File created: 5-Dec—2020 16:26:01 {DSK}<Users>arunwelch>SKYDRIVE>DOCUMENTS>UNIX>LISP>LDE>ROOM
S>MEDLEY-35>RO0OMS-CORE.;2

previous date: 17-Aug-90 12:39:01 {DSK}<Users>arunwelch>SKYDRIVE>DOCUMENTS>UNIX>LISP>LDE>ROOMS>MEDLEY-35>ROOMS—-C
ORE.;1

Read Table: XCL
Package: ROOMS

Format: XCCS

; Copyright (c) 1987, 1988, 1990, 2020 by Venue & Xerox Corporation. All rights reserved.

(IL:RPAQQ IL:ROOMS-CORECOMS
(;; core rooms code

(FILE-ENVIRONMENTS IL:ROOMS-CORE)
(IL:P (EXPORT ’ (ROOM ROOM-P ROOM-NAME ROOM-PLACEMENTS ROOM—-INCLUSIONS ROOM-BACKGROUND
ROOM-TTY-PROCESS ROOM-PROPS ROOM-PROP MAKE-ROOM COPY-ROOM DELETE-ROOM
RENAME-ROOM ROOM-NAMED ROOM-SORT-FUNCTION))
(EXPORT '’ (*CURRENT-ROOM* *POCKET-ROOM—-NAME* *ROOM-ENTRY-FUNCTIONS* *ROOM—-EXIT-FUNCTIONS*
ROOM-CHANGED-FUNCTIONS¥))
(EXPORT ’ (PLACEMENT PLACEMENT-P PLACEMENT-WINDOW PLACEMENT-REGION PLACEMENT-SHRUNKEN?
PLACEMENT-ICON-POSITION PLACEMENT-PROPS PLACEMENT-PROP MAKE-PLACEMENT
COPY-PLACEMENT MOVE-PLACEMENT))
(EXPORT ’ (GO-TO-ROOM UPDATE-PLACEMENTS FIND-PLACEMENT ROOM-CHANGED DO-INCLUSIONS RESET))
(REQUIRE "ROOMS"))
(IL:COMS

;; the room -- a named object

(IL:STRUCTURES ROOM)
(IL:VARIABLES *ROOMS* *CURRENT—-ROOM*)
(IL:FUNCTIONS IN-ROOM? MAKE-ROOM COPY-ROOM RENAME-ROOM ROOM-PROP DO-ROOMS ALL-ROOMS
ROOM-SORT-FUNCTION ROOM-NAMED DELETE-ROOM))
(IL:COMS

;; placements

(IL:STRUCTURES PLACEMENT)
(IL:FUNCTIONS PLACEMENT-PROP MAKE-PLACEMENT COPY-PLACEMENT MOVE-PLACEMENT ADD-PLACEMENT
DELETE-PLACEMENT))

;; going from one room to another

(IL:VARIABLES *POCKET-ROOM-NAME* *MONITOR-LOCK* *ROOM-ENTRY-FUNCTIONS* *ROOM-EXIT-FUNCTIONS*)

(IL:FUNCTIONS GO-TO-ROOM GO-TO—-ROOM-PROCESS GO-TO-ROOM-INTERNAL CALL-ENTRY-FUNCTIONS
CALL-EXIT-FUNCTIONS UPDATE-PLACEMENTS FIND-PLACEMENT FIND-PLACEMENT-IN-ROOM UPDATE-PLACEMENT
PLACE-PLACEMENTS FIND-PLACEMENTS PLACE-PLACEMENT)

(IL:FUNCTIONS UPDATE-TTY-PROCESS PLACE-TTY-PROCESS)

;; other essentials

(IL:FUNCTIONS FIND-ROOMS—-CONTAINING)

(IL:COMS (IL:VARIABLES *ROOM-CHANGED-FUNCTIONS*)
(IL:FUNCTIONS ROOM-CHANGED))

(IL:FUNCTIONS DO-INCLUSIONS ROOM-INCLUDERS)

;; bootstrapping & resetting

(IL:VARIABLES *RESET-FORMS*)
(IL:FUNCTIONS RESET)
(IL:VARIABLES OLD-WHOLESCREEN *SCREEN-CHANGED-FUNCTIONS*)
(IL:FUNCTIONS AROUNDEXITFN $INTERNALIZE-ALL-PLACEMENTS $INTERNALIZE-PLACEMENTS)
(IL:GLOBALVARS IL:PROMPTWINDOW IL:AROUNDEXITFNS)
(EVAL-WHEN (LOAD)
(IL:P ; smash system code which moves windows around on reboot so
; we don'’t fight with it.
(PUSHNEW ' (IL:CHANGENAME ’IL:\\STARTDISPLAY ’IL:\\MOVE.WINDOWS.ONTO.SCREEN ’IL:NILL)
RESET-FORMS :TEST ’EQUAL)))

