
File created: 5-Dec-2020 16:26:01 {DSK}<Users>arunwelch>SKYDRIVE>DOCUMENTS>UNIX>LISP>LDE>ROOM
S>MEDLEY-35>ROOMS-CORE.;2

previous date: 17-Aug-90 12:39:01 {DSK}<Users>arunwelch>SKYDRIVE>DOCUMENTS>UNIX>LISP>LDE>ROOMS>MEDLEY-35>ROOMS-C
ORE.;1

Read Table: XCL

Package: ROOMS

Format: XCCS

; Copyright (c) 1987, 1988, 1990, 2020 by Venue & Xerox Corporation. All rights reserved.

(IL:RPAQQ IL:ROOMS-CORECOMS
(

;; core rooms code

(FILE-ENVIRONMENTS IL:ROOMS-CORE)
(IL:P (EXPORT ’(ROOM ROOM-P ROOM-NAME ROOM-PLACEMENTS ROOM-INCLUSIONS ROOM-BACKGROUND

ROOM-TTY-PROCESS ROOM-PROPS ROOM-PROP MAKE-ROOM COPY-ROOM DELETE-ROOM
RENAME-ROOM ROOM-NAMED ROOM-SORT-FUNCTION))

(EXPORT ’(*CURRENT-ROOM* *POCKET-ROOM-NAME* *ROOM-ENTRY-FUNCTIONS* *ROOM-EXIT-FUNCTIONS*
ROOM-CHANGED-FUNCTIONS))

(EXPORT ’(PLACEMENT PLACEMENT-P PLACEMENT-WINDOW PLACEMENT-REGION PLACEMENT-SHRUNKEN?
PLACEMENT-ICON-POSITION PLACEMENT-PROPS PLACEMENT-PROP MAKE-PLACEMENT
COPY-PLACEMENT MOVE-PLACEMENT))

(EXPORT ’(GO-TO-ROOM UPDATE-PLACEMENTS FIND-PLACEMENT ROOM-CHANGED DO-INCLUSIONS RESET))
(REQUIRE "ROOMS"))

(IL:COMS

;; the room -- a named object

(IL:STRUCTURES ROOM)
(IL:VARIABLES *ROOMS* *CURRENT-ROOM*)
(IL:FUNCTIONS IN-ROOM? MAKE-ROOM COPY-ROOM RENAME-ROOM ROOM-PROP DO-ROOMS ALL-ROOMS

ROOM-SORT-FUNCTION ROOM-NAMED DELETE-ROOM))
(IL:COMS

;; placements

(IL:STRUCTURES PLACEMENT)
(IL:FUNCTIONS PLACEMENT-PROP MAKE-PLACEMENT COPY-PLACEMENT MOVE-PLACEMENT ADD-PLACEMENT

DELETE-PLACEMENT))

;; going from one room to another

(IL:VARIABLES *POCKET-ROOM-NAME* *MONITOR-LOCK* *ROOM-ENTRY-FUNCTIONS* *ROOM-EXIT-FUNCTIONS*)
(IL:FUNCTIONS GO-TO-ROOM GO-TO-ROOM-PROCESS GO-TO-ROOM-INTERNAL CALL-ENTRY-FUNCTIONS

CALL-EXIT-FUNCTIONS UPDATE-PLACEMENTS FIND-PLACEMENT FIND-PLACEMENT-IN-ROOM UPDATE-PLACEMENT
PLACE-PLACEMENTS FIND-PLACEMENTS PLACE-PLACEMENT)

(IL:FUNCTIONS UPDATE-TTY-PROCESS PLACE-TTY-PROCESS)

;; other essentials

(IL:FUNCTIONS FIND-ROOMS-CONTAINING)
(IL:COMS (IL:VARIABLES *ROOM-CHANGED-FUNCTIONS*)

(IL:FUNCTIONS ROOM-CHANGED))
(IL:FUNCTIONS DO-INCLUSIONS ROOM-INCLUDERS)

;; bootstrapping & resetting

(IL:VARIABLES *RESET-FORMS*)
(IL:FUNCTIONS RESET)
(IL:VARIABLES OLD-WHOLESCREEN *SCREEN-CHANGED-FUNCTIONS*)
(IL:FUNCTIONS AROUNDEXITFN %INTERNALIZE-ALL-PLACEMENTS %INTERNALIZE-PLACEMENTS)
(IL:GLOBALVARS IL:PROMPTWINDOW IL:AROUNDEXITFNS)
(EVAL-WHEN (LOAD)

(IL:P ; smash system code which moves windows around on reboot so
; we don’t fight with it.

(PUSHNEW ’(IL:CHANGENAME ’IL:\\STARTDISPLAY ’IL:\\MOVE.WINDOWS.ONTO.SCREEN ’IL:NILL)
RESET-FORMS :TEST ’EQUAL)))

;; random

(IL:PROP IL:ARGNAMES GO-TO-ROOM)
(IL:SEDIT-FORMATS DO-INCLUSIONS DO-ROOMS)))

;; core rooms code

(DEFINE-FILE-ENVIRONMENT IL:ROOMS-CORE :COMPILER :COMPILE-FILE
:PACKAGE "ROOMS"
:READTABLE "XCL")

(EXPORT ’(ROOM ROOM-P ROOM-NAME ROOM-PLACEMENTS ROOM-INCLUSIONS ROOM-BACKGROUND ROOM-TTY-PROCESS ROOM-PROPS
ROOM-PROP MAKE-ROOM COPY-ROOM DELETE-ROOM RENAME-ROOM ROOM-NAMED ROOM-SORT-FUNCTION))

(EXPORT ’(*CURRENT-ROOM* *POCKET-ROOM-NAME* *ROOM-ENTRY-FUNCTIONS* *ROOM-EXIT-FUNCTIONS*
ROOM-CHANGED-FUNCTIONS))

