMS does not allow any rooms to have
the same name so you are encouraged not to include the same
room in more than one suite,

Note: You cannot include either Original or Pockets in a suite.

Manipulating Suites

When a suite is present, those rooms that are part of the suite
are treated as a single unit for certain operations. For example,
you cannot delete a room that is part of a suite without
specifically removing it from that suite first.

The commands described below are found on the Suite submenu
(Figure 7-1).

Go to Boom
idle Make Room
SaveVM Edit Room ¥ Save Suite ¥
Delete Room Restore Suite
Show S8uite
Hetrieve Windows Augment Suite

i Delete Suite »

4|
Figure 7-1. The ROOMS "Suite" command
and the suite submenu. Selecting "Suites"
opens the suite submenu.

"Save Suite"—Creating and Saving a Suite

Creating a New Suite

The "Save Suite" command is used to save a set of rooms onto a
file. It can also be used to create a new suite. The suite file is
written to the connected directory. Selecting "Save Suite" opens
the "Save" menu which is a list of suites if any exist. If no suite
exists then the menu contains the single item "<new suite>"
(Figure 7-2).

Save

Figure 7-2. The "Save" menu as it appears if no
suites are present

To create a suite and then immediately write the new suite to a
file follow these steps:

1. Select "< new suite >" from the "Save" menu.

* If all the existing rooms are part of some suite ROOMS
prints the message, "All rooms are already in some suite."
in the prompt window. The command is cancelled.

ROOMS, MEDLEY RELEASE

7-1

7. SUITES

2. Enter the name of the suite in the prompt window and press
<RETURN>.

* A menu opens listing all the rooms (except Pockets and
Original) that are not in any suite (Figure 7-3).

Select Hoom
All-purpose
Hacking
My Other Room
My own room
Rooms
Snap Room
Template

figure 7-3. The "Select Room" menu

3. Select the first room you want to add to the suite using any
mouse button.

* The "Select Room" menu closes and reopens with the
room you selected to be in the suite deleted from the
menu.

4, Continue selecting rooms to add to the suite. Each one is
deleted in turn from the "Select Room" menu.

5. When you have selected all the rooms you want in the suite
press any mouse button outside the menu.

Note: Once you add a room to a suite, you can't delete that
room from the environment until you have removed it
from the suite (see "Delete Room From Suite" below).

* ROOMS prints a series of messages in the prompt window
telling you of its progress:

"New SUITES definition for <suite name> (but not
installed)."

"Making file <suite name> ..."
"Made file <connected directory > <suite name >."

Once you have the suite file saved on your disk or a file server,
loading the suite recreates the set of rooms and their
placements. Suites obviate the need to recreate a standard set
of rooms each time you load a fresh sysout.

For each room in a suite that you want to save ROOMS goes
through and tries to abstract every window. However, each
window must have a pre-existing window type definition so that
ROOMS knows how to save and recreate that window. If
ROOMS doesn't recognize a type of window or can’t save a type
it knows about (like SEdit windows) then the window is brought
to the current room and flashed several times. Also, a message
is printed in the prompt window.

The ROOMS software includes window type definitions for the
standard Envos Lisp windows: prompt, Exec, TEdit, Logo, and
FileBrowser. See Appendix A, Programmer’s Guide to ROOMS
"“Window Types" for more information on defining your own
window types.

7-2

ROOMS, MEDLEY RELEASE

EECCELCEECEL L EECEEEEECEECEZEEEEECEELEELETLE

4333313333333 333333333 3IT 3333333333327

7. SUITES

"Restore Suite" —Loading a Suite File

Room Name Conflicts

Loading a suite file into a ROOMS environment adds the rooms
on the file to your existing set of rooms. To load a suite, select
"Restore Suite" from the background menu (Figure 7-1). Type
the name of the suite you want to load in the prompt window
and press <RETURN>.

ROOMS looks for the suite file using the directory list
suite-directories, a list of pathnames. The initial value
is (t) which is the connected directory (see the Interlisp-D
Reference Manual, Chapter 24, Streams and Files "Section 24.16
Searching File Directories").

Note: Loading a suite file that was made with the “Save Suite"
command automatically loads the ROOMS software if it
isn’t foaded.

If you attempt to load a suite that is already present in the
current ROOMS environment the message, "A suite named
<name > is already loaded," prints in the prompt window. The
command is ignored.

SIMPLE-ERROCH

If you try to load a suite with a room that has the same name as
one that already exists, ROOMS causes a debugger window to
open. This protects you from automatically losing any existing
room(s) (and all the windows) by having the existing room
replaced with a new one.

There are two ways to continue when this occurs:
1. Abort the suite load

Press the middle mouse button on the debugger window and
select the t (up-arrow) option. This aborts the suite load, letting
you resolve the name conflict at a later time. ROOMS checks for
name conflicts before doing anything else. So, if you abort the
suite load, your environment is in the same state as before the
load.

Each time during the suite load that ROOMS encounters a name
conflict, a debugger window opens. If you abort out () of any
room conflict debugger the entire suite load is cancelled.

2. Delete the existing room

Press the middle mouse button on the debugger window and
select the proceed option (Figure 7-4).

LOAD/S&{debuy)

In INSTALL -SUITE:
A room named "Utilities" already exists

W

ay=to proceed,,,

Delete existing room named "Utilities" (will close windows)

figure 7-4. Suite debugger window with the proceed menu

open

ROOMS, MEDLEY RELEASE

7. SUITES

"Delete Suite"

The existing room is deleted, the placements within that room
are deleted and the new room is added to your environment as
part of the newly loaded suite.

"Delete Room From Suite"

At some point after loading a suite you may want to remove the
suite while leaving the rooms in it untouched. Or you may want
to delete the suite and all the rooms it contains. Select "Delete
Suite" for these purposes.

After selecting "Delete Suite," ROOMS responds with a menu of
all the known suites (Figure 7-5). Select the suite you want to
delete using any mouse button. Press the left mouse button to
confirm the deletion. Deleting a suite simply ungroups all of the
rooms so that they are treated as separate entities rather than as
part of a suite.

Pressing the middie or right mouse button aborts the deletion

operation.
WORKING -DOG
OFFICE

Figure 7-5. The "Delete" suite menu

After deleting the suite ROOMS asks if you also want to delete
all the rooms in the deleted suite. Press the left mouse button
to confirm the room(s) deletion. Pressing any other mouse
button aborts the operation.

Deleting the room(s) in the deleted suite closes all the windows
in the suite that are not in any room outside of the suite.

"Delete Room From Suite" (Figure 7-6) allows you to disassociate
a room from a suite. You may want to remove a room from a
suite in order to add it to another suite or to delete the room
from the environment. You can’t delete a room that is part of a
suite until you remove the room from its suite first.

Idle &
SaveVM
Snap
Hardcopy
EXEG
PSW

Edit Room 4 Save Suite 2
Delete Room Restore Suite
Show Suite

Retrieve Windows |Augment Suite

Go to Room
Make Room

Jelete zBdDelete Room From Suite]

Make Door &

Figure 7-6. The "Delete Room from Suite" submenu

First the "Delete room from" menu (Figure 7-7) opens listing all
the existing suites. Select the suite using any mouse button.
Pressing a mouse button outside the menu aborts the operation.

7-4

ROOMS, MEDLEY RELEASE

CE L L EEKEILCILLELCILELILLCIELCICEEICLCEEILCEIDIEEEEECEEETEKE

1331313333373 7373337373333 33J3I333333313317

7. SUITES

"Update Suite"

WORKING -DOG
DELUXE

figure 7-7. An example of the "Delete room
from" menu

After you select the suite the "Select Room" menu (Figure 7-8)
opens. This menu is a list of all the rooms in the suite you
selected from the previous menu. The room you select from this
menu is disassociated from the suite.

Template
Hacking
[My Other Hoom
fFigure 7-8. An example of a "Select Room"
menu

Updating a Suite and the File Manager

Select "Update Suite" (Figure 7-9) when you want to make a
suite reflect its current state but you don’t want to write it to a
file. When you select "Save Suite" ROOMS does a suite update
before the suite file is written out. Also, once you have one or
more suites present you can use "Update Suite" to create a new
suite,

Go to Room
Sn Make Hoom

2p Edit Room b
Delete Room

Save Suite i
Restore Suite (UGN
Show Suite
Retrieve Windows |Augment Suite

Suites i Delete Suite »
Make Door |

figure 7-9. The "Update Suite" Menu

After you select "Update Suite" the "Update" menu (Figure 7-10)
opens listing all the known suites. Select the suite you want to
update.

WOHRKING -DOG
DELUXE
<new suite)>

figure 7-10. An example of an “Update" menu

After you select the suite to update ROOMS goes through the
entire suite and updates it to reflect any changes (new
placements, new rooms added, etc.) made between the last save
and the current version of the room.

When ROOMS finishes updating a suite the message "New
SUITES definition for <suite name > (but not installed)." prints in
the prompt window. This message resuits from the way ROOMS
interacts with the File Manager. For an explanation of the

ROOMS, MEDLEY RELEASE

7. SUITES

"Show Suite"

meaning of this message see Appendix A, Programmer's Guide
to ROOMS, "Suites."

"Augment Suite"

Selecting the command "Show Suite" opens the "Show" menu
(Figure 7-11) listing all the known suites. After you select a suite
from the "Show" menu, ROOMS prints a list all of the rooms in
that suite in the prompt window.

|WOHKING =-DOG .
DELUXE

Figure 7-11. The "Show" menu

Selecting the command "Augment Suite" allows you to add a
room to a pre-existing suite. First the "Augment Suite" menu
(Figure 7-12) opens listing all the known suites. ROOMS then
opens a "Select" menu listing all the rooms that are not in any
suite (except Pockets and Original neither of which can be added
to a suite). The room selected is added to the selected suite.