;; random

(IL:PROP IL:ARGNAMES GO-TO-ROOM)
(IL:SEDIT-FORMATS DO-INCLUSIONS DO-ROOMS)))

;; core rooms code

(DEFINE-FILE-ENVIRONMENT IL:ROOMS-CORE :cOMPILER :COMPILE-FILE
:PACKAGE "ROOMS"
:READTABLE "XCL")

(EXPORT ’ (ROOM ROOM-P ROOM-NAME ROOM-PLACEMENTS ROOM-INCLUSIONS ROOM-BACKGROUND ROOM-TTY-PROCESS ROOM-PROPS
ROOM-PROP MAKE-ROOM COPY-ROOM DELETE-ROOM RENAME-ROOM ROOM-NAMED ROOM-SORT-FUNCTION))

(EXPORT ’ (*CURRENT-ROOM* *POCKET-ROOM—-NAME* *ROOM-ENTRY-FUNCTIONS* *ROOM-EXIT-FUNCTIONS*
ROOM—-CHANGED-FUNCTIONS¥))

(EXPORT ’ (PLACEMENT PLACEMENT-P PLACEMENT-WINDOW PLACEMENT-REGION PLACEMENT-SHRUNKEN? PLACEMENT-ICON-POSITION
PLACEMENT-PROPS PLACEMENT-PROP MAKE-PLACEMENT COPY-PLACEMENT MOVE-PLACEMENT))

{MEDLEY }<rooms>ROOMS—-CORE. ; 1 Page 2

(EXPORT ' (GO-TO-ROOM UPDATE-PLACEMENTS FIND-PLACEMENT ROOM-CHANGED DO-INCLUSIONS RESET))

(REQUIRE "ROOMS")

;; the room -- a named object

(DEFSTRUCT (ROOM (:CONSTRUCTOR MAKE-ROOM-INTERNAL)
(:COPIER COPY-ROOM-INTERNAL)
(:PRINT-FUNCTION (LAMBDA (ROOM STREAM DEPTH)
(FORMAT STREAM "#<Room ~S>" (ROOM-NAME ROOM)))))

(NAME NIL :READ-ONLY T)
(PLACEMENTS NIL :TYPE LIST)

;; list of PLACEMENT objects
(INCLUSIONS NIL :TYPE LIST)

;; list of names of included rooms
(BACKGROUND NIL :TYPE BACKGROUND)
;; how to paint the background
(TTY-PROCESS NIL)

;; which process has the TTY in this room
(PROPS NIL :TYPE LIST)

;; property list

)

(pEFvAR *ROOMS* (MAKE-HASH-TABLE :TEST ’EQUAL)
"A hash table mapping from room names to rooms.")

(oerGLoBaLvAR *CURRENT-ROOM* n1L

"The room the user is currently in.")

(oEruN IN-ROOM? (roowm)
;55 true if ROOM is a sub-room of the current room

(DO-INCLUSIONS (INCLUDED-ROOM *CURRENT—-ROOM*)
(WHEN (EQUAL (ROOM-NAME ROOM)

(ROOM-NAME INCLUDED-ROOM))

(RETURN-FROM DO-INCLUSIONS T))))

(pEruN MAKE-ROOM (NAME &REST REST-KEYS &KEY PLACEMENTS INCLUSIONS (BACKGROUND NIL BACKGROUND-SPECIFIED?)
TTY-PROCESS &ALLOW-OTHER-KEYS)

;; check whether a room with this already exists
(WHEN (ROOM-NAMED NAME)
(CERROR "Delete existing room named ~S (will close windows)" "A room named ~S already exists" NAME)

(DELETE-ROOM (ROOM-NAMED NAME)))
;; check the types of the placements

(DOLIST (PLACEMENT PLACEMENTS)
(CHECK-TYPE PLACEMENT PLACEMENT))

;; default the background to contain the name of the room

(UNLESS BACKGROUND-SPECIFIED?
(SETQ BACKGROUND ‘ ((:TEXT ,NAME))))
(LET ((ROOM (MAKE-ROOM-INTERNAL :NAME NAME :PLACEMENTS PLACEMENTS :INCLUSIONS INCLUSIONS :BACKGROUND

(MAKE-BACKGROUND BACKGROUND)
:TTY-PROCESS TTY-PROCESS :PROPS (LET ((PROPS (COPY-LIST REST-KEYS)))
(DOLIST (KEYWORD ' (:PLACEMENTS :INCLUSIONS
:BACKGROUND :TTY-PROCESS))
(REMF PROPS KEYWORD))
PROPS))))

(SETF (ROOM-NAMED NAME)
ROOM)
(WHEN *CURRENT-ROOM*
(WHEN (EQUAL NAME (ROOM-NAME *CURRENT-ROOM*))
SETQ *CURRENT-ROOM* ROOM))
(ROOM- CHANGED ROOM :CREATED))
ROOM))

(oeruN COPY-ROOM (roOM NEW-NAME)
(UPDATE-PLACEMENTS)
(APPLY ’MAKE-ROOM NEW-NAME :PLACEMENTS (MAPCAR #’COPY-PLACEMENT (ROOM-PLACEMENTS ROOM))
: INCLUSIONS
(COPY-LIST (ROOM-INCLUSIONS ROOM))

:BACKGROUND
(LET* ((BACKGROUND (COPY-TREE (BACKGROUND-EXTERNAL-FORM (ROOM-BACKGROUND ROOM))))

{MEDLEY } <rooms>ROOMS-CORE.;1 (COPY-ROOM cont.)

