
File created: 5-Dec-2020 16:35:32 {DSK}<Users>arunwelch>SKYDRIVE>DOCUMENTS>UNIX>LISP>LDE>ROOM
S>MEDLEY-35>ROOMS-INTERACTIVE.;2

previous date: 17-Aug-90 12:47:35 {DSK}<Users>arunwelch>SKYDRIVE>DOCUMENTS>UNIX>LISP>LDE>ROOMS>MEDLEY-35>ROOMS-I
NTERACTIVE.;1

Read Table: XCL

Package: ROOMS

Format: XCCS

; Copyright (c) 1987, 1988, 1990, 2020 by Venue & Xerox Corporation. All rights reserved.

(IL:RPAQQ IL:ROOMS-INTERACTIVECOMS
(

;; mostly portable interactive code (joke?)

(FILE-ENVIRONMENTS IL:ROOMS-INTERACTIVE)
(IL:P (EXPORT ’(INTERACTIVE-GO-TO-ROOM-NAMED INTERACTIVE-COPY-PLACEMENT INTERACTIVE-MOVE-PLACEMENT))

(REQUIRE "ROOMS"))
(IL:VARIABLES *BACKGROUND-ITEM* *MOVE-ITEM* *CLOSE-ITEM*)
(IL:FUNCTIONS INSTALL-MENU-ITEMS INSTALL-MENU-ITEM)
(IL:P (PUSHNEW ’(INSTALL-MENU-ITEMS)

RESET-FORMS :TEST ’EQUAL))
(IL:FUNCTIONS INTERACTIVE-CLOSE-WINDOW INTERACTIVE-GO-TO-ROOM INTERACTIVE-GO-TO-OVERVIEW

INTERACTIVE-GO-TO-ROOM-NAMED INTERACTIVE-EDIT-ROOM EDIT-ROOM INTERACTIVE-EDIT-PLACEMENTS
INTERACTIVE-INCLUDE-ROOM INTERACTIVE-EXCLUDE-ROOM INTERACTIVE-DELETE-ROOM
INTERACTIVE-FIND-PLACEMENT INTERACTIVE-COPY-PLACEMENT INTERACTIVE-MOVE-PLACEMENT
INTERACTIVE-COPY-PLACEMENT-TO-THIS-ROOM INTERACTIVE-MOVE-PLACEMENT-TO-POCKETS
INTERACTIVE-MOVE-OR-COPY-PLACEMENT INTERACTIVE-RESET SELECT-ROOM INTERACTIVE-MAKE-ROOM
INTERACTIVE-COPY-ROOM INTERACTIVE-RENAME-ROOM INTERACTIVE-MAKE-DOOR MAKE-DOOR RETRIEVE-WINDOWS
CHECK-LOST-WINDOWS EVAL-WALK)

(IL:COMS

;; back doors

(IL:VARIABLES *BACK-DOOR-ROOM-NAME*)
(IL:FUNCTIONS MAKE-BACK-DOOR BACK-DOOR-ENTRY-FUNCTION)
(IL:P (PUSHNEW ’BACK-DOOR-ENTRY-FUNCTION *ROOM-ENTRY-FUNCTIONS*)))

(IL:GLOBALVARS IL:PROMPTWINDOW IL:CROSSHAIRS)))

;; mostly portable interactive code (joke?)

(DEFINE-FILE-ENVIRONMENT IL:ROOMS-INTERACTIVE :COMPILER :COMPILE-FILE
:PACKAGE "ROOMS"
:READTABLE "XCL")

(EXPORT ’(INTERACTIVE-GO-TO-ROOM-NAMED INTERACTIVE-COPY-PLACEMENT INTERACTIVE-MOVE-PLACEMENT))

(REQUIRE "ROOMS")

(DEFGLOBALPARAMETER *BACKGROUND-ITEM*
‘("Rooms" ’(WITH-BUTTON ’(INTERACTIVE-GO-TO-OVERVIEW)

"Overview" "Enter the overview")
"Enter the overview"
(IL:SUBITEMS ("Go to Room" ’(WITH-BUTTON ’(INTERACTIVE-GO-TO-ROOM :ALLOW-NEW? T)

"Go to Room" "Go to a room, possibly new.")
"Go to a room, possibly new.")

("Make Room" ’(WITH-BUTTON ’(INTERACTIVE-MAKE-ROOM)
"Make Room" "Make a new room.")