(EXPORT ’(PLACEMENT PLACEMENT-P PLACEMENT-WINDOW PLACEMENT-REGION PLACEMENT-SHRUNKEN? PLACEMENT-ICON-POSITION
PLACEMENT-PROPS PLACEMENT-PROP MAKE-PLACEMENT COPY-PLACEMENT MOVE-PLACEMENT))

{MEDLEY}<rooms>ROOMS-CORE.;1 Page 2

(EXPORT ’(GO-TO-ROOM UPDATE-PLACEMENTS FIND-PLACEMENT ROOM-CHANGED DO-INCLUSIONS RESET))

(REQUIRE "ROOMS")

;; the room -- a named object

(DEFSTRUCT (ROOM (:CONSTRUCTOR MAKE-ROOM-INTERNAL)
(:COPIER COPY-ROOM-INTERNAL)
(:PRINT-FUNCTION (LAMBDA (ROOM STREAM DEPTH)

(FORMAT STREAM "#<Room ~S>" (ROOM-NAME ROOM)))))
(NAME NIL :READ-ONLY T)
(PLACEMENTS NIL :TYPE LIST)

;; list of PLACEMENT objects

(INCLUSIONS NIL :TYPE LIST)

;; list of names of included rooms

(BACKGROUND NIL :TYPE BACKGROUND)

;; how to paint the background

(TTY-PROCESS NIL)

;; which process has the TTY in this room

(PROPS NIL :TYPE LIST)

;; property list

)

(DEFVAR *ROOMS* (MAKE-HASH-TABLE :TEST ’EQUAL)
"A hash table mapping from room names to rooms.")

(DEFGLOBALVAR *CURRENT-ROOM* NIL
"The room the user is currently in.")

(DEFUN IN-ROOM? (ROOM)

;;; true if ROOM is a sub-room of the current room

(DO-INCLUSIONS (INCLUDED-ROOM *CURRENT-ROOM*)
(WHEN (EQUAL (ROOM-NAME ROOM)

(ROOM-NAME INCLUDED-ROOM))
(RETURN-FROM DO-INCLUSIONS T))))

(DEFUN MAKE-ROOM (NAME &REST REST-KEYS &KEY PLACEMENTS INCLUSIONS (BACKGROUND NIL BACKGROUND-SPECIFIED?)
TTY-PROCESS &ALLOW-OTHER-KEYS)

;; check whether a room with this already exists

(WHEN (ROOM-NAMED NAME)
(CERROR "Delete existing room named ~S (will close windows)" "A room named ~S already exists" NAME)
(DELETE-ROOM (ROOM-NAMED NAME)))

;; check the types of the placements

(DOLIST (PLACEMENT PLACEMENTS)
(CHECK-TYPE PLACEMENT PLACEMENT))

;; default the background to contain the name of the room

(UNLESS BACKGROUND-SPECIFIED?
(SETQ BACKGROUND ‘((:TEXT ,NAME))))

(LET ((ROOM (MAKE-ROOM-INTERNAL :NAME NAME :PLACEMENTS PLACEMENTS :INCLUSIONS INCLUSIONS :BACKGROUND
(MAKE-BACKGROUND BACKGROUND)
:TTY-PROCESS TTY-PROCESS :PROPS (LET ((PROPS (COPY-LIST REST-KEYS)))

(DOLIST (KEYWORD ’(:PLACEMENTS :INCLUSIONS
:BACKGROUND :TTY-PROCESS))

(REMF PROPS KEYWORD))
PROPS))))

(SETF (ROOM-NAMED NAME)
ROOM)

(WHEN *CURRENT-ROOM*
(WHEN (EQUAL NAME (ROOM-NAME *CURRENT-ROOM*))

(SETQ *CURRENT-ROOM* ROOM))
(ROOM-CHANGED ROOM :CREATED))

ROOM))

(DEFUN COPY-ROOM (ROOM NEW-NAME)
(UPDATE-PLACEMENTS)
(APPLY ’MAKE-ROOM NEW-NAME :PLACEMENTS (MAPCAR #’COPY-PLACEMENT (ROOM-PLACEMENTS ROOM))

:INCLUSIONS
(COPY-LIST (ROOM-INCLUSIONS ROOM))
:BACKGROUND
(LET* ((BACKGROUND (COPY-TREE (BACKGROUND-EXTERNAL-FORM (ROOM-BACKGROUND ROOM))))

{MEDLEY}<rooms>ROOMS-CORE.;1 (COPY-ROOM cont.) Page 3

(OLD-NAME (ROOM-NAME ROOM))
(TEXT (FIND-IF #’(LAMBDA (COMMAND)

(AND (EQ (FIRST COMMAND)
:TEXT)

(EQUAL (SECOND COMMAND)
OLD-NAME)))

BACKGROUND)))
(WHEN TEXT

(SETF (SECOND TEXT)
NEW-NAME))

BACKGROUND)
(COPY-TREE (ROOM-PROPS ROOM))))

(DEFUN RENAME-ROOM (ROOM NEW-NAME)
(LET ((OLD-NAME (ROOM-NAME ROOM)))

(PROG1 (COPY-ROOM ROOM NEW-NAME)
(DELETE-ROOM ROOM)
(LET ((SUITE-NAME (FIND-SUITE-CONTAINING OLD-NAME)))

;; if its in a suite, rename it there too

(WHEN SUITE-NAME
(SETF (SUITE-ROOMS SUITE-NAME)

(SUBSTITUTE NEW-NAME OLD-NAME (SUITE-ROOMS SUITE-NAME)
:TEST
’EQUAL))))

(DO-ROOMS (ROOM)

;; rename it in inclusions of other rooms

(WHEN (MEMBER OLD-NAME (ROOM-INCLUSIONS ROOM)
:TEST
’EQUAL)

;; don’t need to call UPDATE-PLACEMENTS as COPY-ROOM has already called it for us.