WORKING -DOG
DELUXE

Figure 7-12. An "Augment Suite" menu

If all the known rooms are part of a suite ROOMS prints the
message, "All rooms are already in some suite." in the prompt
window and the operation is canceiled.

ROOMS, MEDLEY RELEASE

EIEEILELCEE EFEECEEEZE EC EEECEE EE EEEDEC

|

A3 AT T332 A33T773

v

A 313733

23 23

APPENDIX A: PROGRAMMER’'S
GUIDE TO ROOMS

This appendix contains the information needed to manipulate
ROOMS programmatically.

All documented functions and variables are exported symbols in
the package ROOMS which uses the packages LISP and XCL.
The examples are printed as if the following had been evaluated:

(in-package "XCL-USER")

(shadow 'room)

(use-package "ROOMS")

Note: (shadow 'room) is evaluated to resolve conflict with the
Common LISP function room. After this is done the
Common LISP function room must be typed as cl:room.
See Common LISP the Language by Guy Steele for an
explanation of packages and shadowing symbols.

Rooms

In general, if you want to change a room programmatically you
should proceed in the following way:

1. Call update-placements (see below).
2. Change the room programmatically.
3. Call room-changed (see below).

A room is a structure (see Common LISP the Language by Guy
Steele, Chapter 19, "Structures") that, with one exception,
behaves as if defined by:

(defstruct room
(name nil :read-only t) ; the name of the room as a string

placements ; list of placement objects
inclusions ; list of names of included rooms
background ; a background object
tty-process i process to give TTY in this room
props i property list

)

The exception is for the constructor function make-room, which
has one mandatory argument, name (see below).

(make-room name &key placements :inclusions

:background :tty-process &allow-other-keys) [Function]

name

:placements

Makes a room and adds it to the existing set of rooms.

the name of the room, typically a string. Room names are
compared with equal.

a list of placements that go into the room. The items in this list
are of the type returned by either make-placement and/or
find-placement.

ROOMS, MEDLEY RELEASE

A. PROGRAMMER’'S GUIDE TO ROOMS

:inclusions a list of room names to be included in this room.

:background a background specification (see Chapter 3 Rooms "Edit a Room,"
and "Room Backgrounds," below for a description of a
background specification.) If nil, the default light gray
background is used and the name of the room is printed in the
lower left-hand corner.

:tty-process specifies which process to give the tty to when the room is
entered.

Examples of room creation:
{make-room "My Room")
Creates a room called "My Room."

The more complicated make-room example below works as
long as you have an Exec window bound to exec-window.

{make-room "My Other Room"
:inclusions '{"Template")
:ptacements (1ist (make-placement exec-window))
:background '((:whole-screen 43605)
(:region (0 0 1.0 1/4) :shade 33825)
(:region (0 1/4 1.0 1/128) :shade
{(:eval il:blackshade)))
:tty-process (il:windowprop exec-window 'il:process))

Creates a room called "My Other Room" with the given
background specification, includes the room "Template," and
adds the placement exec-window. When you enter "My Other
Room" the tty is given to exec-window.

current-room {Global Variable]
Value is the room that you are currently in. You should never set
this variable.

{room-named name) [Macro]

Returns the room named name or nil if name doesn’t exist.
For example,
(room-named "Mail")} = #<Room "Mail">

room-named is especially useful for passing rooms to those
functions that require a room as an argument, e.g., room-prop,
delete-room, etc.

(room-prop room prop &optional new-value) [Macro]

Accesses the props field of room.

It prop is undefined for room, room-prop adds it to room's
property list.

If a new-value is supplied then the value of prop is changed to
new-value and new-value is returned.

For example,

(setf {(room-prop (room-named "Mail") 'my-property) 5)

ROOMS, MEDLEY RELEASE

F E L £ FE CE £ EEEEEECEFECEEEEECECEEKE

1333313337333 17

4313327273333V T3 T332 7737

~

A. PROGRAMMER’S GUIDE TO ROOMS

changes the property my-property for the room named Mail
to 5 such that:

{room-prop (room-named "Mail") 'my-property)=>5

(detete-room room) [Macro]

Deletes room.

Note: delete-room deletes room from the environment even if
it is part of a suite. This behavior differs from that
exhibited when you try to delete a room that is part of a
suite using either the ROOMS submenu or the Overview.

For example,
(delete-room {room-named "work room"))
deletes the room named "work room."

(rename-room room new-name) [Function]

Copies room to new name and deletes it, effectively changing
the name of room to new-name. Returns the new room created.

Note: You cannot actually change the name of a room, as this
slot of the room structure is read-only.

(room-changed room reason) [Function]

informs the ROOMS system that room has changed.
room-changed does some housekeeping on its own and then
calls *room-changed-functions* (see below).

reason is one of:

:edited indicates that you have edited the definition of room. Especially
important if you have changed the background or inclusions of
room.

:placements indicates that the placements in room have been changed.

Note: If you have edited the room and changed the placements,
giving reason a value of :edited is sufficient for ROOMS
to notice all the changes.

room—changed-functions [Variable]

A list of functions that are called everytime you call (or the
system calls) room-changed. Each function on the list is called
with two arguments: the room that has changed and the reason
for the change.

The reason passed here is one of:

:edited indicates that the room has been edited.
:placements indicates that the placements in the room have been changed.
:created indicates that the room has been newly created. Useful if you

create a new room with the same name as an existing room,
:deleted indicates that the room has been deleted.

Note: The ROOMS system itself uses the :created and
:deleted reasons, e.g.,, when you call delete-room

ROOMS, MEDLEY RELEASE

A, PROGRAMMER’S GUIDE TO ROOMS

the system calls room-changed with reason :deleted.
However, the fact that :created and :deleted are
reasons reserved by the system does not prevent you from
having functions on *room-changed-functions* that
are called when rooms are created and/or deleted.

nocket-room-name [Variable)

Value is a room name that is the current Pockets room. Default
value is "Pockets". If you change *pocket-room-name* you
must call room-changed (see above) on the new Pockets room
so that the change is noticed by ROOMS. See Chapter 1,
Introduction for information on Pockets.

Executing Code When Entering and Exiting Rooms

ROOMS provides facilities for calling functions, macros, etc.
when you enter and exit rooms. Use the variables
room-entry-functions and *room-exit-functions*®
to execute code when entering and leaving every room in the
environment.

Use the room properties :before-entry-functions and
:before-exit-functions to limit execution of code to
specific rooms.

Use the macro room-unwind-save to make sure that code
executed on room entry provides for some action on room exit.

You can put either named functions or the code itself on the
variables and room properties .

room-entry-functions [Variable]

A list of functions that are called before a room is entered. The
functions on the list are called with one argument—the room you
are entering.

Note: If you also want to keep track of the room you are exiting,
current-room is still bound to the room you are
exiting when the room entry functions are called.

room-exit-functions [Variable]

A list of functions that are called before a room is left. The
functions on the list are called with one argument—the room you
are exiting.

:before-entry-functions [Room property]

A list of functions that are called when the room is entered.
Fach function is passed one argument, the room being entered.
current-room may be used to find the room being exited.

This property is inherited i.e., the :before-entry-functions
of included rooms are also called.

Note: The "before" in the name of this property is something of
a misnomer. These functions (and functions on
room-entry-functions) are called just after the
background has been painted but before any windows
have been brought up.

A-4 ROOMS, MEDLEY RELEASE

F F ECEEEECECEC EECEEEE ECEREEEEEECEEL

1312337333317 J733IJTIIT 1331333733317 333171311337

A. PROGRAMMER’'S GUIDE TO ROOMS

Inclusions

:before-exit-functions [Room property]

A list of functions that are called before leaving the room. Each
is passed one argument, the room being exited.

This property is inherited, i.e,, the :before-exit-functions
of included rooms are also called.

Frequently, code that is executed on room entry will want to
ensure some other computation is performed on room exit. To
facilitate this use the following:

(room-unwind-save &body body) [Macro]

Causes body to be evaluated the next time a room is exited.

For example, a room entry function that allowed some rooms to
have a directory that became the connected directory on entry
could be defined as follows:

(defun cd-room-entry-function (room)

;311 If room has a :directory property, then connect

;33 to that directory, ensuring that the current

; 11 connected directory will be restored on exit from room.

(let ((new-directory (room-prop room :directory))
(old-directory (il:directoryname t)))
(when new-directory
(room-unwind-save
(il:cndir old-directory))
(il:cndir new-directory))))
(pushnew 'cd-room-entry-function *room-entry-functions*)

Note: Room properties can be added to rooms from the room
editor (SEdit) by adding a new property/value pair.

You could also make one or more rooms appear in reverse video
and have the rest display in regular video. The following is an
example of putting code directly on
:before-entry-functions and using it in combination with
room-unwind-save to restore a state when the room is exited.
i;i When entering my-room change to reverse video
i3+ but change back to regular video when exiting
(pushnew '(lambda (room)
room-unwind-save (il:videocolor nil))
il:videocolor t))
room-prop (room-named
my-room) :before-entry-functions)
:test 'equal)

When you view a room you see it and its inclusions. The
sequence of included rooms is called the visible rooms. This
sequence is computed in a breadth-first, duplicate eliminating
manner. The following table illustrates how this works:

ROOMS, MEDLEY RELEASE

A. PROGRAMMER’S GUIDE TO ROOMS

Table A-1. How Inclusions Work

Room Inclusions Visible Rooms Comment

A none A Pockets Pockets implicitly
included

B A B A Pockets simple inclusion

C B C B A Pockets indirect inclusion

D BC D B C A Pockets breadth-first,
duplicate
eliminationt

t The elimination of duplicates also serves to break inclusion
loops.