"Make a new room.")
("Edit Room" ’(WITH-BUTTON ’(INTERACTIVE-EDIT-ROOM)

"Edit Room" "Edit a selected room.")
"Edit a selected room."
(IL:SUBITEMS ("Edit This Room" ’(WITH-BUTTON ’(EDIT-ROOM *CURRENT-ROOM*)

"Edit This Room" "Edit the current room.")
"Edit a selected room.")

("Edit Placements" ’(WITH-BUTTON ’(INTERACTIVE-EDIT-PLACEMENTS)
"Edit Placements" "Edit placements of a selected
room")

"Edit placements of a selected room")
("Exclude Room" ’(WITH-BUTTON ’(INTERACTIVE-EXCLUDE-ROOM)

"Exclude Room" "Exclude a room from another.")
"Exclude a room from another."
(IL:SUBITEMS ("From This Room" ’(WITH-BUTTON ’(INTERACTIVE-EXCLUDE-ROOM

CURRENT-ROOM)
"Exclude From This Room"
"Exclude a room from the current
room.")

"Exclude a room from another.")))
("Include Room" ’(WITH-BUTTON ’(INTERACTIVE-INCLUDE-ROOM)

"Include Room" "Include a room in another.")
"Include a room in another."
(IL:SUBITEMS ("In This Room" ’(WITH-BUTTON ’(INTERACTIVE-INCLUDE-ROOM

CURRENT-ROOM)
"Include In This Room" "Include a

{MEDLEY}<rooms>ROOMS-INTERACTIVE.;1 (*BACKGROUND-ITEM* cont.) Page 2

room in the current room.")
"Include a room in the current room.")))))

("Delete Room" ’(WITH-BUTTON ’(INTERACTIVE-DELETE-ROOM)
"Delete Room" "Delete a room.")

"Delete a room.")
("" NIL "No-op")
("Retrieve Windows" ’(WITH-BUTTON ’(RETRIEVE-WINDOWS)

"Retrieve Windows" "Retrieve windows lost from all rooms.")
"Retrieve windows lost from all rooms.")

("Suites" ’(WITH-BUTTON ’(SUITE-MENU)
"Suites" "Save a set of rooms to a file")

"Save a set of rooms to a file"
(IL:SUBITEMS ,@*SUITE-MENU-ITEMS*))

("Make Door" ’(INTERACTIVE-MAKE-DOOR :ALLOW-NEW? T)
"Make a door to a room - a button to enter it."
(IL:SUBITEMS ("Make Back Door" ’(MAKE-BACK-DOOR)

"Make a back door - a door to the previous room."))))))

(DEFPARAMETER *MOVE-ITEM*
’(IL:|Move| ’IL:MOVEW "Moves window by a corner" (IL:SUBITEMS ("Move to another room"

’INTERACTIVE-MOVE-PLACEMENT "Move this
placement to another room"
(IL:SUBITEMS ("Move to pockets"

’
INTERACTIVE-MOVE-PLACEMENT-TO-POCKETS

"Move this placement to
the pocket room")))

("Copy to another room" ’INTERACTIVE-COPY-PLACEMENT
"Copy this placement to another room"
(IL:SUBITEMS ("Copy to this room"

’
INTERACTIVE-COPY-PLACEMENT-TO-THIS-ROOM

"Copy this placement to
this room")))

("Where is?" ’INTERACTIVE-FIND-PLACEMENT "Find which
room this placement is in."))))

(DEFPARAMETER *CLOSE-ITEM* ’(IL:|Close| ’INTERACTIVE-CLOSE-WINDOW "Closes a window"))

(DEFUN INSTALL-MENU-ITEMS ()
(INSTALL-MENU-ITEM *BACKGROUND-ITEM* ’IL:|BackgroundMenuCommands| ’IL:|BackgroundMenu|)
(INSTALL-MENU-ITEM *MOVE-ITEM* ’IL:|WindowMenuCommands| ’IL:|WindowMenu|)
(INSTALL-MENU-ITEM *MOVE-ITEM* ’IL:|IconWindowMenuCommands| ’IL:|IconWindowMenu|)
(INSTALL-MENU-ITEM *CLOSE-ITEM* ’IL:|WindowMenuCommands| ’IL:|WindowMenu|)
(INSTALL-MENU-ITEM *CLOSE-ITEM* ’IL:|IconWindowMenuCommands| ’IL:|IconWindowMenu|))

(DEFUN INSTALL-MENU-ITEM (ITEM ITEMS-VAR MENU-VAR)
(LET* ((ITEMS (COPY-TREE (SYMBOL-VALUE ITEMS-VAR)))

(OLD-ENTRY (ASSOC (FIRST ITEM)
ITEMS :TEST ’EQUAL)))

(IF OLD-ENTRY
(SETF (REST OLD-ENTRY)

(REST ITEM))
(NCONC ITEMS (LIST ITEM)))

(SET ITEMS-VAR ITEMS)

;; force the menu to be rebuilt

(SET MENU-VAR ’NIL)))

(PUSHNEW ’(INSTALL-MENU-ITEMS)
RESET-FORMS :TEST ’EQUAL)

(DEFUN INTERACTIVE-CLOSE-WINDOW (WINDOW &OPTIONAL (FROM-ROOM *CURRENT-ROOM*))

;;; this should probably be called interactive-delete-placement. it’s whats called from the window menu & is used by the placement editor.