(OLD-NAME (ROOM—-NAME ROOM))
(TEXT (FIND-IF #’ (LAMBDA (COMMAND)
(AND (EQ (FIRST COMMAND)

: TEXT)
(EQUAL (SECOND COMMAND)
OLD-NAME)))
BACKGROUND)))
(WHEN TEXT
(SETF (SECOND TEXT)
NEW-NAME))
BACKGROUND)

(COPY-TREE (ROOM—-PROPS ROOM))))

(oeEruN RENAME-ROOM (rooM NEW-NAME)
(LET ((OLD-NAME (ROOM-NAME ROOM)))
(PROG1 (COPY-ROOM ROOM NEW-NAME)
(DELETE-ROOM ROOM)
(LET ((SUITE-NAME (FIND-SUITE-CONTAINING OLD-NAME)))

;; if its in a suite, rename it there too

(WHEN SUITE-NAME
(SETF (SUITE-ROOMS SUITE-NAME)
(SUBSTITUTE NEW-NAME OLD-NAME (SUITE-ROOMS SUITE-NAME)
:TEST
"EQUAL))))
(DO-ROOMS (ROOM)

;; rename it in inclusions of other rooms

(WHEN (MEMBER OLD-NAME (ROOM-INCLUSIONS ROOM)
:TEST
"EQUAL)

;; don’t need to call UPDATE-PLACEMENTS as COPY-ROOM has already called it for us.

(SETF (ROOM-INCLUSIONS ROOM)
(SUBSTITUTE NEW-NAME OLD-NAME (ROOM-INCLUSIONS ROOM)
:TEST
’EQUAL))
(ROOM-CHANGED ROOM :EDITED))))))

(pErMacrRo ROOM-PROP (rooM PROP &OPTIONAL (NEW-VALUE NIL NEW-VALUE-SUPPLIED))
(IF NEW-VALUE-SUPPLIED
‘(SETF (GETF (ROOM-PROPS ,ROOM)
, PROP)
, NEW-VALUE)
‘(GETF (ROOM-PROPS , ROOM)
,PROP)))

(oErMacro DO-ROOMS ((rRoomM-vaR)

&BODY BODY)
;;; evaluate BODY once for each room with ROOM-VAR bound to the room.

‘* (BLOCK DO-ROOMS
(MAPHASH #’ (LAMBDA (, (GENSYM)
, ROOM-VAR)
, @BODY)
ROOMS)))

(oEFuN ALL-ROOMS (50PTIONAL SORTED?)
;»; return a list of all rooms. if SORTED? is true, sort them alphabetically by name

(LET ((ALL-ROOMS (WITH-COLLECTION (DO-ROOMS (ROOM)
(COLLECT ROOM)))))
(IF SORTED?
(SORT ALL-ROOMS #’ROOM-SORT-FUNCTION)
ALL-ROOMS)))

(oerun ROOM-SORT-FUNCTION (rooM-1 rOOM-2)
;»; used as the predicate for sorting lists of rooms. we sort alphabetically by the name of the room.

(MACROLET ((STRINGIFY (NAME)
‘(IF (STRINGP ,NAME)
, NAME
(PRINC-TO-STRING ,NAME))))
(LET ((NAME-1 (ROOM-NAME ROOM-1))
(NAME-2 (ROOM-NAME ROOM-2)))
(STRING-LESSP (STRINGIFY NAME-1)
(STRINGIFY NAME-2)))))

Page 3

{MEDLEY }<rooms>ROOMS-CORE. ; 1

(oerMacro ROOM-NAMED (naME)

‘' (GETHASH ,NAME *ROOMS*))

Page 4

(oerun DELETE-ROOM (roowm)

;; first close all the windows which only have placements in this room

(LET ((ONLY-THIS-ROOM (LIST ROOM)))
(DOLIST (WINDOW (ALL-WINDOWS T))
(WHEN (EQUAL (FIND-ROOMS-CONTAINING WINDOW)
ONLY-THIS—ROOM)
(UN-HIDE-WINDOW WINDOW)
(CLOSE-WINDOW (IF (SHRUNKEN? WINDOW)
(WINDOW-ICON WINDOW)

WINDOW)))))
(WHEN (DO-ROOMS (RM)