(do-inclusions (room-var room) &body body) [Macro]

Evaluates body once for each room in room’s visible rooms with
room-var bound to the visible room. A block named
do-inclusions is created. Returns ni1.

One might use something like the following code fragment to
determine whether the room named "Test" was currently visible
on the screen:

(let ((test-room (room-named “"Test")))

(do-inclusions (room *current-room*)
(when (eq room test-room)

(return-from do-inclusions t)})))

You could make the :directory property shown in the
room-unwind-save example above be inherited via the
inclusion mechanism. You could replace the line (room-prop
room :directory) with the following:

(do-inclusions (included room)
(let ({(directory (room-prop included :directory)))
(when directory
(return-from do-inclusions directory))))

This would cause inclusions to be searched for the :directory
property.

Room Backgrounds

A background object is created using:

{(make-background external-form) [Function]

external-form is similar to the value you give to the
:background property when editing a room (see Chapter 3,
Rooms, "tditing a Room"). make-background does error
checking on the external form before returning a background
object. You cannot use make-background to directly specify
the value of :background in make-room.

The only time you need to use (and make) a background object
is when you are accessing a room directly through the Common
LISP structure mechanism. That is, you should use
make-background only if you're setting the background field
of a room structure. The external-form field of the

A-b ROOMS, MEDLEY RELEASE

¥
hd
¥
hd
L
kd
had
ki
ki
hd
hd
hd
ki
kd
Ad
hd
hd
kd
kd
hal
hd
bl
Ad
hd
W
kd
had
hud
hed
hd
had
hd

I]Jj]:l]]]]]3:3]]]3]3333]33]333]]

A. PROGRAMMER’S GUIDE TO ROOMS

BACKGROUND structure is read-only. Thus, the idiom for
changing backgrounds programmatically is:

{(update-placements)
(setf (room-background <room>) (make-background {external-formd))

(room-changed <room> :editied)
{background-external-form object) [Function]

Used to access the external form of a room background. object
is a background specification which can be accessed by:

(background-external-form (room-background <room>))
default-background-text-font [Variable]

The default font used for text printed on the background as
defined by a room definition. To change
default-background-text-font you must pass in a font
descriptor. For example to change the font to Helvetica 12 you

could:
(setq *default-background-text-font* (il:fontcreate "(il:helvetica 12
il:mrr}))
Initially background text is printed in 36 point TimesRomand

bold.

You must call internalize-all-backgrounds (see below)
before the background text change is propagated throughout the
ROOMS system. The font of the current room’s name is not
changed until you exit and then reenter it.

(internalize-all-backgrounds) [Function]

Reprocesses background specifications.

Background specifications are processed before they're used to
paint the background. This processing involves: (1) evaluating
expressions within :evatl; (2) converting fractional positions and
regions to absolute positions and regions; and (3) caching
bitmaps for background text. This processing does not take
place every time a room is entered, but only when: (1) a room is
created; (2) a room is edited; or (3} a sysout containing ROOMS
is re-booted on a machine with a different sized screen.

While this catches most of the cases where background
specifications need processing, there are some cases which this
will miss, e.g., when a variable referenced within a :eval is
reset; or when you change the value of the variable
default-background-text-font It is in these cases
that one must explicitly call internalize-all-backgrounds.

{externalize-region region) [Function]

Translates region from integers to fractions. For example:
(externalize-region '(150 150 150 100))
= (25/192 50/287 25/192 100/861)

For a definition of regions see the Interlisp-D Reference Manual,
Chapter 27, Graphics Output Operations.

ROOMS, MEDLEY RELEASE

A-7

A. PROGRAMMER'S GUIDE TG ROOMS

(internalize-region region) [Function]

Translates region from fractions or floating point numbers into
integers. If region is given in integers then region is returned.

For a definition of regions see the Interlisp-D Reference Manual,
Chapter 27, Graphics Output Operations.

(externalize-position pos) fFunction]

Translates the position pos from integers to fractions.

For a definition of positions see the Interlisp-D Reference
Manual, Chapter 27, Graphics Output Operations.

(internalize-position pos) [Function]

Translates the position pos from fractions or floating point
numbers to integers. If pos is given in integers then pos is
returned.

For a definiton of positions see the Interlisp-D Reference
Manual, Chapter 27, Graphics Output Operations.

Placements
Placements are not created for new windows until the room is
changed. To force the creation and update of placements call
update-placements (see below). This guarantees that every
window on the screen has a placement. ,
A placement is a Common LISP structure that behaves as if
defined by:
(defstruct placement
window ; the window to be placed
region ; the region to place it in
shrunken? : true if the window is shrunken
icon-position ; position of the icon, if any
props ; property list
)
The exception is for make-placement which is called with the
single argument window and has no keyword arguments
associated with it.
(make-placement window) [Function]
Makes and returns a placement for window.
(update-placements) [Function)]

Updates the placements for the current room.
update-placements reconciles the current room and its
inclusions with what's on the screen; it assumes that what's on
the screen is correct. ‘

Placements are not updated every time one is modified because
this requires a high overhead. Instead, placements within a room
only are updated when the room is exited.

A-8 ROOMS, MEDLEY RELEASE

hd
hd
hd
ed
hd
had
ki
hd
hd
hd
hd
hd
hd
ki
Ad
kd
hd
kd
hd
d
e
e
kd
hud
hd
ki
hd
hd
hd
d
bd
kl

43733

4317772737337 13273

b I

23377337213

32223732373

pe i

A. PROGRAMMER’S GUIDE TO ROOMS

Therefore, in order to get the current state of any placement you
may need to call update-placements before retrieving
placement objects within a room.

(placement-prop placement prop &optional new-value) [Macro]

Accesses the props field of placement.

prop specifies the name of the property. If prop is undefined for
placement, placement-prop adds it to placement's property
list.

If a new-value is supplied then the value of prop is changed to
new-value and new-value is returned.

(find-placement window &optional room) [Function]

Returns the effective placement for window with respect to
room, or nil if none exists. The effective placement is the
placement that would be placed if room were entered.

Note: Before wusing find-placement you should call
update-placements unless you are sure the placements
are up-to-date.

window must be a main window, not an attached window or an
icon,

room defaults to *current-room*.

{all-windows &optional include-hidden?) [Function]

(lost-windows)

Returns a [ist of all main windows (i.e., no attached windows are
included) visible in the current room. If include-hidden? is true
then all main windows in all rooms are included in the list.

[Function]

Returns a list of all windows not in any room. If all windows are
in some room returns ni1.

Hidden Windows

(hide-window window)

ROOMS is implemented using hidden windows. Any window
not in the current room is called hidden. Hidden windows are
just like open windows except that they’re not visible on the
screen,

All the Interlisp-D window manipulation functions work on
hidden windows. Also, all graphics operations work normally
with hidden windows (See Chapter 27, Graphics Output
Operations and Chapter 28, Windows and Menus in the
Interlisp-D Reference Manual.)

[Function]

Makes window hidden i.e., invisible yet open.

ROOMS, MEDLEY RELEASE

A-9

A. PROGRAMMER’S GUIDE TO ROOMS

(un¥h1‘de-w1‘ndow window) [Function]

Makes window visible and open.

(window-hidden? window) [Function]

Returns t if window is hidden, ni1 otherwise.

Navigation

The navigation functions allow you to move between rooms.

(go-to-room room &key :no-update :baggage) [Function]

Spawns a process which moves you into room and returns the
process handle. Control is immediately returned to the spawning
process. go-to-room is usually called from menus and buttons,
when the mouse has the keyboard. A process is spawned to
allow the mouse to return the keyboard before rooms are
changed. To synchronously change rooms, the following idiom
is recommended:

(il:process.result (go-to-room room) t)

If :no-update is true then update-placements is not called
before rooms are changed.

:baggage is a list of placements that are to be placed in room.

(interactive-go-to-room-named name) [Function]

Takes you to the room named name.

If the COPY or MOVE key is depressed at command execution,
you are prompted to select those windows you want to take with
you as baggage (see Chapter 5 Navigation, "Baggage" for more
infarmation).

This function is called by doors.

The Overview

These functions, used by the ROOMS Overview, are provided so
that you can customize the appearance of the Overview in your
environment.

(get-pe room-name &optional region) {Function]

Adds a placement editor window for the room named
room-name to the current room. |If region is specified then the
editor will be shaped to occupy this region.

{room-sort-function room-7 room-2) [Function]

Used by the ROOMS system to sort rooms; you can redefine it
to achieve other orderings. Determines the order of rooms in

A-10 ROOMS, MEDLEY RELEASE

K EErF I EEEKELCILCE ECCE EEECEC L ECECEEECCEECE

MIIJTI3I71313T3I373T773337313371371377333333233A13

A. PROGRAMMER’S GUIDE TO ROOMS

various menus and in the Overview. Should return true when
room-1 should appear before room-2. The default definition of
this function orders rooms alphabetically by name.

it is possible to get into a very difficult state if you make an error
when you redefine room-sort-function. In order to allow
you to recover from such a state the original code is as follows:

(defun room-sort-function {(room-1 room-2)
i;; used as the predicate for sorting lists of rooms.
113 we sort alphabetically by the name of the room.
(macrolet ((stringify (name)
'(if (stringp .name)
,name
(princ-to-string ,name))))
(let ((name-1 (room-name room-1))
(name-2 (room-name room-2)))
(string-Tessp
{stringify name-1)
(stringify name-2))}))

(reset-overview) [Function]

Deletes old Overview and creates a new one. You should not
call this function while in the Overview itself.