;;; we need to catch the case where a room has multiple placements and query the user as to which are to be deleted -- all or just the most immediate.

(LET ((MAIN-WINDOW (MAIN-WINDOW WINDOW))
(WINDOW-TO-CLOSE WINDOW))

(WHEN (AND (NOT (ICON? WINDOW))
(NOT (EQ WINDOW MAIN-WINDOW)))

;; it’s an attached window

(LET ((PASS-TO-MAIN-COMS (IL:WINDOWPROP WINDOW ’IL:PASSTOMAINCOMS)))

;; have to simulate IL:DOATTACHEDWINDOWCOM

(UNLESS (OR (EQ PASS-TO-MAIN-COMS T)
(MEMBER ’IL:CLOSEW PASS-TO-MAIN-COMS :TEST ’EQ))

;; this window closes locally

(CLOSE-WINDOW WINDOW)

{MEDLEY}<rooms>ROOMS-INTERACTIVE.;1 (INTERACTIVE-CLOSE-WINDOW cont.) Page 3

(RETURN-FROM INTERACTIVE-CLOSE-WINDOW))
(SETQ WINDOW-TO-CLOSE MAIN-WINDOW)))

(LET ((ROOMS (FIND-ROOMS-CONTAINING MAIN-WINDOW)))

;; note: this needs to run fairly quickly, so we don’t call UPDATE-PLACEMENTS.

(IF (NULL ROOMS)

;; new window -- just close it

(CLOSE-WINDOW WINDOW-TO-CLOSE)
(CASE (IF (AND (ENDP (REST ROOMS))

(FIND-PLACEMENT MAIN-WINDOW FROM-ROOM))

;; we’re looking at the only placement

(IF (EQ FROM-ROOM (FIRST ROOMS))

;; it’s an immediate placement - just delete it

:ALL

;; it’s inherited - get confirmation

(IF (CONFIRM "This placement is in the included room ~S.~%Are you sure you want
to delete it?" (ROOM-NAME (FIRST ROOMS)))

:ALL))
(MENU ’(("All placements" :ALL)

("Just this placement" :THIS))
"Delete?" "This window has placements in more than one room"))

(:ALL (LET ((HIDDEN? (WINDOW-HIDDEN? MAIN-WINDOW)))

;; note whether window was hidden & make it not

(WHEN HIDDEN? (UN-HIDE-WINDOW MAIN-WINDOW))

;; try to close visible part

(CLOSE-WINDOW (IF (SHRUNKEN? MAIN-WINDOW)
(WINDOW-ICON MAIN-WINDOW)
MAIN-WINDOW))

(IF (AND HIDDEN? (OR (IL:OPENWP MAIN-WINDOW)
(IL:OPENWP (WINDOW-ICON MAIN-WINDOW))))

;; if close failed & window was hidden before, then re-hide it

(HIDE-WINDOW MAIN-WINDOW)

;; otherwise go ahead & delete all its placements

(DOLIST (ROOM ROOMS)
(LET ((PLACEMENT (FIND-PLACEMENT-IN-ROOM MAIN-WINDOW ROOM)))

(WHEN PLACEMENT (DELETE-PLACEMENT PLACEMENT ROOM)))))))
(:THIS (MULTIPLE-VALUE-BIND (PLACEMENT IN-ROOM)

(FIND-PLACEMENT MAIN-WINDOW FROM-ROOM)
(WHEN PLACEMENT (DELETE-PLACEMENT PLACEMENT IN-ROOM))

;; don’t actually close -- just hide it

(HIDE-WINDOW MAIN-WINDOW)
(SETQ PLACEMENT (FIND-PLACEMENT MAIN-WINDOW *CURRENT-ROOM*))
(WHEN PLACEMENT

;; we now inherit it from somewhere else

(PLACE-PLACEMENT PLACEMENT)))))))))