(SETF (ROOM-INCLUSIONS ROOM)
(SUBSTITUTE NEW-NAME OLD-NAME (ROOM-INCLUSIONS ROOM)

:TEST
’EQUAL))

(ROOM-CHANGED ROOM :EDITED))))))

(DEFMACRO ROOM-PROP (ROOM PROP &OPTIONAL (NEW-VALUE NIL NEW-VALUE-SUPPLIED))
(IF NEW-VALUE-SUPPLIED

‘(SETF (GETF (ROOM-PROPS ,ROOM)
,PROP)

,NEW-VALUE)
‘(GETF (ROOM-PROPS ,ROOM)

,PROP)))

(DEFMACRO DO-ROOMS ((ROOM-VAR)
&BODY BODY)

;;; evaluate BODY once for each room with ROOM-VAR bound to the room.

‘(BLOCK DO-ROOMS
(MAPHASH #’(LAMBDA (,(GENSYM)

,ROOM-VAR)
,@BODY)

ROOMS)))

(DEFUN ALL-ROOMS (&OPTIONAL SORTED?)

;;; return a list of all rooms. if SORTED? is true, sort them alphabetically by name

(LET ((ALL-ROOMS (WITH-COLLECTION (DO-ROOMS (ROOM)
(COLLECT ROOM)))))

(IF SORTED?
(SORT ALL-ROOMS #’ROOM-SORT-FUNCTION)
ALL-ROOMS)))

(DEFUN ROOM-SORT-FUNCTION (ROOM-1 ROOM-2)

;;; used as the predicate for sorting lists of rooms. we sort alphabetically by the name of the room.

(MACROLET ((STRINGIFY (NAME)
‘(IF (STRINGP ,NAME)

,NAME
(PRINC-TO-STRING ,NAME))))

(LET ((NAME-1 (ROOM-NAME ROOM-1))
(NAME-2 (ROOM-NAME ROOM-2)))

(STRING-LESSP (STRINGIFY NAME-1)
(STRINGIFY NAME-2)))))

{MEDLEY}<rooms>ROOMS-CORE.;1 Page 4

(DEFMACRO ROOM-NAMED (NAME)
‘(GETHASH ,NAME *ROOMS*))

(DEFUN DELETE-ROOM (ROOM)

;; first close all the windows which only have placements in this room

(LET ((ONLY-THIS-ROOM (LIST ROOM)))
(DOLIST (WINDOW (ALL-WINDOWS T))

(WHEN (EQUAL (FIND-ROOMS-CONTAINING WINDOW)
ONLY-THIS-ROOM)

(UN-HIDE-WINDOW WINDOW)
(CLOSE-WINDOW (IF (SHRUNKEN? WINDOW)

(WINDOW-ICON WINDOW)
WINDOW)))))

(WHEN (DO-ROOMS (RM)
(WHEN (EQ ROOM RM)

(RETURN-FROM DO-ROOMS T)))

;; if it’s in the name table, remove it. this is so deleting an un-named room (like the Overview) doesn’t cause a room named "Overview" to also
;; disappear.

(REMHASH (ROOM-NAME ROOM)
ROOMS))

;; tell the world we’ve deleted it

(ROOM-CHANGED ROOM :DELETED))

;; placements

(DEFSTRUCT (PLACEMENT (:CONSTRUCTOR MAKE-PLACEMENT-INTERNAL)
(:COPIER COPY-PLACEMENT-INTERNAL))

WINDOW
REGION
SHRUNKEN?
ICON-POSITION
PROPS)

(DEFMACRO PLACEMENT-PROP (PLACEMENT PROP &OPTIONAL (NEW-VALUE NIL NEW-VALUE-SUPPLIED))
(IF NEW-VALUE-SUPPLIED

‘(SETF (GETF (PLACEMENT-PROPS ,PLACEMENT)
,PROP)

,NEW-VALUE)
‘(GETF (PLACEMENT-PROPS ,PLACEMENT)

,PROP)))

(DEFUN MAKE-PLACEMENT (WINDOW)
(LET ((PLACEMENT (MAKE-PLACEMENT-INTERNAL :WINDOW WINDOW)))

(UPDATE-PLACEMENT PLACEMENT)
PLACEMENT))

(DEFUN COPY-PLACEMENT (PLACEMENT)

;; make sure PROPS gets copied. it is not important that REGION & ICON-POSITION are copied, but seems safer.

(MAKE-PLACEMENT-INTERNAL :WINDOW (PLACEMENT-WINDOW PLACEMENT)
:REGION
(COPY-REGION (PLACEMENT-REGION PLACEMENT))
:SHRUNKEN?
(PLACEMENT-SHRUNKEN? PLACEMENT)
:ICON-POSITION
(COPY-TREE (PLACEMENT-ICON-POSITION PLACEMENT))
:PROPS
(COPY-TREE (PLACEMENT-PROPS PLACEMENT))))

(DEFUN MOVE-PLACEMENT (PLACEMENT FROM-ROOM TO-ROOM &OPTIONAL COPY?)
(ADD-PLACEMENT (COPY-PLACEMENT PLACEMENT)

TO-ROOM)
(UNLESS COPY?

(DELETE-PLACEMENT PLACEMENT FROM-ROOM)
(LET* ((WINDOW (PLACEMENT-WINDOW PLACEMENT))

(INHERITED (FIND-PLACEMENT WINDOW)))
(HIDE-WINDOW WINDOW)
(WHEN INHERITED (PLACE-PLACEMENT INHERITED)))))

(DEFUN ADD-PLACEMENT (PLACEMENT ROOM)

;;; add PLACEMENT to ROOM’s placements. does not update screen.

;; first delete any old placements for same window

(SETF (ROOM-PLACEMENTS ROOM)
(DELETE (PLACEMENT-WINDOW PLACEMENT)

(ROOM-PLACEMENTS ROOM)

{MEDLEY}<rooms>ROOMS-CORE.;1 (ADD-PLACEMENT cont.) Page 5

:TEST
’EQ :KEY #’PLACEMENT-WINDOW))

;; add it

(PUSH PLACEMENT (ROOM-PLACEMENTS ROOM))

;; notify system that ROOM has changed.