Buttons

Buttons are a unique user-interface device that provide for the
execution of commands at the click of the mouse. Doors are
buttons that move you from one room to another.

The functions and variables listed below deal with both doors
and buttons.

Creating Buttons

(make-button &key :type :text :text-form :action
:help :font :shadows :inverted?) {Function]

Returns a button. For example,

{make-button
:text "CreateW"

:action '(il:createw)
:help "Creates a window")

Returns a button that, when given as the button argument to
make-button-window (see below), creates a window with the
word CreateW written on it. Selecting the window with the
left-mouse button calls i1:createw; holding the mouse button
down for a specified period of time prints the message "Creates
a window" in the prompt window.

type specifies the type of button. Default is the value of
default-button-type (initially : shadowed). Other types
allowed are :door, :stretchy-ark, :stretchy-round-ark
:ark, :round-ark, :porthole, and :transparent. These

ROOMS, MEDLEY RELEASE A-11

A. PROGRAMMER’'S GUIDE TO ROOMS

;text

text-form

:action

:help

:font

:shadows

nil:

[inverted?

standard button types are pictured in Chapter 5 Navigation,
"Creating Doors."

Note: You can define your own button types. See
def-button-type, below.

specifies the text to be written on the button. :text can be either
a string or a single-word atom (with no escape delimiters). For
example, either "Snap Shot" or SNAPSHOT is allowed.

used to compute the text written on a button and is eval’d
every time the button window is redisplayed. :text-form allows
you to have a button whose text changes. If :text-form is a list it
is passed to eval. Otherwise the system assumes the value of
:text-form is a function that is funcalled with the button window
as its single argument. In both cases the result of the
computation should return a string that is to be the text of the
button.

Note: You should generally use either :text or :text-form not
both. If you don’t want the text written on the button to
change then use :text. Similarly, if you want the text to
change use :text-form

specifies the action to be taken when the button is selected with
either the left or middle button. If :action is a list it is passed to
eval. Otherwise the system assumes the value of :action is a
function and calls it with the button window as its single
argument.

supplies the help string that is printed in the prompt window
when the left-mouse button is held down.

supplies the font of the text written on the button. Should be
given in the form (FAMILY SIZE FACE); for example, (MODERN
12 MRR).

specifies the shadow specification for this button’s text. Typically
t, ni1, a named shadow specification, or a shadow specification.
Text shadow specifications are described in detail in "Text
Shadows" later in this chapter.

If this argument is not provided to make-button then the
button type is examined for default shadows (see
def-text-shadows). If none are found in the button type
then the value of the variable *default-button-shadows* is
used.

SnapShot
T t: :ark

Figure A-1. Different button looks for different values
of :shadows

Note: You can specify more complex shadowing. See "Text
Shadows," def-text-shadows below.

if true, specifies that the button should be inverted. A ni1 value
means that the button should be regular (Figure A-2). The
default value is ni1 .

A-12

ROOMS, MEDLEY RELEASE

K EKFEKEE I E L I F ECEF F CFEEEEECEECEEKELCCLE

3313373772733 3717737377713337IJ3772331311733333317317

A. PROGRAMMER’S GUIDE TO ROOMS

nil: t:
figure A-2, Examples of regular and inverted
buttons

default-button-shadows [Variable]

Used by make-button when :shadows are not specified and
:type has no default shadows. Default value is nil.

(make-button-window button &optional position) [Function)

Returns a window containing button. Create button using
make-button.

position lets you specify the position where the window is
placed using the dotted pair notation (/eft . bottom).

(button-prop button prop &optional new-value) [Macro]

Accesses the props field of button.

If prop is undefined for button, button-prop adds it to
button's property list.

If new-value is supplied then the value of prop is changed to
new-value and new-value is returned.

Defining Button Types

{def-button-type name &key :image :mask :margins :default-shadows) [Definer]

Defines a button type and adds the type to the "Select Button
Type" menu.

name the name of the button type, typically a keyword. Used to refer
to a button type when making and editing buttons.

:image the bitmap to use as the button image.

:mask if provided, it is a bitmap that determines which parts of :image
to use. This allows non-rectangular images.

:zimage and :mask can be ordinary bitmaps, east-west bitmaps,
north-south bitmaps, or nsew bitmaps (descriptions of these
follow). The names of the bitmaps are derived from their relative
positions as if they were distibuted around a compass. Both
:zimage and :mask should be the same type of bitmap with the
same dimensions.

:margins if specified, is a list of four integers (left bottom right top)
indicating the margins within which the text should be centered.

:default-shadows if specified determines the default shadows for buttons of this
type (see make-button)

A simple def-button-type example:

;53 A button type for 100 x 100 white buttons.
(def-button-type :boring
:image #.(il:bitmapcreate 100 100))

ROOMS, MEDLEY RELEASE A-13

A. PROGRAMMER'S GUIDE TO ROOMS5

Making Stretchy Buttons

A button type is called "stretchy" when :image and :mask are
east-west bitmaps, north-south bitmaps or nsew bitmaps (see
below for definitions of these types of bitmaps). Buttons whose
type is stretchy resize themselves to fit their :text—hence the
term stretchy. All of the pre-defined stretchy buttons use
nsew-bitmaps for their :image and :mask.

{make-east-west-bitmap &key :east.center :west) [Function]

Makes an east-west bitmap. :east, :center, and :west should all
be ordinary bitmaps of the same height. When an east-west
bitmap is displayed the :east bitmap appears on the right, the
:center bitmap is repeated one or more times across the middle,
and the :west bitmap appears on the left (Figure A-3).

west | center | center . . east

Figure A-3. How east-west bitmaps are
stretched

{make-north-south-bitmap &key :north :center :south) [Function]

Makes a north-south bitmap. :north, :center and :south should
all be ordinary bitmaps of the same width. When a north-south
bitmap is displayed the :north bitmap appears on the top, the
:center bitmap is repeated one or more times down the middle,
and the :south bitmap appears on the bottom.(Figure A-4).

Figure A-4. How north-south bitmaps are
stretched

(make-nsew-bitmap &key :nw :north :ne :east :center :west :sw :south :se) [Function]

Makes an nsew bitmap. All arguments are ordinary bitmaps with
the following constraints on their size:

:nw, :north and :ne should all be the same height.

reast :center and :west should all be the same height.
:sw, :south, and :se should all be the same height.

-nw, ‘east, and :sw should all be the same width.

:north, :center, and :south should all be the same width.

:ne, :west and :se should all be the same width.

A-14 ROOMS, MEDLEY RELEASE

EEEfC L EfEEEEE R EEFEEE R E KNP EFEECEEER O

7733733713113 373373I3I71377333713237133333323333373

A. PROCRAMMER’S GUIDE TO ROOMS

Examples of Using def-button-type

When a nsew bitmap is displayed the :nw, :ne, :sw, and :se
bitmaps are placed in the comers. the :west bitmap is tiled down
the left, the :east bitmap is tiled down the right, the :north
bitmap is tiled across the top, the :south bitmap is tiled across
the bottom and the :center bitmap is used to fill in the middle
(Figure A-5).

mww morth ' morth © me
west center center . seast
west center center east
|] |]
] L]
SW south south se

Figure A-5. How nsew bitmaps are stretched

1+ 1 A button type for stretchy white buttons
(def-button-type :stretchy-boring
:image #.(make-east-west-bitmap
; + all bitmaps must have same height, but
; 3 may have different widths
;east (il:bitmapcreate 2 20;
:center (il:bitmapcreate 3
:west (il:bitmapcreate 4 20})

Here’s an example you can’t type in because you need to define
the various bitmaps and masks. This example shows how the
ROOMS porthole button is laid out to be stretchy and round.

(def-button-type :porthole
:image #.(make-nsew-bitmap

% @
:north :ne

:center D :east

:south 5 4

:mask #. (make nsew- b1tmap

3
N

west center‘ :east

1SW - isouth i (5@ Z)

: 3 indent all the way around as we want text to appear
: sover the hole, not over the bolts

:margins (15 15 15 15)

; + as the text is over the hole, we need shadows to
; + make sure that it will be legible over any background

nw

:west

ﬁﬁ N

ROOMS, MEDLEY RELEASE

A-15

A, PROGRAMMER’S GUIDE TO ROOMS

:default-shadows t)

The inspector provides a handy way to edit east-west,
north-south and nsew bitmaps. Thus, you might develop a new
button type as follows:

i + 5 first make a blank east-west bitmap
(setq temp
(make-east-west-bitmap
teast (il:bitmapcreate 6 15)
:center (il:bitmapcreate 4 15
:west (il:bitmapcreate 6 15));

; 3 3 then edit its contents from the inspector
{(inspect temp)

; 1+ finally define the button type and make a buttan to test it
gdef—button-type :my-type :image #.temp)
make-button-window
(make-button
:text "testing..."
:type :my-type))

Additional Button Variables and Functions

default-text-font [Parameter]

The default font of the text to be written on doors and buttons.
Initially, 12 point Helvetica bold; value must be a font descriptor.

default-button-type [Parameter]

Default looks type for buttons and doors. One of :shadowed,
:door, :porthole or :transparent or a user-defined button
type (see def-button-type, above). Initial value is
:shadowed.

button-help-delay [Global Var]

The period of time that a mouse button has to be depressed on
a button or door before the help string is printed in the prompt
window. Initial value is 1200 milliseconds.