(DEFUN INTERACTIVE-GO-TO-ROOM (&KEY ROOM ALLOW-NEW?)
(LET ((NAME (IF ROOM

(ROOM-NAME ROOM)
(SELECT-ROOM :ALLOW-NEW? ALLOW-NEW? :REASON "Go to room" :NAME-ONLY? T))))

(WHEN NAME
(WITH-BUTTON ‘(INTERACTIVE-GO-TO-ROOM-NAMED ’,NAME)

NAME
(FORMAT NIL "Go to room named ~S." NAME)))))

(DEFUN INTERACTIVE-GO-TO-OVERVIEW ()
(UPDATE-PLACEMENTS)
(GO-TO-ROOM *OVERVIEW-ROOM* :BAGGAGE (SELECT-BAGGAGE)

:NO-UPDATE T))

(DEFUN INTERACTIVE-GO-TO-ROOM-NAMED (NAME)
(LET ((ROOM (ROOM-NAMED NAME)))

(IF ROOM
(PROGN (UPDATE-PLACEMENTS *CURRENT-ROOM*)

(GO-TO-ROOM ROOM :BAGGAGE (SELECT-BAGGAGE)
:NO-UPDATE T))

(NOTIFY-USER "No room named ~S exists!" NAME))))

(DEFUN INTERACTIVE-EDIT-ROOM ()
(LET ((NAME (SELECT-ROOM :REASON "Edit" :NAME-ONLY? T)))

(WHEN NAME
(WITH-BUTTON ‘(EDIT-ROOM (ROOM-NAMED ’,NAME))

(FORMAT NIL "Edit ~A" NAME)

{MEDLEY}<rooms>ROOMS-INTERACTIVE.;1 (INTERACTIVE-EDIT-ROOM cont.) Page 4

(FORMAT NIL "Edit room named ~S." NAME)))))

(DEFUN EDIT-ROOM (ROOM)
(LET* ((ROOM (COND

((AND (ROOM-P ROOM)
(ROOM-NAMED (ROOM-NAME ROOM)))

ROOM)
((ROOM-NAMED ROOM))
(T (NOTIFY-USER "Can’t edit room ~S" ROOM)

(RETURN-FROM EDIT-ROOM))))
(EXTERNAL-FORM ‘(:INCLUSIONS ,(COPY-TREE (ROOM-INCLUSIONS ROOM))

:BACKGROUND
,(COPY-TREE (BACKGROUND-EXTERNAL-FORM (ROOM-BACKGROUND ROOM)))
,@(COPY-TREE (ROOM-PROPS ROOM)))))

(WITH-PROFILE (FIND-PROFILE "XCL")
(IL:EDITE EXTERNAL-FORM NIL (ROOM-NAME ROOM)

’IL:|Expression|
#’(LAMBDA (&REST IGNORE)

;; in case ROOM has been redefined

(SETQ ROOM (ROOM-NAMED (ROOM-NAME ROOM)))
(SETF (ROOM-BACKGROUND ROOM)

(MAKE-BACKGROUND (COPY-TREE (GETF EXTERNAL-FORM :BACKGROUND))))
(WHEN (IN-ROOM? ROOM)

(UPDATE-PLACEMENTS))
(SETF (ROOM-INCLUSIONS ROOM)

(COPY-TREE (GETF EXTERNAL-FORM :INCLUSIONS)))
(LET ((PROPS (COPY-LIST EXTERNAL-FORM)))

(DOLIST (PROP ’(:INCLUSIONS :BACKGROUND))
(REMF PROPS PROP))

(SETF (ROOM-PROPS ROOM)
(COPY-TREE PROPS)))

(ROOM-CHANGED ROOM :EDITED))
’(:DONTWAIT)))))

(DEFUN INTERACTIVE-EDIT-PLACEMENTS ()
(LET ((NAME (SELECT-ROOM :REASON "Edit Placements" :NAME-ONLY? T)))

(WHEN NAME
(WITH-BUTTON ‘(GET-PE ’,NAME)

(FORMAT NIL "Edit ~A’s Placements" NAME)
(FORMAT NIL "Edit the placements of ~S." NAME)))))

(DEFUN INTERACTIVE-INCLUDE-ROOM (&OPTIONAL IN-ROOM)
(LET* ((ALL-ROOMS (ALL-ROOMS T))

(ROOM (OR IN-ROOM (SELECT-ROOM :ALLOW-NEW? T :REASON "Include in ..." :FROM-ROOMS ALL-ROOMS))))
(WHEN ROOM

(UNLESS (LISTP (ROOM-INCLUSIONS ROOM))
(RETURN-FROM INTERACTIVE-INCLUDE-ROOM (NOTIFY-USER "Can’t add inclusions to ~S." ROOM)))