(WHEN (EQ ROOM RM)
(RETURN-FROM DO-ROOMS T)))
;; if it's in the name table, remove it. this is so deleting an un-named room (like the Overview) doesn’t cause a room named "Overview" to also
;; disappear.
(REMHASH (ROOM-NAME ROOM)
ROOMS))

;; tell the world we've deleted it
(ROOM-CHANGED ROOM :DELETED))

;; placements

(pEFSTRUCT (PLACEMENT (:CONSTRUCTOR MAKE-PLACEMENT-INTERNAL)

(:COPIER COPY-PLACEMENT-INTERNAL))
WINDOW

REGION
SHRUNKEN?
ICON-POSITION
PROPS)

(oErMacrRo PLACEMENT-PROP (PLACEMENT PROP sOPTIONAL (NEW-VALUE NIL NEW-VALUE-SUPPLIED))
(IF NEW-VALUE-SUPPLIED

‘(SETF (GETF (PLACEMENT-PROPS ,PLACEMENT)
, PROP)
, NEW-VALUE)
‘(GETF (PLACEMENT-PROPS , PLACEMENT)
,PROP)))

(oEruN MAKE-PLACEMENT (winpow)

(LET ((PLACEMENT (MAKE-PLACEMENT-INTERNAL :WINDOW WINDOW)))
(UPDATE-PLACEMENT PLACEMENT)
PLACEMENT))

(oEruN COPY-PLACEMENT (pPLACEMENT)

;; make sure PROPS gets copied. it is not important that REGION & ICON-POSITION are copied, but seems safer.
(MAKE-PLACEMENT-INTERNAL :WINDOW (PLACEMENT-WINDOW PLACEMENT)
:REGION

(COPY-REGION (PLACEMENT-REGION PLACEMENT))
: SHRUNKEN?

(PLACEMENT-SHRUNKEN? PLACEMENT)
:ICON-POSITION

(COPY-TREE (PLACEMENT-ICON-POSITION PLACEMENT))
:PROPS

(COPY-TREE (PLACEMENT-PROPS PLACEMENT))))

(pEruN MOVE-PLACEMENT (PLACEMENT FROM-ROOM TO-ROOM &OPTIONAL COPY?)
(ADD-PLACEMENT (COPY-PLACEMENT PLACEMENT)
TO-ROOM)
(UNLESS COPY?
(DELETE-PLACEMENT PLACEMENT FROM-ROOM)
(LET* ((WINDOW (PLACEMENT-WINDOW PLACEMENT))
(INHERITED (FIND-PLACEMENT WINDOW)))
(HIDE-WINDOW WINDOW)

(WHEN INHERITED (PLACE-PLACEMENT INHERITED)))))

(oEruN ADD-PLACEMENT (PLACEMENT ROOM)

;;; add PLACEMENT to ROOM'’s placements. does not update screen.
;; first delete any old placements for same window

(SETF (ROOM-PLACEMENTS ROOM)
(DELETE (PLACEMENT-WINDOW PLACEMENT)
(ROOM-PLACEMENTS ROOM)

{MEDLEY } <rooms>ROOMS-CORE.;1 (ADD-PLACEMENT cont.) Page 5

:TEST
"EQ :KEY #’PLACEMENT-WINDOW))

;;add it

(PUSH PLACEMENT (ROOM-PLACEMENTS ROOM))
;; notify system that ROOM has changed.
(ROOM-CHANGED ROOM :PLACEMENTS))

(oerun DELETE-PLACEMENT (PLACEMENT ROOM)
;; delete PLACEMENT from ROOM. does not remove placement from screen.

(SETF (ROOM—-PLACEMENTS ROOM)
(DELETE (PLACEMENT-WINDOW PLACEMENT)
(ROOM-PLACEMENTS ROOM)
:TEST
"EQ :KEY #’PLACEMENT-WINDOW))

;; notify system that ROOM has changed.
(ROOM-CHANGED ROOM :PLACEMENTS))

;; going from one room to another

(pErGLoBaLVvAR *POCKET-ROOM-NAME* ~1L

"The name of the room to be the pockets or NIL.")

(perGLoeaLvaR *MONITOR-LOCK*)

(oervaR *ROOM-ENTRY-FUNCTIONS* ~1L

"A list of functions to be called before a room is entered")

(oervaR *ROOM-EXIT-FUNCTIONS* n1L

"A list of functions to be called before a room is left")

(pEFUN GO-TO-ROOM (sREST ARGS)
;;; skip to GO-TO-ROOM-INTERNAL for details...

;; can’t run under mouse, as mouse switches TTY around. have to spawn our own process, let the mouse return the TTY, then we’ll be run.

(CHECK-TYPE (FIRST ARGS)
ROOM)
(IL:RESETVAR IL:\\PROC.RUN.NEXT.FLG T

;; ensure that we’ll be the next process run when the mouse blocks.