(ROOM-CHANGED ROOM :PLACEMENTS))

(DEFUN DELETE-PLACEMENT (PLACEMENT ROOM)

;; delete PLACEMENT from ROOM. does not remove placement from screen.

(SETF (ROOM-PLACEMENTS ROOM)
(DELETE (PLACEMENT-WINDOW PLACEMENT)

(ROOM-PLACEMENTS ROOM)
:TEST
’EQ :KEY #’PLACEMENT-WINDOW))

;; notify system that ROOM has changed.

(ROOM-CHANGED ROOM :PLACEMENTS))

;; going from one room to another

(DEFGLOBALVAR *POCKET-ROOM-NAME* NIL
"The name of the room to be the pockets or NIL.")

(DEFGLOBALVAR *MONITOR-LOCK*)

(DEFVAR *ROOM-ENTRY-FUNCTIONS* NIL
"A list of functions to be called before a room is entered")

(DEFVAR *ROOM-EXIT-FUNCTIONS* NIL
"A list of functions to be called before a room is left")

(DEFUN GO-TO-ROOM (&REST ARGS)

;;; skip to GO-TO-ROOM-INTERNAL for details...

;; can’t run under mouse, as mouse switches TTY around. have to spawn our own process, let the mouse return the TTY, then we’ll be run.

(CHECK-TYPE (FIRST ARGS)
ROOM)

(IL:RESETVAR IL:\\PROC.RUN.NEXT.FLG T

;; ensure that we’ll be the next process run when the mouse blocks.

(IL:ADD.PROCESS ‘(GO-TO-ROOM-PROCESS ’,ARGS)
’IL:NAME "Go To Room")))

(DEFUN GO-TO-ROOM-PROCESS (ARGS)
(LET ((OLD-CURSOR (IL:CURSOR)))

(UNWIND-PROTECT
(IF (IL:OBTAIN.MONITORLOCK *MONITOR-LOCK* T)

(PROGN (IL:CURSOR IL:WAITINGCURSOR)
(IL:\\CARET.DOWN NIL IL:MAX.FIXP)
(APPLY ’GO-TO-ROOM-INTERNAL ARGS))

(NOTIFY-USER "Can’t! Rooms is busy."))
(IL:RELEASE.MONITORLOCK *MONITOR-LOCK*)
(IL:CURSOR OLD-CURSOR)
(IL:CARET T))))

(DEFUN GO-TO-ROOM-INTERNAL (ROOM &KEY NO-UPDATE BAGGAGE)
(CHECK-TYPE ROOM ROOM)

;;; Leave the current room & enter ROOM. BAGGAGE is a list of additional placements to be placed in ROOM.

;; call exit hooks on current room

(CALL-EXIT-FUNCTIONS *CURRENT-ROOM*)
(UNLESS NO-UPDATE

;; update the current room per the screen

(UPDATE-PLACEMENTS *CURRENT-ROOM*))

;; note which process has the keyboard

(UPDATE-TTY-PROCESS *CURRENT-ROOM*)

;; clear the screen

(HIDE-ALL-WINDOWS)
(UNWIND-PROTECT

(PROGN
;; paint the background

{MEDLEY}<rooms>ROOMS-CORE.;1 (GO-TO-ROOM-INTERNAL cont.) Page 6

(PAINT-BACKGROUND ROOM *SCREEN-BITMAP*)

;; call entry hooks

(CALL-ENTRY-FUNCTIONS ROOM))

;; set *CURRENT-ROOM*.

(SETQ *CURRENT-ROOM* ROOM))

;; place placements from ROOM -- inherited & direct

(PLACE-PLACEMENTS ROOM BAGGAGE)

;; place the caret

(PLACE-TTY-PROCESS ROOM))

(DEFUN CALL-ENTRY-FUNCTIONS (ROOM)

;; first call global entry functions

(DOLIST (FN *ROOM-ENTRY-FUNCTIONS*)
(FUNCALL FN ROOM))

;; then call inherited entry functions

(DO-INCLUSIONS (SUB-ROOM ROOM)
(DOLIST (FN (ROOM-PROP SUB-ROOM :BEFORE-ENTRY-FUNCTIONS))

(FUNCALL FN ROOM))))

(DEFUN CALL-EXIT-FUNCTIONS (ROOM)

;; first call global room exit functions

(DOLIST (FN *ROOM-EXIT-FUNCTIONS*)
(FUNCALL FN ROOM))

;; then call inherited functions on ROOM

(DO-INCLUSIONS (SUB-ROOM ROOM)
(DOLIST (FN (ROOM-PROP SUB-ROOM :BEFORE-EXIT-FUNCTIONS))

(FUNCALL FN ROOM))))

(DEFUN UPDATE-PLACEMENTS (&OPTIONAL (FOR-ROOM *CURRENT-ROOM*))

;;; called when leaving a room to update it’s placements

;;; returns the new list of placements

(LET ((NEW-PLACEMENTS NIL)
(CHANGED-ROOMS NIL)
(OLD-PLACEMENTS (ROOM-PLACEMENTS FOR-ROOM))
(ALL-WINDOWS (ALL-WINDOWS)))

(DOLIST (WINDOW ALL-WINDOWS)
(MULTIPLE-VALUE-BIND (PLACEMENT IN-ROOM)

(FIND-PLACEMENT WINDOW FOR-ROOM)
(UNLESS PLACEMENT

;; new window in this room - make a placement

(SETQ PLACEMENT (MAKE-PLACEMENT WINDOW))
(SETQ IN-ROOM FOR-ROOM)

;; note change to this room

(PUSHNEW FOR-ROOM CHANGED-ROOMS :TEST ’EQ))

;; collect placements in this room in top to bottom order.