(LET ((INCLUSION (SELECT-ROOM :ALLOW-NEW? T :REASON (FORMAT NIL "Include in ~A" (ROOM-NAME ROOM))
:FROM-ROOMS
(REMOVE ROOM ALL-ROOMS))))

(WHEN INCLUSION
(WHEN (MEMBER (ROOM-NAME INCLUSION)

(ROOM-INCLUSIONS ROOM)
:TEST
’EQUAL)

(RETURN-FROM INTERACTIVE-INCLUDE-ROOM (NOTIFY-USER "~S is already included in ~S"
(ROOM-NAME INCLUSION)
(ROOM-NAME ROOM))))

(UPDATE-PLACEMENTS)
(WHEN (AND (EQUAL (BACKGROUND-EXTERNAL-FORM (ROOM-BACKGROUND INCLUSION))

‘((:TEXT ,(ROOM-NAME INCLUSION))))
(EQUAL (BACKGROUND-EXTERNAL-FORM (ROOM-BACKGROUND ROOM))

‘((:TEXT ,(ROOM-NAME ROOM)))))

;; feature: when both names are in default position we delete name of included room s.t. they don’t overwrite.

(SETF (ROOM-BACKGROUND INCLUSION)
(MAKE-BACKGROUND ‘((:TEXT ,""))))

(ROOM-CHANGED INCLUSION :EDITED))
(PUSH (ROOM-NAME INCLUSION)

(ROOM-INCLUSIONS ROOM))
(ROOM-CHANGED ROOM :EDITED)
(NOTIFY-USER "Included ~S in ~S." (ROOM-NAME INCLUSION)

(ROOM-NAME ROOM))
T)))))

(DEFUN INTERACTIVE-EXCLUDE-ROOM (&OPTIONAL FROM-ROOM)
(LET ((ROOM (OR FROM-ROOM (SELECT-ROOM :REASON "Exclude from ..."))))

(WHEN ROOM
(UNLESS (CONSP (ROOM-INCLUSIONS ROOM))

(RETURN-FROM INTERACTIVE-EXCLUDE-ROOM (NOTIFY-USER "~S has no inclusions." ROOM)))
(LET ((INCLUSION (MENU (ROOM-INCLUSIONS ROOM)

(FORMAT NIL "Exclude from ~A" (ROOM-NAME ROOM)))))

{MEDLEY}<rooms>ROOMS-INTERACTIVE.;1 (INTERACTIVE-EXCLUDE-ROOM cont.) Page 5

(WHEN INCLUSION
(UPDATE-PLACEMENTS)
(SETF (ROOM-INCLUSIONS ROOM)

(REMOVE INCLUSION (ROOM-INCLUSIONS ROOM :TEST ’EQUAL)))
(ROOM-CHANGED ROOM :EDITED)
(NOTIFY-USER "~S is no longer included in ~S." INCLUSION (ROOM-NAME ROOM))
T)))))

(DEFUN INTERACTIVE-DELETE-ROOM (&OPTIONAL ROOM)
(FLET ((DELETE? (ROOM)

(WHEN (AND ROOM (CONFIRM " Delete room ~S? (will close windows)" (ROOM-NAME ROOM)))
(DELETE-ROOM ROOM))))

(LET ((ROOMS (ROOMS-NOT-IN-ANY-SUITE T)))
(IF ROOM

(IF (MEMBER ROOM ROOMS :TEST ’EQ)
(DELETE? ROOM)
(NOTIFY-USER "Delete ~S from suite ~S before deleting" (ROOM-NAME ROOM)

(FIND-SUITE-CONTAINING (ROOM-NAME ROOM))))
(IF ROOMS

(DELETE? (SELECT-ROOM :REASON "Delete" :FROM-ROOMS ROOMS))
(NOTIFY-USER "All rooms belong to some suite."))))))