*button-selection-shade#® [Parameter]

Shade covering button or door to indicate that the mouse has
selected it. [nitial value is 32768. If you set
button-selection-shade to il:blackshade then
buttons are inverted.

(set-button-window-text-string window string) [Function]

Replaces the text in the button window window and reshapes
the window if necessary i.e., everything required but redisplay.
Typically followed by a call to iT:redisplayw.

(with-button action text help) [Function]

Lets you create a button by holding down the COPY key while
making a menu selection.

action the action to be taken when the button is selected with either
the left or middle mouse button.

text the text to be written on the button.

help help string that is printed in the prompt window.

A-16 ROOMS, MEDLEY RELEASE

FE£EEICEELCILCELCEE ECEEE EFFEEE EEECEEEEEETELE

7133313133333 3J317J3I3713137333313332317373333 333273

A. PROGRAMMER’S GUIDE TO ROOMS

(make-bio button)

For example, if you hold down the COPY key while selecting
"Go to Room* from the ROOMS submenu, a button is created
(Figure A-6) instead of the function selected being executed.

Figure A-6. A "Go to Room" button

To use with-button, change your code where you specify the
action for a selected menu item to a call to with-button. The
menu action is specified in action.

For example, create a menu (Figure A-7) with the following code:

(i1:addmenu
{it:create il:menu
il:items i1:
"(("Snap Shot"
{with-button
"(il:snapw)
"Snap Shot"
"Take a snap shot of screen"))
("VMEM Size"
{with-button
"(format il:promptwindow
"~%VMem size i{is ~D~%"
{(il:vmemsize))
"VMEM Size"
"Print VMEM size")))
il:title i1:_ "Sample Menu"))

.
Snap Shot
YRER Size

Figure A-7. Menu created incorporating with-button

Holding down the COPY key while selecting "VMEM Size"
creates a button (Figure A-8).

Figure A8, ZE button

Selecting that button prints the current VMEMSIZE to the prompt
window.

[Function]

Returns a button image object (see the Interlisp-D Reference
Manual, Chapter 27, "27.16 Image Obijects" for a discussion of
the image object data type). Create button using
make-button.

You can also create button image objects directly from buttons,
see Chapter 5 Navigation, "Creating and Using Button Image
Objects."

ROOMS, MEDLEY RELEASE

A-17

A. PROGRAMMER'S GUIDE TO ROOMS

Suites

suite-directories

[Variable]

suite-file-type

Value is the search path used for the load suite command. [nitial
value points to the connected directory.

[Variable]

Suites and the File Manager

Contains the file extension for suite files. Initial value is the
string "SUITE".

For example, saving a suite named test would result in a file
called test.suite being written to the connected directory.

ROOMS creates a new File Manager type called i1:suites.
Updating a suite redefines it by calling i1:putdef (see the
Interlisp-D Reference Manual, Chapter 17, File Package, "17.8
File Package Types") with i1:dfnf1g bound to il1:prop (see
the Interlisp-D Reference Manual, Chapter 10, Function
Definition, Manipulation and Evaluation, "10.2 Defining
Functions.") Thus, updating a suite is the same as loading a file
il:prop (which is why you get the message "New SUITES
definition for <name> (but not installed)."

Resetting ROOMS

(reset)

[Function]

Resets the ROOMS environment to look as if you had just loaded
the ROOMS software for the first time. Deletes all rooms. Sets
up two rooms; Original, containing all the windows that you had
before reset was called, and Pockets, containing only a prompt
window. Also sets *pocket-room-name* to "Pockets".

This function should be used sparingly since recovery means
recreating your entire ROOMS environment.

Text Shadows

nil
t
a symbol

a list

in both of the places where text can be specified (backgrounds
and buttons) there is a :shadows option that generally has a
value of t or nil. In fact this option can be one of:

no shadows
shadows proportional to font
name of defined text shadows (see def-text-shadows)

explicitly specified shadows

A-18

ROOMS, MEDLEY RELEASE

FEEEILC I I ELCE L ECLCEEEFEEFEEECE L CCEECEELCCELE

a 3 3

3313131371373 7121T3T1713733J3T33373373331333373131372

A. PROGRAMMER'S GUIDE TO ROOMS

:dx
:dy
:operation

:source-type

:texture

To explicitly specify shadows, use a list of shadow specifications.
Each is a property list specifying a call to i1:bitb1t. When
displaying text, ROOMS makes a bitmap of the text and then
calls i1:bitb1t once for each shadow specification in the
specified order.

Thus a shadow specification is a list and can contain the
following keywords:

the x offset for the blt; default is 0
the y offset for the blt; default is 0

the operation for the blt; default is i1:paint, but can also be
one of: il:replace il:erase oril:invert.

the source type for the blit; the default is i1: input but can also
be one of i1:invert il:texture or i1:merge.

the texture for the blt; default is 0.

{def-text-shadows name &rest shadow-specifications) [Definer]

Examples

Defines a named shadow specification.

Rooms has the following pre-defined shadows:
{def-text-shadows nil ())
(def-text-shadows :ark

; + indented shadows, like those in ark buttons

(:operation :erase)

(:dx -1 :dy 1))

These examples show you the basic shadow specifications, then
illustrate what the button looks like with the new shadow
specifications.

Start with the standard "Go to Room" button produced from the
ROOMS submenu (Figure A-9). The button is created when you
select "Go to Room" from the ROOMS submenu with the COPY
key held down.

Figure A-9.

You edit the "Co to Room" button by selecting the button,
using the middle mouse button, while holding down the EDIT
key. An SEdit window opens (Figure A-10).

SEdit Goto Ragm Package: XCL-USER

(:TEXT "Go to FRoom" :FONT

(IL:HELVETICA 12 (IL:BOLD IL:REGULAR IL-REGULAR))
‘SHADOWS NIL :TYPE :SHADOWED :HELP

"Go to an existing room” :ACTION
(ROOMS::INTERAGCTIVE -GO -TO-ROOM) :INVERTED?
NIL)

Figure A-10. The description of the "Go to Room" button

ROOMS, MEDLEY RELEASE

A-19

A. PROGRAMMER'S GUIDE TO ROOMS

The following specifications change the shadowing of the "Go to
Room" button (Figure A-9) and are entered after :shadows
(Figure A-10).

Note: Comments are for illustrative purposes only and are not
allowed in shadow specifications.

For example, to specify shadows like those t gives you, one
might use:

((:dx 3 :dy -3) ; print black shadow first, down and to right
; + print one bit off in each direction for black outline
(:dx -1) (:dy -1) (:dx 1)} (:dy 1)
(:operation il:erase)); finally erase middle

Note: It is impossible to really specify shadows like those t gives
you. t is magical in that it computes the shadows to look
good with the font. Of course for a given font one could
specify shadows which looked identical to those that t
gives.

These new specifications produce a butten like the one shown in
Figure A-11.

Figure A-11. The "Go to Room" button created
with the new shadow specifications

An interesting variant is:

({:dx 3 :dy -3) i print black shadow first
i+ print one bit off in each direction for black outline
(:dx -1) (:dy -1) (:dx 1) (:dy 1)
;3 paint middle gray
(:operation il:invert :source-type il:merge :texture

42405))

Which would produce a button that looks like the illustration in
Figure A-12.

Figure A-12. A variation on the shadowed button

Window Types

When a room is saved onto a file as part of a suite, ROOMS goes
through every window in the room and attempts to save it on
the file. tor a window to be saved, however, it must be one of a
set of previously defined window types.

A window type definition gives ROOMS information about that
window type so that ROOMS knows how to save it onto the file
and retrieve it, saving enough information so that it can recreate
that window at any time. ROOMS comes with window type
definitions for many XAIE window types including:

A-20

ROOMS, MEDLEY RELEASE

LI ErFELCELCELCEECEC ECEECEECC EE CCECEEECDELE

7333333337333 333I3I33I3I33IJ3I3I3T3I33333337373117

A. PROGRAMMER’S GUIDE TO ROOMS

Window Type Definitions

* Prompt

* Exec

* TEdit

* Logo

¢ FileBrowser
s Chat

* Spy Button

(def-window-type name &key :dependencies :recognizer :title

:abstracter :reconstituter
:placer :updater :files &allow-other-keys) ([Definer]

:recognizer

:abstracter

:reconstituter

:title

:dependencies

name is the name of the window-type, typically a symbol in the
keyword package.

Each of the arguments, :dependencies, :ecognizer, :title,
:abstracter, :reconstituter, :placer, and :updater have a value of
either a lambda expression or a function call (except for :titfe,
whose value can also be a string).