(WHEN (EQ IN-ROOM FOR-ROOM)
(PUSH PLACEMENT NEW-PLACEMENTS))

;; update the placement

(WHEN (UPDATE-PLACEMENT PLACEMENT)

;; placement has changed - note it

(PUSHNEW IN-ROOM CHANGED-ROOMS :TEST ’EQ))))
(DOLIST (PLACEMENT (FIND-PLACEMENTS FOR-ROOM))

(UNLESS (MEMBER (PLACEMENT-WINDOW PLACEMENT)
ALL-WINDOWS :TEST ’EQ)

;; it’s a window that’s been closed

(DO-INCLUSIONS (ROOM FOR-ROOM)
(WHEN (MEMBER PLACEMENT (ROOM-PLACEMENTS ROOM)

:TEST
’EQ)

;; delete its placement

(UNLESS (EQ ROOM FOR-ROOM)

;; unless we’ll delete it below anyway

(DELETE-PLACEMENT PLACEMENT ROOM))

;; note that this room has changed

{MEDLEY}<rooms>ROOMS-CORE.;1 (UPDATE-PLACEMENTS cont.) Page 7

(PUSHNEW ROOM CHANGED-ROOMS :TEST ’EQ)
(RETURN-FROM DO-INCLUSIONS)))))

(UNLESS (EQUAL NEW-PLACEMENTS OLD-PLACEMENTS)

;; check if occlusion order of placements has changed

(PUSHNEW FOR-ROOM CHANGED-ROOMS :TEST ’EQ))
(SETF (ROOM-PLACEMENTS FOR-ROOM)

NEW-PLACEMENTS)
(DOLIST (ROOM CHANGED-ROOMS)

(ROOM-CHANGED ROOM :PLACEMENTS))
T))

(DEFUN FIND-PLACEMENT (WINDOW &OPTIONAL (FROM-ROOM *CURRENT-ROOM*))

;;; returns the placement which caused WINDOW to be in ROOM.

;;; does a breadth-first search through ROOM & its inclusions for a placement containing WINDOW. second value is room placement was found in.

(DO-INCLUSIONS (ROOM FROM-ROOM)
(LET ((PLACEMENT (FIND-PLACEMENT-IN-ROOM WINDOW ROOM)))

(WHEN PLACEMENT
(RETURN-FROM FIND-PLACEMENT (VALUES PLACEMENT ROOM))))))

(DEFMACRO FIND-PLACEMENT-IN-ROOM (WINDOW ROOM)
‘(LET ((WINDOW ,WINDOW))

(DOLIST (PLACEMENT (ROOM-PLACEMENTS ,ROOM))
(WHEN (EQ (PLACEMENT-WINDOW PLACEMENT)

WINDOW)
(RETURN PLACEMENT)))))

(DEFUN UPDATE-PLACEMENT (PLACEMENT)

;;; called when leaving a room on each placement in the room. returns true if placement has changed since the last time it was updated.

(LET* ((WINDOW (PLACEMENT-WINDOW PLACEMENT))
(ICON-POSITION (ICON-POSITION WINDOW))
(REGION (WINDOW-REGION WINDOW))
(SHRUNKEN? (SHRUNKEN? WINDOW))
(CHANGED? NIL))

(UNLESS (EQUAL ICON-POSITION (PLACEMENT-ICON-POSITION PLACEMENT))
(SETF (PLACEMENT-ICON-POSITION PLACEMENT)

(COPY-TREE ICON-POSITION))
(SETQ CHANGED? T))

(UNLESS (EQUAL REGION (PLACEMENT-REGION PLACEMENT))
(SETF (PLACEMENT-REGION PLACEMENT)

(COPY-REGION REGION))
(SETQ CHANGED? T))

(UNLESS (EQ SHRUNKEN? (PLACEMENT-SHRUNKEN? PLACEMENT))
(SETF (PLACEMENT-SHRUNKEN? PLACEMENT)

SHRUNKEN?)
(SETQ CHANGED? T))

;; call the user hook

(LET ((WINDOW-TYPE (WINDOW-TYPE WINDOW T)))
(WHEN WINDOW-TYPE

(LET ((UPDATER (WINDOW-TYPE-UPDATER WINDOW-TYPE)))
(WHEN UPDATER

(FUNCALL (WINDOW-TYPE-UPDATER WINDOW-TYPE)
PLACEMENT)))))

CHANGED?))

(DEFUN PLACE-PLACEMENTS (ROOM &OPTIONAL BAGGAGE)
(DOLIST (PLACEMENT (FIND-PLACEMENTS ROOM))

(PLACE-PLACEMENT PLACEMENT))
(DOLIST (PLACEMENT BAGGAGE)

(PLACE-PLACEMENT PLACEMENT)))

(DEFUN FIND-PLACEMENTS (ROOM)

;;; returns the list of placements to be displayed in room, ordered in bottom first (i.e. the order they should be displayed in)

(LET (PLACEMENTS)
(DO-INCLUSIONS (INCLUSION ROOM)

(DOLIST (PLACEMENT (ROOM-PLACEMENTS INCLUSION))

;; save one placement for each window on the way down

;; optimization: this rather convoluted piece of code is used rather than (pushnew placement placements :key
;; #’placement-window) because pushnew compiles into something really slow in XCL.

(LET ((WINDOW (PLACEMENT-WINDOW PLACEMENT)))
(UNLESS (DOLIST (PLACEMENT PLACEMENTS)

(WHEN (EQ (PLACEMENT-WINDOW PLACEMENT)
WINDOW)

{MEDLEY}<rooms>ROOMS-CORE.;1 (FIND-PLACEMENTS cont.) Page 8

(RETURN T)))
(PUSH PLACEMENT PLACEMENTS)))))

PLACEMENTS))

(DEFUN PLACE-PLACEMENT (PLACEMENT)

;;; Called on each placement in a room when it’s visited to place PLACEMENT’s window per the rest of PLACEMENT.