(DEFUN INTERACTIVE-FIND-PLACEMENT (WINDOW)
(LET ((WINDOW (MAIN-WINDOW WINDOW)))

(UPDATE-PLACEMENTS)
(NOTIFY-USER "This placement is in ~S." (ROOM-NAME (MULTIPLE-VALUE-BIND (PLACEMENT ROOM)

(FIND-PLACEMENT WINDOW)
ROOM)))))

(DEFUN INTERACTIVE-COPY-PLACEMENT (WINDOW &OPTIONAL ROOM-NAME)
(UN-HIDE-WINDOW WINDOW)
(LET ((NAME (OR ROOM-NAME (SELECT-ROOM :REASON "Copy this placement to" :ALLOW-NEW? T :NAME-ONLY? T))))

(WHEN NAME (INTERACTIVE-MOVE-OR-COPY-PLACEMENT WINDOW NAME T))))

(DEFUN INTERACTIVE-MOVE-PLACEMENT (WINDOW &OPTIONAL ROOM-NAME)
(UN-HIDE-WINDOW WINDOW)
(LET ((NAME (OR ROOM-NAME (SELECT-ROOM :REASON "Move this placement to" :ALLOW-NEW? T :NAME-ONLY? T))))

(WHEN NAME (INTERACTIVE-MOVE-OR-COPY-PLACEMENT WINDOW NAME NIL))))

(DEFUN INTERACTIVE-COPY-PLACEMENT-TO-THIS-ROOM (WINDOW)
(INTERACTIVE-MOVE-OR-COPY-PLACEMENT WINDOW (ROOM-NAME *CURRENT-ROOM*)

T))

(DEFUN INTERACTIVE-MOVE-PLACEMENT-TO-POCKETS (WINDOW)
(IF *POCKET-ROOM-NAME*

(INTERACTIVE-MOVE-OR-COPY-PLACEMENT WINDOW *POCKET-ROOM-NAME* NIL)
(NOTIFY-USER "There is no pocket room.")))

(DEFUN INTERACTIVE-MOVE-OR-COPY-PLACEMENT (WINDOW TO-ROOM-NAMED COPY?)
(LET ((WINDOW (MAIN-WINDOW WINDOW))

(TO-ROOM (OR (ROOM-NAMED TO-ROOM-NAMED)
(PROGN (NOTIFY-USER "There is no room named ~S." TO-ROOM-NAMED)

NIL))))
(WHEN TO-ROOM

(UPDATE-PLACEMENTS)
(MULTIPLE-VALUE-BIND (PLACEMENT FROM-ROOM)

(FIND-PLACEMENT WINDOW)
(COND

((EQ FROM-ROOM TO-ROOM)
(NOTIFY-USER "This placement is already in ~S." (ROOM-NAME FROM-ROOM))
:NOOP)

(T (MOVE-PLACEMENT PLACEMENT FROM-ROOM TO-ROOM COPY?)
(NOTIFY-USER "~A this placement from ~S to ~S." (IF COPY?

"Copied"
"Moved")

(ROOM-NAME FROM-ROOM)
TO-ROOM-NAMED)

T))))))

(DEFUN INTERACTIVE-RESET ()
(WHEN (CONFIRM "Reset Rooms? (Will lose windows.)")

(RESET)))

(DEFUN SELECT-ROOM (&KEY ALLOW-NEW? NAME-ONLY? (FROM-ROOMS (ALL-ROOMS T))
(REASON "Select Room"))

(LET ((ITEMS (WITH-COLLECTION (DOLIST (ROOM FROM-ROOMS)
(COLLECT ‘(,(ROOM-NAME ROOM)

’,ROOM)

{MEDLEY}<rooms>ROOMS-INTERACTIVE.;1 (SELECT-ROOM cont.) Page 6

ITEMS))
(WHEN ALLOW-NEW?

(COLLECT ’("<new room>" :NEW))))))
(IF ITEMS

(LET* ((CHOICE (MENU ITEMS REASON))
(ROOM (IF (AND ALLOW-NEW? (EQ CHOICE :NEW))

(INTERACTIVE-MAKE-ROOM)
CHOICE)))

(WHEN ROOM
(IF NAME-ONLY?

(ROOM-NAME ROOM)
ROOM)))

(PROGN (NOTIFY-USER "No rooms!")
NIL))))

(DEFUN INTERACTIVE-MAKE-ROOM ()
(LET ((NAME (PROMPT-USER "Name:" "Type name of new room (CR to abort).")))