You can add other keyword properties to the window type;
these are not used by ROOMS and are treated as a user-defined
property list for that window type, accessible at any time.

takes a window and returns true if the window is of the type
being defined. :recognizer can be considered a membership
predicate and is a mandatory part of a window type definition.

takes a window and returns a window description suitable for
saving anto a suite file.

takes the :abstracter output from the file and returns a pointer to
that window. Used when loading a suite file.

determines how placements for windows of this type appear in
pictograms (as in the Overview, for example). Usually a string
but can be a function. There are three relevant cases:

1. If :title is a string and the placement is not shrunken then :title
is printed as a title bar, if it fits.

2. If :title is a string and the placement is shrunken then :title is
printed centered, if there is room.

3. If :title is anything other than a string then :title is funcalled
with arguments of: placement, region and dsp. Placement is
the placement in question; region is the area to display the
placement within; and dsp is the displaystream to display the
placement in.

a list of other window types on which this window type is
dependent. Tells ROOMS to ignore conflicts for these types.
Thus :dependencies allows you to create specialized window
types that are subsets of a more general case. For example, a
TEdit window is a subset of textstream windows. :dependencies
doesn’t allow you to inherit other window type methods; you

ROOMS, MEDLEY RELEASE

A-21

A. PROGRAMMER’S GUIDE TO ROOMS

:placer

:updater

:files

must still define :recognizer, :abstracter, :reconstituter, etc. for
the specialized window-type.

a function called on a window before you enter a room that
contains a placement for that window. Allows the window to
have different appearance properties in the different rooms it
appears in. Works with :updater.

a function called on a window when you leave a room that
contains a placement for that window. Allows the window to
have different appearance properties in the different rooms it
appears in. Works with :placer.

a list of files that must be loaded before any attempt is made to
reconstitute windows of type name. For example, if the window
type :my-type is contained on my-window-types and windows
of :my-type are created by the module my-module, then the
following window type definition causes my-window-types and
my-module to be autoloaded when a suite containing windows
of :my-type is loaded:

(rooms:def-window-type :my-type

:files (my-window-types my-module)

)
Most window type definitions need to use only :recognizer,
:abstracter, :reconstituter, and :title.

You do not have to specifically tell ROOMS that a window is of a
certain window type; a window is run through the :recognizer
portion of each window type definition until a match is found. If
no match is found, then the window is not saved to the suite
file, the window is brought to the current room, flashed several
times, and a message is printed in the prompt window.

(print-pep-title-string string region dsp

&key :font :no-title-bar?) {Function]

Debugging Window Types

Prints string within region on dsp if it fits. if :no-title-bar? is
specified, then string prints in the center of region, otherwise it
is displayed as a title bar. Use :font to specify the font the string
is displayed in, if it fits.

ROOMS provides a simple facility for debugging window types.
Its use is limited to determining if the recognizer works and if
dependencies are specified correctly.

(window-type window &optional no-error?) [Function]

Returns the window type, if one exists, of window. If window is
not a recognized type and no-error? is ni1 then window-type
signals an error. If no-error? is t and window is not a recognized
type or there is a conflict, window-type returns ni1l.

A-22

ROOMS, MEDLEY RELEASE

F I I EILC I EC I E L E L EEE ECECEEEREEEEECER

413333333333 377 3333373373373 33I7337312

A. PROGRAMMER’S GUIDE TO ROOMS

Using il:deldef to Delete Window Types

If window-type signals an error informing you that it can’t find
a type for window and you expect there to be such a type then
window’s recognizer is faulty in some way.

If window-type signals a "type-conflict” error then you have
defined window types that conflict. If you intended this conflict
then you need to specify the type of one in :dependencies of
the other.

if you want to eliminate a window type use il:deldef.
Window types are File Manager types. So if you created a
window type named :test you could delete it by calling:

(il:deldef :test :window-types)

Examples of Window Type Definitions

Included in the ROOMS software package are the unsupported
Rooms User's modules. One module, called
random-window-types, includes prettyprinted listings of how
each window type is defined as well as the normal user
documentation.

Miscellaneous

Note Windows

The ROOMS Introduction suite uses a new window type called a
note window. This is simply a window that holds text and can
be used as reminders, explanations, notes, etc. Examples of
note windows and their menu interface are given below.

Note: If you don’t have the ROOMS Introduction loaded you
must load rooms-notes.dfasl.

{(make-note-window &key :region :title :string :font :read-only?) [Function]

:region

:title

:string

font

Makes a note window.

the region on the screen that the window will fill. If ni} the
system prompts you to sweep out a region.

the title of the note window. Defaults to "Note:".

the string to be contained in the note window. Defauits to " "
However, there is a menu interface explained below that can also
be used to enter the text. The string must be terminated with a
return.

the font of the text in the window. Default is the value of
default-note-window-font. It is not possible to have
multiple fonts in one note window,

ROOMS, MEDLEY RELEASE

A-23

A. PROGRAMMER’S GUIDE TO ROOMS

:read-only? specifies whether or not the text is editable after the note
window has been created. Default is ni1; t means that the text
is read-only.

default-note-window-font [Variable]

The default font of the text written in the note window. Initial
value is the value of 11:boldfont (10 point Helvetica bold).

Note Window Menu Interface

Note windows have a menu interface. Middle mouse button on
the title bar of a note window opens a menu (Figure A-13).

Edit Text
Set Font
Set Title
Figure A-13. The Note window top level menu
Edit Text alfows you to enter and edit text.
Set Font opens up an SEdit window on the current font of the note

window. Text in a note window can only be in one font so
changing the font description changes all the text to the new
font.

Set Title allows you to change the title of a note window. Prompts for
the new title in the prompt window.

If you are in edit mode, middle mouse button on the title bar of
the note window gives you another menu (Figure A-14).

Find
Substitute
Quit

Figure A-14. The note window edit mode menu

Find allows you to search forward from the position of the caret for
text. Enter the search string in the prompt window and press
<RETURN>. If found, the text is underlined.

Substitute allows you to substitute one string for another in the selected
text. In the prompt window enter the search string, the replace
string, and whether or not you want to confirm each substitution.

Quit ends the text editing mode and switches menu control to the
top level menu.

Note Window Example

(make-note-window :title "ROOMS Introduction")

Prompts for a region on the screen and creates an empty note
window (Figure A-15).

A-24 ROOMS, MEDLEY RELEASE

F L L CCECEECEECILCELELCLEELCEECEEELCEECEEECECEECEECEETECE

4337237277322 7337333312

32 3

b I |

B e [t |

4 3 33 3

333327

P

A. PROGRAMMER'S GUIDE TO ROOMS

B3OS Introduction

Figure A-15. A note window

(make-note-window :title "The Untouchable"” :string "Don't touch this
note window!" :read-only? t :font '(helveticad 24 mrr))

Prompts for a region and creates a note window with text in it
(Figure A-16).

The Untouchable

Don’t touch this
note window!

figure A-16. A note window containing
some text

Since the note window is read-only, the note window menus are
inactive.

Enhancing WHO-LINE

You can add a room entry to the LispUsers module Who-Line:

(pushnew *who-line-entry* il:*who-line-entries* :test #'equal :key
#'car)

(il1:install-who-Tine-options)

ROOMS, MEDLEY RELEASE A-25

A. PROGRAMMER’'S GUIDE TO ROOMS

[This page intentionally left blank]

EEEEEEﬁEEEEEﬁEEE[EEEEEEEEEEEEKEE

A-26

ROOMS, MEDLEY RELEASE

MITI3IIJ7J37772733373337333373337372333333233233A723337

baggage
background

button

current room
destination room
door

effective placement
hidden window
included room

inheritance

pe
pep

placement
Pockets

position

region
room

ROOMS submenu
source room

stretchy button

suite

virtual workspace

window

GLOSSARY

placements copied when changing rooms

the shade, pattern, or bitmap that is displayed behind all the
windows on the screen.

windows that allow you to execute commands at the click of a
mouse. Doors are buttons that take you to another room.

the room displayed on the screen; the room you are in.

a room that has other rooms included in it.

a specialized button that allows you to move between rooms
the placement that is placed when room is entered.

a window not visible on the screen

a room whose placements are included in another room

the way ROOMS establishes precedence of appearance when
more than one room is included in another.

placement editor
placement editor placement

structures that maintain information on a window (in the form of
a pointer) and on a window’s location in a particular room

a special room whose placements appear in the same location
and with the same appearance in every other room.

a point on the screen; given in x-y coordinates, as (x . y). If
referring to the position of a placement, then it is the point on
the screen that defines where the lower left-hand comer of the
placement lies.

an area of the screen given in pixels; defined by (left bottom
width height)

a virtual addition to the screen. Fach room can be considered
another screen.

the menu off the "Rooms" entry on the background menu.
a room included in other room(s)

a button whose region expands (or shrinks) depending on the
extent of the text to be displayed in the button window.

a collection of rooms that can be saved to a file and reloaded at
a later time, restoring the environment (with regards to the
rooms in the suite) to the same state as when the suite was
written out.

another name for a room.

The main window plus any attached windows and any associated
icon, ROOMS treats all these as a unit.