(IL:ADD.PROCESS ‘(GO-TO-ROOM-PROCESS ', ARGS)
’IL:NAME "Go To Room")))

(oeruN GO-TO-ROOM-PROCESS (zrcs)
(LET ((OLD-CURSOR (IL:CURSOR)))
(UNWIND-PROTECT
(IF (IL:OBTAIN.MONITORLOCK *MONITOR-LOCK* T)
(PROGN (IL:CURSOR IL:WAITINGCURSOR)
(IL:\\CARET.DOWN NIL IL:MAX.FIXP)
(APPLY ’GO-TO-ROOM-INTERNAL ARGS))
(NOTIFY-USER "Can’t! Rooms is busy."))
(IL:RELEASE.MONITORLOCK *MONITOR-LOCK*)
(IL:CURSOR OLD-CURSOR)
(IL:CARET T))))

(oEruN GO-TO-ROOM-INTERNAL (rROOM &KEY NO-UPDATE BAGGAGE)

(CHECK-TYPE ROOM ROOM)

;»; Leave the current room & enter ROOM. BAGGAGE is a list of additional placements to be placed in ROOM.
;> call exit hooks on current room

(CALL-EXIT-FUNCTIONS *CURRENT-ROOM*)
(UNLESS NO-UPDATE

;; update the current room per the screen
(UPDATE-PLACEMENTS *CURRENT-ROOM*))
;; note which process has the keyboard
(UPDATE-TTY-PROCESS *CURRENT-ROOM*)
;; clear the screen

(HIDE-ALL-WINDOWS)
(UNWIND-PROTECT

(PROGN ;; paint the background

{MEDLEY } <rooms>ROOMS-CORE.;1 (GO-TO-ROOM-INTERNAL cont.)

(PAINT-BACKGROUND ROOM *SCREEN-BITMAP *)
;; call entry hooks
(CALL-ENTRY-FUNCTIONS ROOM))
;; set *CURRENT-ROOM*.
(SETQ *CURRENT-ROOM* ROOM))
;; place placements from ROOM -- inherited & direct
(PLACE-PLACEMENTS ROOM BAGGAGE)
;; place the caret
(PLACE-TTY-PROCESS ROOM))

(oEruN CALL-ENTRY-FUNCTIONS (room)
;; first call global entry functions

(DOLIST (FN *ROOM-ENTRY-FUNCTIONS*)
(FUNCALL FN ROOM))

;; then call inherited entry functions

(DO-INCLUSIONS (SUB-ROOM ROOM)
(DOLIST (FN (ROOM-PROP SUB-ROOM :BEFORE-ENTRY-FUNCTIONS))
(FUNCALL FN ROOM))))

(oEruN CALL-EXIT-FUNCTIONS (roowm)
;; first call global room exit functions

(DOLIST (FN *ROOM-EXIT-FUNCTIONS*)
(FUNCALL FN ROOM))

;; then call inherited functions on ROOM

(DO-INCLUSIONS (SUB-ROOM ROOM)
(DOLIST (FN (ROOM-PROP SUB-ROOM :BEFORE-EXIT-FUNCTIONS))
(FUNCALL FN ROOM))))

(oEruN UPDATE-PLACEMENTS (s0PTIONAL (FOR-ROOM *CURRENT—ROOM*))
;;; called when leaving a room to update it's placements
;;; returns the new list of placements

(LET ((NEW-PLACEMENTS NIL)
(CHANGED-ROOMS NIL)
(OLD-PLACEMENTS (ROOM—-PLACEMENTS FOR-ROOM))
(ALL-WINDOWS (ALL-WINDOWS)))
(DOLIST (WINDOW ALL-WINDOWS)
(MULTIPLE-VALUE-BIND (PLACEMENT IN-ROOM)
(FIND-PLACEMENT WINDOW FOR-ROOM)
(UNLESS PLACEMENT

;; new window in this room - make a placement

(SETQ PLACEMENT (MAKE-PLACEMENT WINDOW))
(SETQ IN-ROOM FOR-ROOM)

;; note change to this room
(PUSHNEW FOR-ROOM CHANGED-ROOMS :TEST ’EQ))
;; collect placements in this room in top to bottom order.