(WHEN NAME
(IF (ROOM-NAMED NAME)

(NOTIFY-USER "A room named ~S already exists. Aborted." NAME)
(MAKE-ROOM NAME)))))

(DEFUN INTERACTIVE-COPY-ROOM (&OPTIONAL ROOM)
(LET ((ROOM (OR ROOM (SELECT-ROOM :REASON "Copy"))))

(WHEN ROOM
(LET ((NAME (PROMPT-USER "New Name:" "Copying room ~S." (ROOM-NAME ROOM))))

(WHEN NAME
(IF (ROOM-NAMED NAME)

(NOTIFY-USER "A room named ~S already exists." NAME)
(PROGN (COPY-ROOM ROOM NAME)

(NOTIFY-USER "Copied room ~S to ~S." (ROOM-NAME ROOM)
NAME))))))))

(DEFUN INTERACTIVE-RENAME-ROOM (&OPTIONAL ROOM)
(LET ((ROOM (OR ROOM (SELECT-ROOM :REASON "Rename"))))

(WHEN ROOM
(LET ((NAME (PROMPT-USER "New Name:" "Renaming room ~S." (ROOM-NAME ROOM))))

(WHEN NAME
(IF (ROOM-NAMED NAME)

(NOTIFY-USER "A room named ~S already exists." NAME)
(PROGN (RENAME-ROOM ROOM NAME)

(NOTIFY-USER "Renamed room ~S to be ~S." (ROOM-NAME ROOM)
NAME))))))))

(DEFUN INTERACTIVE-MAKE-DOOR (&KEY ALLOW-NEW?)
(LET ((NAME (SELECT-ROOM :NAME-ONLY? T :ALLOW-NEW? ALLOW-NEW?)))

(WHEN NAME
(LET ((BUTTON-TYPE (SELECT-BUTTON-TYPE)))

(WHEN BUTTON-TYPE (MAKE-DOOR :ROOM-NAME NAME :BUTTON-TYPE BUTTON-TYPE))))))

(DEFUN MAKE-DOOR (&KEY ROOM-NAME (BUTTON-TYPE *DEFAULT-BUTTON-TYPE*)
POSITION)

(MAKE-BUTTON-WINDOW (MAKE-BUTTON :TEXT ROOM-NAME :ACTION ‘(INTERACTIVE-GO-TO-ROOM-NAMED
,(IF (CONSTANTP ROOM-NAME)

ROOM-NAME
(LIST ’QUOTE ROOM-NAME)))

:HELP
(FORMAT NIL "Go to room named ~S" ROOM-NAME)
:TYPE BUTTON-TYPE)

POSITION))

(DEFUN RETRIEVE-WINDOWS ()

;;; un-hide all lost windows, telling the user what you’ve done.

(LET ((LOST-WINDOWS (LOST-WINDOWS)))
(IF LOST-WINDOWS

(PROGN (DOLIST (WINDOW LOST-WINDOWS)
(UN-HIDE-WINDOW WINDOW))

(NOTIFY-USER "~S window(s) retrieved." (LENGTH LOST-WINDOWS)))
(NOTIFY-USER "All windows are in some room."))))

(DEFUN CHECK-LOST-WINDOWS ()
(LET ((LOST-WINDOWS (LOST-WINDOWS)))

(WHEN LOST-WINDOWS
(NOTIFY-USER "~D lost window(s). Try \"Retrieve Windows\"." (LENGTH LOST-WINDOWS)))))

(DEFUN EVAL-WALK (EXPRESSION)

;; an inverted evaluator: expressions are implicitly quoted unless wrapped in :EVAL. Only conses when it must, i.e. structure w/o EVALs in it will be

{MEDLEY}<rooms>ROOMS-INTERACTIVE.;1 (EVAL-WALK cont.) Page 7

;; shared.

(IF (CONSP EXPRESSION)
(IF (AND (CONSP (FIRST EXPRESSION))

(EQ (FIRST (FIRST EXPRESSION))
:EVAL))

(CONS (EVAL (SECOND (FIRST EXPRESSION)))
(EVAL-WALK (REST EXPRESSION)))

(LET* ((OLD-FIRST (FIRST EXPRESSION))
(OLD-REST (REST EXPRESSION))
(NEW-FIRST (EVAL-WALK OLD-FIRST))
(NEW-REST (EVAL-WALK OLD-REST)))
(IF (AND (EQ OLD-FIRST NEW-FIRST)

(EQ OLD-REST NEW-REST))
EXPRESSION
(CONS NEW-FIRST NEW-REST))))

EXPRESSION))

;; back doors

(DEFGLOBALVAR *BACK-DOOR-ROOM-NAME* NIL)

(DEFUN MAKE-BACK-DOOR (&KEY POSITION BUTTON-TYPE)
(MAKE-BUTTON-WINDOW (MAKE-BUTTON :TEXT-FORM ’(SYMBOL-VALUE ’*BACK-DOOR-ROOM-NAME*)

:ACTION
’(INTERACTIVE-GO-TO-ROOM-NAMED *BACK-DOOR-ROOM-NAME*)
:TYPE
(OR BUTTON-TYPE :DOOR)
:HELP "Go to the previous room." :INVERTED? T)

POSITION))

(DEFUN BACK-DOOR-ENTRY-FUNCTION (ENTERING-ROOM)

;;; called whenever we enter a room

;;; maintains the value of *BACK-DOOR-ROOM-NAME* to be the name of the last named room we were in before the current room.