ROOMS, MEDLEY RELEASE

GLOSSARY-1

GLOSSARY

[This page intentionally left blank]

GLOSSARY-2

ROOMS, MEDLEY RELEASE

K EELCILCE L LI LCEE £EEECEEF KR FEEECEECEEEEEREETLE

17173713737 31323313373131713313731371337337137333333133333317217

A

:abstracter (Keyword) A-21
Accessing room properties

see room-prop (Macro) A-2
:action (Keyword) A-12
:ALIGNMENT (argument to :TEXT) 3-11
all-windows (Function) A-9
"All placements" (Menu option) 4-4
"Augment Suite" (Menu option) 7-6

Back doors 5-4
Background text
interaction of inclusions with ~ 3-4
see also :TEXT (Argument to :BACKGROUND)
3-1
Background Functions and Variables
*defauIt-bac/l\cg;ound-text-font' {Variable)
externalize-position (Function) A-8
externalize-region (Function) A-7
internalize-all-backgrounds (Function) A-7
internalize-position (Function) A-8
internalize-region (Function) A-7
make-background (function) A-6
:background (Keyword) A-2
background-external-form (Function) A-7
Backgrounds
accessing programmatically A-6
bitmaps included with ROOMS 1-1
defining regions in
see :REGION (Argument to
:BACKGROUND) 3-8

relationship between :WHOLE-SCREEN and
:RECION 3-9

reprocessing specifications
see internalize-all-backgrounds
(Function) A-7
specifications
evaluation in using :EVAL 3-7
specifying a border for--BORDER ~ 3-7
specifying %l;order shade for-:BORDER-SHADE

using :WHOLE-SCREEN to paint 3.7
using bitmaps in 3-8
and saving to a suite 3-8
Baggage 5-5
using with MOVE key and "Co to Room*
menu 5-5
using with MOVE or COPY key 5-5
:baggage (Keyword) A-10
:before-entry-functions (Room property) A-4
:before-exit-functions (Room property) A-5
Bitmaps, using in backgrounds; see Backgrounds,
using bitmaps in 3-8

INDEX

:BORDER (Keyword)

for :REGION 3-10
for :WHOLE-SCREEN 3-7

:BORDER-SHADE (Keyword)

for :REGION 3-10
for :WHQLE-SCREEN 3.7

Button Functions, Variables and Macras

button-help-delay (Variable) A-16
button-prop (Macro) A-13
button-selection-shade (Parameter) A-16
default-button-shadows (Variable) A-13
default-button-type (Parameter) A-16
default-text-font (Parameter) A-16
def-button-type (Definer) A-13

Keywords for:

:default-shadows (Keyword) A-13

:image (Keyword) A-13

mmargins (Keyword) A-13

:mask (Keyword) A-13
make-bio (Function) A-17
make-button (function) A-11

Keywords for:

:action (Keyword) A-12

font (Keyword) A-12

thelp (Keyword) A-12

sinverted? (Keyword) A-12

ishadows (Keyword) A-12

:text (Keyword) A-12

:text-form (Keyword) A-12

type (Keyword) A-11
make-button-window (Function) A-13
make-east-west-bitmap (Function) A-14

Keywords for:

:center (Keyword) A-14

:east (Keyword) A-14

:west (Keyword) A-14
make-north-south-bitmap (Function) A-14

Keywords for:

:center (Keyword) A-14

:north (Keyword} A-14

:south (Keyword) A-14
make-nsew-bitmap (function) A-14

Keywords for:

:north (Keyword) A-14

:east (Keyword) A-14

:center (Keyword) A-14

:west (Keyword) A-14

isouth (Keyword) A-14

:ne (Keyword) A-14

inw (Keyword) A-14

ise (Keyword) A-14

isw (Keyword) A-14
set-button-window-text-string (Function)

A-16

ROOMS, MEDLEY RELEASE

INDEX-1

INDEX

with-button (Function) A-16
button-help-delay (Variable} A-16
Button image objects 5-7
making programmatically = A-17
button-selection-shade (Parameter) A-16
Button text shadows
how ROONAS (f{?ecides which shadows to use
-1
see :shadows (Keyword for
make-button)
see also: def-button-type (Definer);
def-text-shadows (Definer);
default-button-shadows (Variable)
button-prop (Macro) A-13
Buttons
creating button image objects 5-7
creating programmatically — A-11
defining types
see def-button-type (Definer) A-13
making from ROOMS submenus 5-6
making window for
see make-button-window (Function)
A-13
making with text that changes
see make-button (Function), :text-form
A-12
making with text that doesn’t change
see make-button (Function), :text
A-12
putting active into TEdit and Sketch 5.7
standard types of 5-3
that expand to fit text, see Stretchy buttons
used as doors 5-2

C

:center (Keyword) A-14

IL.CHANGEBACKGROUND (Function) and rocom
backgrounds 3-7

Chat, ROOMS interaction with 3-5
Code

writing so COPY key plus menu selection
creates buttons A-17

"Copy to another room" (Menu option) 4-3
current-room (Variable) A-2

D

default-background-text-font (Variable) A-7
default-button-shadows (Variable) A-13
default-button-type (Parameter) A-16
default-note-window-font (Variable) A-24
default-text-font (Parameter) A-16
def-button-type (Definer) A-13
:default-shadows (Keyword) A-13
def-text-shadows (Definer) A-19
def-window-type (Definer) A-21
delete-room (Macro) A-3

"Delete Room" (Menu option) 3-2

"Delete Room From Suite" (Menu option) 7-4
"Delete Suite” (Menu option) 7-4
:dependencies (Keyword) A-21
Destination room, definition 1-2
Directories, conljfcsting to when entering a room
do-inclusions (Macro) A-6
Doors (see also make-button (Function))
definition 5-1
function called by

see interactive-go-to-room-named
(Function) A-10

keywords in description of 5-5
SEdit description of 5-5

to non-existent rooms 5-3
using the control key with 5-5
using the COPY key with 5-3
using the DEL key with 5-4
using the MOVE key with 5-3

using the right mouse button window menu
with 5-3

E

:east (Keyword) A-14

"Edit PLacements" (Menu option) 6-5
"Edit Room" (Menu option) 3-2
"Edit This Room" (Menu option) 3-2

"Enter Introduction" window, using to start ROOMS
Introduction 2-2

:EVAL (Keyword) 3-7

"Exclude Room" (Menu option) 3-6
externalize-position (Function) A-8
externalize-region (function) A-7

F

File Manager types and suites A-18
Files
loading for window types
see :files (keyword for def-window-type)
A-22
files (Keyword) A-22
find-placement (function) A-9
:FONT (argument to :TEXT} 3-12
dfont (Keyword) A-12,23
Fonts
changing background default A-7
needed for ROOMS 2-1
needed for ROOMS Introduction 2-1-2
where ROOMS looks for 2-1

G

get-pe (Function) A-10

"Go to Roem" (Menu option) 5-1
go-to-room (Function} A-10

INDEX-2

ROOMS, MEDLEY RELEASE

EFIEfEIfCFEfEFffFIrrrEECFFECLC EEE P EFEEECECEEEECEEELT

333313333373 37373731317373327317373173133133731321737217

INDEX

H

help (Keyword) A-12

Hidden Window Functions
hide-window (Function) A-9
un-hide-window (Function) A-9
window-hidden? (Function) A-9

Hidden windows A-9

Idle, exiting without prompt window in room 3-1
IL:CHANGEBACKGROUND (Function)

and room backgrounds 3-7
:image (Keyword) A-13
"Include Room" (Menu option) 3-4
Inclusion Macro

do-inclusions (Macro) A-6

Inclusions

distinguished from Pockets 3-3

how they work A-5

usefulness of 3-3
iinclusions (Keyword) A-2
interactive-go-to-room-named (Function) A-10
internalize-all-backgrounds (Function) A-7
internalize-position (Function) A-8
internalize-region (Function) A-7
Introduction, see ROOMS Introduction
sinverted? (Keyword) A-12

J

"Just this placement" (Menu option) 4-4

L

Log in from Idle 3-1 (note)
lost-windows (Function) A-9

M

"Make Back Door" (Menu option) 5-4
make-background (Function) A-6
make-bio (Function) A-17
make-button (Function) A-11
make-button-window (function) A-13
"Make Door" (Menu option) 5-2
make-east-west-bitmap (Function) A-14
make-north-south-bitmap (function) A-14
make-note-window (function) A-23
make-nsew-bitmap (Function) A-14
make-placement (function) A-8
make-room (function) A-1
"Make Room" (Menu option) 3-1
Stretchy buttons, making programmatically
see make-east-west-bitmap (Function);
make-north-south-bitmap (Function);
make-nsew-bitmap (function)
:margins (Keyword) A-13
:mask (Keyword) A-13

"Move to another room" (Menu option) 4-1
"Move to pockets" (Menu option} 4-2

N

Navigation Functions
go-to-room (Function) A-10
Keywords for:
:baggage (Keyword) A-10
:no-update (Keyword) A-10
interactive-go-to-room-named (Function)
A-10
:ne (Keyword) A-14
:no-error? (Keyword) A-22
:no-update (Keyword) A-10
:north (Keyword} A-14
Note Window Function and Variable
default-note-window-font (Variable) A-24
make-note-window (Function) A-23
Keywords for:
dfont (Keyword) A-24
read-only? (Keyword) A-24
rregion (Keyword) A-23
:string (Keyword) A-24
ititle (Keyword) A-24
no-title-bar? (Keyword) A-22
inw (Keyword) A-14

o

Original room 1-2
Overview
bringing a representation of a placement to

copy a room from 6-3
copying a placement while in 6-4
delete a room from 6-3
deleting a placement while in 6-5
editing a room in 6-4
enter a room from 6-3
entering 6-1
moving a placement while in 6-4
renaming a room in 6-3
room names in gray letters
meaning of 6-1
using the keyboard with 6-2
using the mouse in ~ 6-2
Overview Functions
get-pe (Function} A-10
reset-overview (Function) A-11
room-sort-function (Function) A-10

P

Passing a room in a function
see room-named (Macro) A-2

Pictogram, using outside Overview; see Placement,
editing outside Overview 6-5

ROOMS, MEDLEY RELEASE

INDEX-3

INDEX

Placement Functions and Macros
all-windows (Function) A-9
find-placement (Function) A-9
lost-windows (Function) A-9
make-placement (Function} A-8
placement-prop (Macro) A-9
update-placements (Function) A-8

Placements
accessing properties of A-9
application of standard window functions

4-1
as Common LISP structure A-8
closing 4-4
copying 4-3

definition 4-1
determining which room are in ~ 4-4
editing 6-5

similarity to Overview 6-6
finding lost- "Retrieve Windows" 4.5
included, properties of 4-3
lost, definition of 4-5

making for a window, see make-placement

(Function} A-8
moving to different rooms 4-1
moving to Pockets 4-2
updating after editing 6-6
when created for new windows A-8
when updated for the current room
see update-placement (function)