(WHEN (EQ IN-ROOM FOR-ROOM)
(PUSH PLACEMENT NEW-PLACEMENTS))

;; update the placement
(WHEN (UPDATE-PLACEMENT PLACEMENT)
;; placement has changed - note it

(PUSHNEW IN-ROOM CHANGED-ROOMS :TEST 'EQ))))
(DOLIST (PLACEMENT (FIND-PLACEMENTS FOR-ROOM))
(UNLESS (MEMBER (PLACEMENT-WINDOW PLACEMENT)
ALL-WINDOWS :TEST ’EQ)

;; it's a window that’s been closed

(DO-INCLUSIONS (ROOM FOR—ROOM)
(WHEN (MEMBER PLACEMENT (ROOM-PLACEMENTS ROOM)
:TEST
"EQ)

;; delete its placement
(UNLESS (EQ ROOM FOR-ROOM)
;; unless we’ll delete it below anyway
(DELETE-PLACEMENT PLACEMENT ROOM))
;; note that this room has changed

Page 6

{MEDLEY } <rooms>ROOMS-CORE. ;1 (UPDATE-PLACEMENTS cont.) Page 7

(PUSHNEW ROOM CHANGED-ROOMS :TEST ’EQ)
(RETURN-FROM DO-INCLUSIONS)))))
(UNLESS (EQUAL NEW-PLACEMENTS OLD-PLACEMENTS)

;; check if occlusion order of placements has changed

(PUSHNEW FOR—-ROOM CHANGED-ROOMS :TEST ’EQ))
(SETF (ROOM-PLACEMENTS FOR-ROOM)
NEW-PLACEMENTS)
(DOLIST (ROOM CHANGED-ROOMS)
(ROOM-CHANGED ROOM :PLACEMENTS))
T))

(EFUN FIND-PLACEMENT (wINDOW &OPTIONAL (FROM-ROOM *CURRENT—ROOM*))
;;; returns the placement which caused WINDOW to be in ROOM.
;;; does a breadth-first search through ROOM & its inclusions for a placement containing WINDOW. second value is room placement was found in.

(DO-INCLUSIONS (ROOM FROM-ROOM)
(LET ((PLACEMENT (FIND-PLACEMENT-IN-ROOM WINDOW ROOM)))
(WHEN PLACEMENT
(RETURN-FROM FIND-PLACEMENT (VALUES PLACEMENT ROOM))))))

(perMacrO FIND-PLACEMENT-IN-ROOM (winpbow room)
‘(LET ((WINDOW , WINDOW))
(DOLIST (PLACEMENT (ROOM-PLACEMENTS ,ROOM))
(WHEN (EQ (PLACEMENT-WINDOW PLACEMENT)
WINDOW)
(RETURN PLACEMENT)))))

(oeruN UPDATE-PLACEMENT (pLACEMENT)
;;; called when leaving a room on each placement in the room. returns true if placement has changed since the last time it was updated.

(LET* ((WINDOW (PLACEMENT-WINDOW PLACEMENT))
(ICON-POSITION (ICON-POSITION WINDOW))
(REGION (WINDOW-REGION WINDOW))
(SHRUNKEN? (SHRUNKEN? WINDOW))
(CHANGED? NIL))
(UNLESS (EQUAL ICON-POSITION (PLACEMENT-ICON-POSITION PLACEMENT))
(SETF (PLACEMENT-ICON-POSITION PLACEMENT)
(COPY-TREE ICON-POSITION))
(SETQ CHANGED? T))
(UNLESS (EQUAL REGION (PLACEMENT-REGION PLACEMENT))
(SETF (PLACEMENT-REGION PLACEMENT)
(COPY-REGION REGION))
(SETQ CHANGED? T))
(UNLESS (EQ SHRUNKEN? (PLACEMENT-SHRUNKEN? PLACEMENT))
(SETF (PLACEMENT-SHRUNKEN? PLACEMENT)
SHRUNKEN?)
(SETQ CHANGED? T))

;; call the user hook

(LET ((WINDOW-TYPE (WINDOW-TYPE WINDOW T)))
(WHEN WINDOW-TYPE
(LET ((UPDATER (WINDOW-TYPE-UPDATER WINDOW-TYPE)))
(WHEN UPDATER
(FUNCALL (WINDOW-TYPE-UPDATER WINDOW-TYPE)
PLACEMENT)))))
CHANGED?))

(oEruN PLACE-PLACEMENTS (rRoOM &OPTIONAL BAGGAGE)
(DOLIST (PLACEMENT (FIND-PLACEMENTS ROOM))
(PLACE-PLACEMENT PLACEMENT))
(DOLIST (PLACEMENT BAGGAGE)
(PLACE-PLACEMENT PLACEMENT)))

(oEFuN FIND-PLACEMENTS (rooM)
;;; returns the list of placements to be displayed in room, ordered in bottom first (i.e. the order they should be displayed in)

(LET (PLACEMENTS)
(DO-INCLUSIONS (INCLUSION ROOM)
(DOLIST (PLACEMENT (ROOM—-PLACEMENTS INCLUSION))

;; save one placement for each window on the way down

;; optimization: this rather convoluted piece of code is used rather than (pushnew placement placements :key
;; #'placement-window) because pushnew compiles into something really slow in XCL.

(LET ((WINDOW (PLACEMENT-WINDOW PLACEMENT)))
(UNLESS (DOLIST (PLACEMENT PLACEMENTS)
(WHEN (EQ (PLACEMENT-WINDOW PLACEMENT)
WINDOW)

{MEDLEY } <rooms>ROOMS-CORE.;1 (FIND-PLACEMENTS cont.)