;;; This will probably require a lot of work in a different window system.

(LET* ((WINDOW (PLACEMENT-WINDOW PLACEMENT))

;; we copy as window system sometimes seems to smash these

(PLACEMENT-REGION (COPY-REGION (PLACEMENT-REGION PLACEMENT)))
(PLACEMENT-ICON-POSITION (COPY-TREE (PLACEMENT-ICON-POSITION PLACEMENT)))
(WINDOW-REGION (WINDOW-REGION WINDOW))
(WINDOW-ICON (WINDOW-ICON WINDOW))
(WINDOW-TYPE (WINDOW-TYPE WINDOW T)))

(WHEN (OR (IL:OPENWP WINDOW)
(AND WINDOW-ICON (IL:OPENWP WINDOW-ICON)))

;; if it’s been closed & we ignore it

(UN-HIDE-WINDOW WINDOW)
(COND

((PLACEMENT-SHRUNKEN? PLACEMENT)

;; ensure the expansion is placed correctly

(UNLESS (EQUAL PLACEMENT-REGION WINDOW-REGION)
(SHAPE-WINDOW WINDOW PLACEMENT-REGION :CURRENT-REGION WINDOW-REGION :NO-SHAPE

(AND WINDOW-TYPE (WINDOW-TYPE-PROP WINDOW-TYPE :NO-SHAPE))))

;; place the icon

(COND
((SHRUNKEN? WINDOW)
(UNLESS (EQUAL (WINDOW-POSITION WINDOW-ICON)

PLACEMENT-ICON-POSITION)
(MOVE-WINDOW WINDOW-ICON PLACEMENT-ICON-POSITION)
(OPEN-WINDOW WINDOW-ICON)))

(T (MOVE-WINDOW (SHRINK-WINDOW WINDOW PLACEMENT-ICON-POSITION)
PLACEMENT-ICON-POSITION))))

(T (WHEN PLACEMENT-ICON-POSITION

;; ensure the icon is placed correctly

(UNLESS WINDOW-ICON
(SETQ WINDOW-ICON (SHRINK-WINDOW WINDOW PLACEMENT-ICON-POSITION)))

(MOVE-WINDOW WINDOW-ICON PLACEMENT-ICON-POSITION)
(WHEN (AND (IL:OPENWP WINDOW-ICON)

(NOT (SHRUNKEN? WINDOW)))

;; we opened the icon by moving it

(IL:\\CLOSEW1 WINDOW-ICON)))

;; place the window

(WHEN (SHRUNKEN? WINDOW)
(EXPAND-WINDOW WINDOW))

(UNLESS (EQUAL PLACEMENT-REGION WINDOW-REGION)
(SHAPE-WINDOW WINDOW PLACEMENT-REGION :CURRENT-REGION WINDOW-REGION :NO-SHAPE

(AND WINDOW-TYPE (WINDOW-TYPE-PROP WINDOW-TYPE :NO-SHAPE))))
(OPEN-WINDOW WINDOW)
(UNLESS PLACEMENT-ICON-POSITION (DELETE-WINDOW-ICON WINDOW))))

;; call the user hook

(WHEN (AND WINDOW-TYPE (WINDOW-TYPE-PLACER WINDOW-TYPE))
(FUNCALL (WINDOW-TYPE-PLACER WINDOW-TYPE)

PLACEMENT)))))

(DEFUN UPDATE-TTY-PROCESS (ROOM)

;;; update ROOM’s notion of which process has the keyboard.

(SETF (ROOM-TTY-PROCESS ROOM)
(IL:TTY.PROCESS)))

(DEFUN PLACE-TTY-PROCESS (ROOM)

;;; place the keyboard per ROOM’s TTY-PROCESS field

(LET ((PROCESS (ROOM-TTY-PROCESS ROOM)))
(IL:TTY.PROCESS (IF (IL:PROCESSP PROCESS)

PROCESS

;; if no process specified, or the specified process is dead, then we give the TTY to the MOUSE process

(IL:FIND.PROCESS ’IL:MOUSE)))))

{MEDLEY}<rooms>ROOMS-CORE.;1 Page 9

;; other essentials

(DEFUN FIND-ROOMS-CONTAINING (WINDOW)

;;; return a list of all rooms which directly contain a placement for WINDOW

(LET ((ROOMS))
(DO-ROOMS (ROOM)

(WHEN (FIND-PLACEMENT-IN-ROOM WINDOW ROOM)
(PUSH ROOM ROOMS)))

;; we need a general way of handling un-named rooms, but as there is only one now, we can just special case it.

(WHEN (FIND-PLACEMENT-IN-ROOM WINDOW *OVERVIEW-ROOM*)
(PUSH *OVERVIEW-ROOM* ROOMS))

ROOMS))

(DEFGLOBALVAR *ROOM-CHANGED-FUNCTIONS* NIL)

(DEFUN ROOM-CHANGED (ROOM REASON)

;;; called when we notice a room has changed to ensure display is up to date.

(ECASE REASON
((:EDITED :CREATED :DELETED) (WHEN (IN-ROOM? ROOM)

;; if we’re in this room, redisplay whole screen

;; note: we depend upon our caller to update placements

(IL:WITH.MONITOR *MONITOR-LOCK* (GO-TO-ROOM-INTERNAL *CURRENT-ROOM*
:NO-UPDATE T))))

(:PLACEMENTS
;; we presume our caller & the hooks handle these cases
))

;; call hooks

(DOLIST (FN *ROOM-CHANGED-FUNCTIONS*)
(FUNCALL FN ROOM REASON)))

(DEFMACRO DO-INCLUSIONS ((ROOM-VAR ROOM-FORM)
&BODY BODY)

;;; descend breadth-first, left to right down the inclusions of a room, performing BODY with ROOM-VAR bound to each room.