:placements (Keyword) A-1
:placer (Keyword) A-22
pocket-room-name (Variable) A-4
Pockets 1-2;3-2-3; 4-2; 7-1; A-18

see also [nclusions
:POSITION (argument to :TEXT) 3-11
Positions, translating

from fractions or floating point numbers to

integers A-8

from integers to fractions A-8
print-pep-title-string (Function) A-22
Processes and moving between rooms

see go-to-room (function) A-10

Prompt window

putting one in rooms 3-1

R

rread-only? (Keyword) A-24
:recognizer (Keyword) A-21
:reconstituter (Keyword) A-21
"ReFetch" (Menu option) 6-6
:REGION

arguments for 3-8

form of dimension specification ~ 3-9

relationship between :REGION and
‘WHOLE-SCREEN ~ 3-9

specifying
types of numbers to use for 3-9
specifying a border- :BORDER 3-10
specifying a border shade- :BORDER-SHADE
3-10
using :SHADE to paint 3-9
region (Keyword) A-23
Regions, translating
from fractions or floating point numbers into
integers A-8
from integers to fractions A-7
rename-room (function) A-3
reset (function) A-18
reset-overview (Function) A-11
"Restore Suite" (Menu option) 7-3
"Retrieve Windows" (Menu option) 4-5
room-changed-functions (Variable) A-3
room-entry-functions (Variable) A-4
room-exit-functions (Variable) A-4
Room Functions, Variables and Macros
:before-entry-functions (Room property) A-4
:hefore-exit-functions (Room property) A-5
current-room (Variable) A-2
delete-room (Macro) A-3
make-room (Function) A-1
Keywords for:
:background (Keyword) A-1
dinclusions (Keyword) A-1
:placements (Keyword) A-1
itty-process (Keyword) A-2
pocket-room-name (Variable) A-4
rename-room (function) A-3
room-changed (Function} A-3
room-changed-functions (Variable) A-3
room-entry-functions (Variable) A-4
room-exit-functions (Variable) A-4
room-named (Macro) A-2
room-prop (Macro) A-2
room-unwind-save (Macro) A-5
ROOMS Reset Function
reset (Function) A-18
room-changed (Function) A-3
room-named (Macro) A-2
room-prop (Macro) A-2
room-sort-function (Function) A-10
room-unwind-save (Macro) A-5
Rooms
adding properties using SEdit 3-2
see also room-prop (Macro)
as Common LISP structures A-1
changing description of
when change takes effect 3-3
changing name programmatically A-3
changing programmatically
order of changes A-1
creating programatically

iINDEX-4

ROOMS, MEDLEY RELEASE

R EEILC LI EELCEE L E EE FECCEECEEEECEEECCCC

'333']33]33':!3)]]]33]]3]]3]3]3]333

INDEX

see make-room (Function) A-1
creating using menu 3-1
deleting
and e;fezct on windows and placements
deleting programmatically A-3
deleting using menu 3-2
destination room, definition 1-2
functions called before entered
see *room-entry-functions* (Variable)
A-4
functions called before exited
see *room-exit-functions* (Variable):
see also room-unwind-save
(Macro) A-4
functions called when changed
see *room-changed-functions*®
(Variable); see also room-changed
(Function) A-3
functions called when entered
see :before-entry-functions (Room
Property) A-4
functions called when exited
see :before-exit-functions (Room
Property) A-5
including prompt window in 3-1
moving to programmatically
see go-to-room (Function) A-10
names, changing programmatically, see
rename-room (Function) A-3
passing in a function
see room-named (Macro) A-2
source room, definition 1-2
ROOMS Introduction
"Enter Introduction" window 2-2
fonts needed for - 2-1-2
loading into Medley 1-0-S 2-2

S

"Save Suite" (Menu option) 7-1
:ise (Keyword) A-14
SEdit
using to add new room properties 3-2
see also room-prop (Macro)
using to change room descriptions ~ 3-3
set-button-window-text-string (Function) A-16
Shadows
for text in background
see "Text Shadows" A-18
for text on buttons
see "Text Shadows" A-18
:SHADOWS (argument to :TEXT) 3-12
ishadows (Keyword) A-12
"Show Suite" (Menu option) 7-6
Sketch
putting active buttons into ~ 5-7
Source room, definition 1-2

:south (Keyword) A-14
Stretchy buttons
definition A-14

how the rooms porthole button is laid out to
be stretchy and round A-15

string (Keyword) A-23
Suite Variables
suite-directories (Variable) A-18
suite-file-type (Variable) A-18
Suites
and window types 7-2
as way to save a standard set of rooms 7-2
attempting to load 7-3
attempting to save unknown window types to

checking for room name conflicts when
loading 7-3
creating new without saving 7-5
effect of updating 7-5
meaning of message "New SUITES definition
for <name> (but not installed)"
A-18
removing room from 7-4
where ROOMS looks to load from 7-3
(see also *suite-directories* (Variable))
"Suites" (Menu option} 7-1
isw (Keyword) A-14

T
TEdit
putting active buttons into 5-7
Text
buttons that expand to fit, see Stretchy
buttons

replacing on button
see set-button-window-text-string
(Function} A-16

Text, Background

see Background text 3-4
Text Shadow Definer

def-text-shadows (Definer) A-19
Text shadows, spfcifying default for a button type
-1

:TEXT
arguments for
see ;POSITION; :ALIGNMENT; :FONT
default value and position 3-11
number of times can be used 3-11
specifying font- :FONT 3-12
and relationship to
default-background-text-font
312
specifying the position of- :POSITION 3-11
specifying relationship of text to position-
:ALIGNMENT 3-11
specifying shadows for- :SHADOWS 3-12
istext (Keyword) A-12
:text-form (Keyword) A-12

| :
' ROOMS, MEDLEY RELEASE

INDEX-5

INDEX

ititle (Keyword) A-21,23
:tty-process (Keyword) A-2
type (Keyword) A-11

U

un-hide-window (Function) A-10
update-placements (Function} A-8
wpdater (Keyword) A-22
"Update Suite" (Menu option) 7-5

w

:west (Keyword) A-14
"Where is?" (Menu option) 4-4
‘WHOLE-SCREEN (Keyword) 3-7
Window types

debugging A-22

deleting A-23
window-hidden? (function) A-10
window-type (Function) A-22

Window Type Definer and Functions
def-window-type (Definer) A-21

Keywords for:

:abstracter (Keyword) A-21
:dependencies (Keyword) A-22

Ailes (Keyword) A-22
:placer (Keyword) A-22

rrecognizer (Keyword) A-21
reconstituter (Keyword) A-21

ititle (Keyword) A-21,24
:updater (Keyword) A-22

print-pep-title-string (Function) A-22
Keywords for:
sfont (Keyword) A-24
:no-title-bar? (Keyword) A-24
window-type (Function) A-22

Windows

adding to many rooms
see ":INCLUSIONS" 3.3
carrying when traveling from room to room-
see "Baggage" 5-5
determining appearance in pictograms, see
ititle (keyword for
def-window-type) A-21
effect of inclusions on 3-4
finding out how many are in ROOMS
see all-windows (function) A-9
finding out how many are not in any room
see lost-windows (function) A-9
hiding
see hide-window (Function) A-9

putting same in different positions in different

racoms 4-3
reusing while in different room 4-5

with-button (Function) A-16

INDEX-6

ROOMS, MEDLEY RELEASE

S';EEEEEEEEEEEEEEEEEEEEEEEEEEE[EEE

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH...N

R 3

HHNNHHHHHHHHHHHHHHHHNMHHMHHUHHH;&’

.

4 A XA I XA AT IAINIIIIIININDD

Envos Corporation

READER COMMENT FORM

WE WOULD APPRECIATE YOUR COMMENTS AND SUGGESTIONS FQR IMPROVING THIS PUBLICATION.

PUBLICATION NUMBER RELEASE DATE | TITLE

CURRENT DATE

HOW DID YOU USE THIS PUBLICATION?
[LearninG [WRITING/GRAPHIC

[rReFERENCE O insTaLLaTiON

IS THE MATERIAL PRESENTED IN THIS GUIDE:

FULLY WELL WELL
[J covereD [ILLUSTRATED] ORGANIZED [cLEAR

WHAT IS YOUR OVERALL RATING OF THIS PUBLICATION?
O very coob Orar [very POOR

[cooo O roor

DO YOU HAVE SUGGESTED CONTENT CORRECTIONS, CHANGES
OR ADDITIONS?

[ves O no

YOUR OTHER COMMENTS MAY BE ENTERED HERE. PLEASE BE SPECIFIC AND GIVE PAGE, PARAGRAPH AND LINE NUMBER
REFERENCES WHERE APPLICABLE.

—<nN

Z0

Om-4-400

mZ —r

YOUR NAME & RETURN ADDRESS

THANK YOU FOR YOUR INTEREST (FOLD AND FASTEN AS SHOWN ON BACK AND MAIL)

TAPE HERE ONLY

.FOLD

No Postage
Necessary
If Mailed

in the

BUSINESS REPLY MAIL United States

FirstClass PermitNo. 1744 Mountain View, California

Postage will be paid by Addressee

Envos Corporation

Attn: Customer Support

1157 San Antonio Road

Mountain View, California 94043

FOLD

" EEEERERE

AR ..-_m_;..‘m;_\:_:__.p:.__.-

eNnvos