(LET* ((LEAVING-ROOM *CURRENT-ROOM*)
(LEAVING-NAME (ROOM-NAME LEAVING-ROOM))
(ENTERING-NAME (ROOM-NAME ENTERING-ROOM)))

(UNLESS *BACK-DOOR-ROOM-NAME*

;; bootstrapping

(SETQ *BACK-DOOR-ROOM-NAME* LEAVING-NAME))
(WHEN (NOT (EQUAL ENTERING-NAME LEAVING-NAME))

;; ignore screen refreshes

(IF (ROOM-NAMED LEAVING-NAME)
(IF (ROOM-NAMED ENTERING-NAME)

;; simple case - going between named rooms

(SETQ *BACK-DOOR-ROOM-NAME* LEAVING-NAME)
(PROGN

;; when entering an un-named room from a named room we save the current back door on the room we’re entering
;; & update the global back door

(ROOM-PROP ENTERING-ROOM :BACK-DOOR *BACK-DOOR-ROOM-NAME*)
(SETQ *BACK-DOOR-ROOM-NAME* LEAVING-NAME)))

(IF (ROOM-NAMED ENTERING-NAME)

;; entering a named room from an unnamed one

(WHEN (EQUAL *BACK-DOOR-ROOM-NAME* ENTERING-NAME)

;; if popping back to room we came from then restore back door we saved upon entering. global will be correct, making
;; passage through un-named rooms transparent.

(SETQ *BACK-DOOR-ROOM-NAME* (ROOM-PROP LEAVING-ROOM :BACK-DOOR)))

;; going between un-named rooms we just pass along the saved back door, & don’t update the global

(ROOM-PROP ENTERING-ROOM :BACK-DOOR (ROOM-PROP LEAVING-ROOM :BACK-DOOR)))))))

(PUSHNEW ’BACK-DOOR-ENTRY-FUNCTION *ROOM-ENTRY-FUNCTIONS*)

(IL:DECLARE\: IL:DOEVAL@COMPILE IL:DONTCOPY

(IL:GLOBALVARS IL:PROMPTWINDOW IL:CROSSHAIRS)
)

(IL:PUTPROPS IL:ROOMS-INTERACTIVE IL:COPYRIGHT ("Venue & Xerox Corporation" 1987 1988 1990 2020))

{MEDLEY}<rooms>ROOMS-INTERACTIVE.;1 9-Oct-2024 02:37:44
-- Listed on 9-Oct-2024 02:42:44 --

FUNCTION INDEX

BACK-DOOR-ENTRY-FUNCTION7 INTERACTIVE-GO-TO-OVERVIEW3
CHECK-LOST-WINDOWS6 INTERACTIVE-GO-TO-ROOM3
EDIT-ROOM ...4 INTERACTIVE-GO-TO-ROOM-NAMED3
EVAL-WALK ...6 INTERACTIVE-INCLUDE-ROOM4
INSTALL-MENU-ITEM2 INTERACTIVE-MAKE-DOOR6
INSTALL-MENU-ITEMS2 INTERACTIVE-MAKE-ROOM6
INTERACTIVE-CLOSE-WINDOW2 INTERACTIVE-MOVE-OR-COPY-PLACEMENT5
INTERACTIVE-COPY-PLACEMENT5 INTERACTIVE-MOVE-PLACEMENT5
INTERACTIVE-COPY-PLACEMENT-TO-THIS-ROOM5 INTERACTIVE-MOVE-PLACEMENT-TO-POCKETS5
INTERACTIVE-COPY-ROOM6 INTERACTIVE-RENAME-ROOM6
INTERACTIVE-DELETE-ROOM5 INTERACTIVE-RESET5
INTERACTIVE-EDIT-PLACEMENTS4 MAKE-BACK-DOOR7
INTERACTIVE-EDIT-ROOM3 MAKE-DOOR ...6
INTERACTIVE-EXCLUDE-ROOM4 RETRIEVE-WINDOWS6
INTERACTIVE-FIND-PLACEMENT5 SELECT-ROOM ...5

VARIABLE INDEX

BACK-DOOR-ROOM-NAME ...7 *BACKGROUND-ITEM*1 *CLOSE-ITEM*2 *MOVE-ITEM*2

FILE-ENVIRONMENT INDEX

IL:ROOMS-INTERACTIVE1