‘(LET* ((,ROOM-VAR ,ROOM-FORM)
($ROOMS$ (LIST ,ROOM-VAR))
($QUEUE-HEAD$ $ROOMS$)
($QUEUE-TAIL$ $QUEUE-HEAD$)
($POCKET-ROOM-NAME$ *POCKET-ROOM-NAME*)
$INCLUSIONS$ $INCLUSION$)

(BLOCK DO-INCLUSIONS
(TAGBODY $LOOP$,@BODY (SETQ $INCLUSIONS$ (ROOM-INCLUSIONS ,ROOM-VAR))

(UNLESS (LISTP $INCLUSIONS$)
(RETURN-FROM DO-INCLUSIONS))

(DOLIST (INCLUDED-ROOM-NAME $INCLUSIONS$)
(SETQ $INCLUSION$ (ROOM-NAMED INCLUDED-ROOM-NAME))
(WHEN (AND $INCLUSION$ (NOT (MEMBER $INCLUSION$ $ROOMS$:TEST #’EQ)))

(RPLACD $QUEUE-TAIL$ (SETQ $QUEUE-TAIL$ (LIST $INCLUSION$)))))
(POP $QUEUE-HEAD$)
(IF $QUEUE-HEAD$

(SETQ ,ROOM-VAR (FIRST $QUEUE-HEAD$))
(IF (AND $POCKET-ROOM-NAME$ (SETQ ,ROOM-VAR (ROOM-NAMED $POCKET-ROOM-NAME$))

(NOT (MEMBER ,ROOM-VAR $ROOMS$:TEST #’EQ)))
(SETQ $POCKET-ROOM-NAME$ NIL)
(RETURN-FROM DO-INCLUSIONS)))

(GO $LOOP$)))))

(DEFUN ROOM-INCLUDERS (ROOM &OPTIONAL SORTED?)

;;; returns the list of rooms which include ROOM.

;;; note that every room implicitly includes itself. the motivation for this is that most code which wants to map over includers also wants the root.

(IF (EQUAL (ROOM-NAME ROOM)
POCKET-ROOM-NAME)

;; special case: all rooms include the pocket room

(ALL-ROOMS SORTED?)
(DO* ((INCLUDERS NIL) ; list of included rooms

(QUEUE (LIST ROOM)) ; list of rooms to examine
(INCLUDER ROOM (POP QUEUE)) ; room being examined
(INCLUDER-NAME (ROOM-NAME INCLUDER)

(ROOM-NAME INCLUDER)))
((NULL QUEUE)

{MEDLEY}<rooms>ROOMS-CORE.;1 (ROOM-INCLUDERS cont.) Page 10

(IF SORTED?
(SORT INCLUDERS #’ROOM-SORT-FUNCTION)
INCLUDERS))

(UNLESS (MEMBER INCLUDER INCLUDERS :TEST ’EQ)
(PUSH INCLUDER INCLUDERS)
(DO-ROOMS (ROOM)

(LET ((INCLUSIONS (ROOM-INCLUSIONS ROOM)))
(WHEN (AND (LISTP INCLUSIONS)

(MEMBER INCLUDER-NAME INCLUSIONS :TEST ’EQUAL))
(PUSHNEW ROOM QUEUE :TEST ’EQ))))))))

;; bootstrapping & resetting

(DEFVAR *RESET-FORMS* NIL
"List of forms to be EVALled when Rooms is reset.")

(DEFUN RESET ()

;; delete all existing rooms

(CLRHASH *ROOMS*)

;; bootstrap *CURRENT-ROOM*

(SETQ *CURRENT-ROOM* NIL)
(SETQ *POCKET-ROOM-NAME* "Pockets")
(MAKE-ROOM *POCKET-ROOM-NAME* :PLACEMENTS

;; put promptwindow in pockets

(LIST (MAKE-PLACEMENT IL:PROMPTWINDOW))
:BACKGROUND
(COPY-TREE ’((:WHOLE-SCREEN (:EVAL IL:WINDOWBACKGROUNDSHADE)))))

(SETQ *CURRENT-ROOM* (MAKE-ROOM "Original"))
(SETQ *MONITOR-LOCK* (IL:CREATE.MONITORLOCK "Rooms"))
(IL:WITH.MONITOR *MONITOR-LOCK* (GO-TO-ROOM-INTERNAL *CURRENT-ROOM*))

;; install our aroundexitfn last so it gets called before greet

(UNLESS (MEMBER ’AROUNDEXITFN IL:AROUNDEXITFNS)
(SETQ IL:AROUNDEXITFNS (NCONC IL:AROUNDEXITFNS (LIST ’AROUNDEXITFN))))

;; do reset forms

(DOLIST (FORM *RESET-FORMS*)
(EVAL FORM))

;; may have lost some windows...

(CHECK-LOST-WINDOWS))

(DEFGLOBALVAR OLD-WHOLESCREEN (COPY-REGION IL:WHOLESCREEN))

(DEFGLOBALVAR *SCREEN-CHANGED-FUNCTIONS* (LIST ’%INTERNALIZE-ALL-PLACEMENTS))

(DEFUN AROUNDEXITFN (EVENT)
(CASE EVENT

((IL:BEFORESAVEVM IL:BEFORELOGOUT IL:BEFORESYSOUT IL:BEFOREMAKESYS))
((IL:AFTERSAVEVM IL:AFTERLOGOUT IL:AFTERSYSOUT IL:AFTERMAKESYS) (UNLESS (EQUAL IL:WHOLESCREEN

OLD-WHOLESCREEN)
(DOLIST #’*SCREEN-CHANGED-FUNCTIONS*

(FUNCALL FUNCTION))
(SETQ OLD-WHOLESCREEN (COPY-REGION

IL:WHOLESCREEN
))))))

(DEFUN %INTERNALIZE-ALL-PLACEMENTS ()

;;; called when we re-boot on different sized screen. re-scales the placement regions & icon-positions of all placements.