(RETURN T)))
(PUSH PLACEMENT PLACEMENTS)))))
PLACEMENTS))

(oEruN PLACE-PLACEMENT (pLACEMENT)
;;; Called on each placement in a room when it’s visited to place PLACEMENT’s window per the rest of PLACEMENT.
;> This will probably require a lot of work in a different window system.

(LET* ((WINDOW (PLACEMENT-WINDOW PLACEMENT))
;; we copy as window system sometimes seems to smash these

(PLACEMENT-REGION (COPY-REGION (PLACEMENT-REGION PLACEMENT)))
(PLACEMENT-ICON-POSITION (COPY-TREE (PLACEMENT-ICON-POSITION PLACEMENT)))
(WINDOW-REGION (WINDOW-REGION WINDOW))
(WINDOW-ICON (WINDOW-ICON WINDOW))
(WINDOW-TYPE (WINDOW-TYPE WINDOW T)))
(WHEN (OR (IL:OPENWP WINDOW)
(AND WINDOW-ICON (IL:OPENWP WINDOW-ICON)))

;; if it's been closed & we ignore it

(UN-HIDE-WINDOW WINDOW)
(COND
((PLACEMENT-SHRUNKEN? PLACEMENT)

;; ensure the expansion is placed correctly

(UNLESS (EQUAL PLACEMENT-REGION WINDOW-REGION)
(SHAPE-WINDOW WINDOW PLACEMENT-REGION :CURRENT-REGION WINDOW-REGION :NO-SHAPE
(AND WINDOW-TYPE (WINDOW-TYPE-PROP WINDOW-TYPE :NO-SHAPE))))

;; place the icon

(COND
((SHRUNKEN? WINDOW)
(UNLESS (EQUAL (WINDOW-POSITION WINDOW-ICON)
PLACEMENT-ICON-POSITION)
(MOVE-WINDOW WINDOW-ICON PLACEMENT-ICON-POSITION)
(OPEN-WINDOW WINDOW-ICON)))
(T (MOVE-WINDOW (SHRINK-WINDOW WINDOW PLACEMENT-ICON-POSITION)
PLACEMENT-ICON-POSITION))))
(T (WHEN PLACEMENT-ICON-POSITION

;; ensure the icon is placed correctly

(UNLESS WINDOW-ICON
(SETQ WINDOW-ICON (SHRINK-WINDOW WINDOW PLACEMENT-ICON-POSITION)))
(MOVE-WINDOW WINDOW-ICON PLACEMENT-ICON-POSITION)
(WHEN (AND (IL:OPENWP WINDOW-ICON)
(NOT (SHRUNKEN? WINDOW)))

;; we opened the icon by moving it
(IL:\\CLOSEWl WINDOW-ICON)))
;; place the window

(WHEN (SHRUNKEN? WINDOW)
(EXPAND-WINDOW WINDOW))
(UNLESS (EQUAL PLACEMENT-REGION WINDOW-REGION)
(SHAPE-WINDOW WINDOW PLACEMENT-REGION :CURRENT-REGION WINDOW-REGION :NO-SHAPE
(AND WINDOW-TYPE (WINDOW-TYPE-PROP WINDOW-TYPE :NO-SHAPE))))
(OPEN-WINDOW WINDOW)
(UNLESS PLACEMENT-ICON-POSITION (DELETE-WINDOW-ICON WINDOW))))

;; call the user hook

(WHEN (AND WINDOW-TYPE (WINDOW-TYPE-PLACER WINDOW-TYPE))
(FUNCALL (WINDOW-TYPE-PLACER WINDOW-TYPE)
PLACEMENT)))))

(oerun UPDATE-TTY-PROCESS (roowm)
;;; update ROOM'’s notion of which process has the keyboard.

(SETF (ROOM-TTY-PROCESS ROOM)
(IL: TTY.PROCESS)))

(oerun PLACE-TTY-PROCESS (room)
;;; place the keyboard per ROOM’s TTY-PROCESS field
(LET ((PROCESS (ROOM-TTY-PROCESS ROOM)))

(IL:TTY.PROCESS (IF (IL:PROCESSP PROCESS)
PROCESS

;; if no process specified, or the specified process is dead, then we give the TTY to the MOUSE process

(IL:FIND.PROCESS ’'IL:MOUSE)))))

Page 8

{MEDLEY }<rooms>ROOMS—-CORE. ; 1 Page 9

;; other essentials

(oErun FIND-ROOMS-CONTAINING (winpow)
;;; return a list of all rooms which directly contain a placement for WINDOW

(LET ((ROOMS))
(DO-ROOMS (ROOM)
(WHEN (FIND-PLACEMENT-IN-ROOM WINDOW ROOM)
(PUSH ROOM ROOMS)))

;; we need a general way of handling un-named rooms, but as there is only one now, we can just special case it.