(LET ((OLD-SCREEN-WIDTH (REGION-WIDTH OLD-WHOLESCREEN))
(OLD-SCREEN-HEIGHT (REGION-HEIGHT OLD-WHOLESCREEN)))

(UPDATE-PLACEMENTS)
(DO-ROOMS (ROOM)

;; do all the named rooms

(%INTERNALIZE-PLACEMENTS ROOM OLD-SCREEN-WIDTH OLD-SCREEN-HEIGHT)
(ROOM-CHANGED ROOM :PLACEMENTS))

;; redisplay the current room.

(IL:PROCESS.RESULT (GO-TO-ROOM *CURRENT-ROOM* :NO-UPDATE T)
T)))

(DEFUN %INTERNALIZE-PLACEMENTS (ROOM OLD-SCREEN-WIDTH OLD-SCREEN-HEIGHT)
(DOLIST (PLACEMENT (ROOM-PLACEMENTS ROOM))

{MEDLEY}<rooms>ROOMS-CORE.;1 (%INTERNALIZE-PLACEMENTS cont.) Page 11

;; re-scale placements to new size of screen

(LET ((REGION (PLACEMENT-REGION PLACEMENT)))
(SETF (PLACEMENT-REGION PLACEMENT)

(INTERNALIZE-REGION (MAKE-REGION :LEFT (EXTERNALIZE-COORDINATE (REGION-LEFT REGION)
OLD-SCREEN-WIDTH)

:BOTTOM
(EXTERNALIZE-COORDINATE (REGION-BOTTOM REGION)

OLD-SCREEN-HEIGHT)
:WIDTH
(EXTERNALIZE-COORDINATE (REGION-WIDTH REGION)

OLD-SCREEN-WIDTH)
:HEIGHT
(EXTERNALIZE-COORDINATE (REGION-HEIGHT REGION)

OLD-SCREEN-HEIGHT)))))
(LET ((POSITION (PLACEMENT-ICON-POSITION PLACEMENT)))

(WHEN POSITION
(SETF (PLACEMENT-ICON-POSITION PLACEMENT)

(INTERNALIZE-POSITION (MAKE-POSITION (EXTERNALIZE-COORDINATE (POSITION-X POSITION)
OLD-SCREEN-WIDTH)

(EXTERNALIZE-COORDINATE (POSITION-Y POSITION)
OLD-SCREEN-HEIGHT))))))))

(IL:DECLARE\: IL:DOEVAL@COMPILE IL:DONTCOPY

(IL:GLOBALVARS IL:PROMPTWINDOW IL:AROUNDEXITFNS)
)

(EVAL-WHEN (LOAD)

;; smash system code which moves windows around on reboot so we don’t fight with it.

(PUSHNEW ’(IL:CHANGENAME ’IL:\\STARTDISPLAY ’IL:\\MOVE.WINDOWS.ONTO.SCREEN ’IL:NILL)
RESET-FORMS :TEST ’EQUAL)

)

;; random

(IL:PUTPROPS GO-TO-ROOM IL:ARGNAMES (ROOM &KEY NO-UPDATE BAGGAGE))

(SEDIT:DEF-LIST-FORMAT DO-INCLUSIONS :INDENT (1)
:ARGS (:KEYWORD :BINDING NIL)
:SUBLISTS (2))

(SEDIT:DEF-LIST-FORMAT DO-ROOMS :INDENT (1)
:ARGS (:KEYWORD :BINDING NIL)
:SUBLISTS (2))

(IL:PUTPROPS IL:ROOMS-CORE IL:COPYRIGHT ("Venue & Xerox Corporation" 1987 1988 1990 2020))

{MEDLEY}<rooms>ROOMS-CORE.;1 9-Oct-2024 02:37:44
-- Listed on 9-Oct-2024 02:42:44 --

FUNCTION INDEX

%INTERNALIZE-ALL-PLACEMENTS10 FIND-PLACEMENT7 PLACE-PLACEMENTS7
%INTERNALIZE-PLACEMENTS10 FIND-PLACEMENTS7 PLACE-TTY-PROCESS8
ADD-PLACEMENT4 FIND-ROOMS-CONTAINING9 RENAME-ROOM3
ALL-ROOMS3 GO-TO-ROOM5 RESET10
AROUNDEXITFN10 GO-TO-ROOM-INTERNAL5 ROOM-CHANGED9
CALL-ENTRY-FUNCTIONS6 GO-TO-ROOM-PROCESS5 ROOM-INCLUDERS9
CALL-EXIT-FUNCTIONS6 IN-ROOM?2 ROOM-SORT-FUNCTION3
COPY-PLACEMENT4 MAKE-PLACEMENT4 UPDATE-PLACEMENT7
COPY-ROOM2 MAKE-ROOM2 UPDATE-PLACEMENTS6
DELETE-PLACEMENT5 MOVE-PLACEMENT4 UPDATE-TTY-PROCESS8
DELETE-ROOM4 PLACE-PLACEMENT8

VARIABLE INDEX

CURRENT-ROOM2 *ROOM-CHANGED-FUNCTIONS*9 *SCREEN-CHANGED-FUNCTIONS*10
MONITOR-LOCK5 *ROOM-ENTRY-FUNCTIONS*5 OLD-WHOLESCREEN10
POCKET-ROOM-NAME5 *ROOM-EXIT-FUNCTIONS*5
RESET-FORMS10 *ROOMS*2

MACRO INDEX

DO-INCLUSIONS9 FIND-PLACEMENT-IN-ROOM7 ROOM-NAMED4
DO-ROOMS3 PLACEMENT-PROP4 ROOM-PROP3

SEDIT-FORMAT INDEX

DO-INCLUSIONS11 DO-ROOMS11

STRUCTURE INDEX

PLACEMENT4 ROOM2

PROPERTY INDEX

GO-TO-ROOM11

FILE-ENVIRONMENT INDEX

IL:ROOMS-CORE1