(WHEN (FIND-PLACEMENT-IN-ROOM WINDOW *OVERVIEW-ROOM*)
(PUSH *OVERVIEW-ROOM* ROOMS))
ROOMS))

(pEFGLoBALVAR *ROOM-CHANGED-FUNCTIONS* nr11)

(oEruN ROOM-CHANGED (rooM REASON)
;;; called when we notice a room has changed to ensure display is up to date.

(ECASE REASON
((:EDITED :CREATED :DELETED) (WHEN (IN-ROOM? ROOM)

;; if we're in this room, redisplay whole screen
;; note: we depend upon our caller to update placements

(IL:WITH.MONITOR *MONITOR-LOCK* (GO-TO-ROOM-INTERNAL *CURRENT-ROOM*
:NO-UPDATE T))))

(: PLACEMENTS ;; we presume our caller & the hooks handle these cases

))
;; call hooks

(DOLIST (FN *ROOM—-CHANGED-FUNCTIONS*)
(FUNCALL FN ROOM REASON)))

(perMacro DO-INCLUSIONS ((RooM-VAR ROOM-FORM)
&BODY BODY)

;;; descend breadth-first, left to right down the inclusions of a room, performing BODY with ROOM-VAR bound to each room.

‘(LET* ((,ROOM-VAR , ROOM—-FORM)
(SROOMSS (LIST ,ROOM-VAR))
(SQUEUE-HEADS $ROOMSS)
(SQUEUE-TAILS S$QUEUE-HEADS)
(SPOCKET-ROOM-NAMES$ *POCKET—-ROOM-NAME *)
$INCLUSIONSS$ S$INCLUSIONS)
(BLOCK DO-INCLUSIONS
(TAGBODY $LOOPS ,@BODY (SETQ S$INCLUSIONSS (ROOM—INCLUSIONS ,ROOM-VAR))
(UNLESS (LISTP $INCLUSIONSS)
(RETURN-FROM DO-INCLUSIONS))
(DOLIST (INCLUDED-ROOM-NAME $INCLUSIONSS)
(SETQ $INCLUSIONS (ROOM-NAMED INCLUDED-ROOM-NAME))
(WHEN (AND SINCLUSIONS (NOT (MEMBER S$SINCLUSIONS SROOMSS$:TEST #/EQ)))
(RPLACD S$QUEUE-TAILS (SETQ S$SQUEUE-TAILS$ (LIST SINCLUSIONS)))))
(POP $QUEUE-HEADS)
(IF SQUEUE-HEADS
(SETQ ,ROOM-VAR (FIRST S$QUEUE-HEADS))
(IF (AND SPOCKET-ROOM-NAMES$ (SETQ ,ROOM-VAR (ROOM-NAMED $POCKET-ROOM-NAMES))
(NOT (MEMBER ,ROOM-VAR $ROOMSS$:TEST #/EQ)))
(SETQ $POCKET-ROOM-NAMES NIL)
(RETURN-FROM DO-INCLUSIONS)))
(GO SLOOPS)))))

(oeEruN ROOM-INCLUDERS (rRoOM §OPTIONAL SORTED?)
;;; returns the list of rooms which include ROOM.
;;; note that every room implicitly includes itself. the motivation for this is that most code which wants to map over includers also wants the root.

(IF (EQUAL (ROOM-NAME ROOM)
*POCKET-ROOM-NAME *)
;; special case: all rooms include the pocket room

(ALL-ROOMS SORTED?)

(DO* ((INCLUDERS NIL) ; list of included rooms
(QUEUE (LIST ROOM)) ; list of rooms to examine
(INCLUDER ROOM (POP QUEUE)) ; room being examined

g

(INCLUDER-NAME (ROOM-NAME INCLUDER)
(ROOM-NAME INCLUDER)))
((NULL QUEUE)

{MEDLEY } <rooms>ROOMS-CORE.;1 (ROOM-INCLUDERS cont.) Page 10

(IF SORTED?
(SORT INCLUDERS #’ROOM-SORT-FUNCTION)
INCLUDERS))
(UNLESS (MEMBER INCLUDER INCLUDERS :TEST ’'EQ)
(PUSH INCLUDER INCLUDERS)
(DO-ROOMS (ROOM)
(LET ((INCLUSIONS (ROOM—-INCLUSIONS ROOM)))
(WHEN (AND (LISTP INCLUSIONS)
(MEMBER INCLUDER-NAME INCLUSIONS :TEST ’EQUAL))
(PUSHNEW ROOM QUEUE :TEST ’'EQ))))))))

;; bootstrapping & resetting

(oervar *RESET-FORMS* n1L

"List of forms to be EVALled when Rooms is reset.")

(oerun RESET ()
;; delete all existing rooms
(CLRHASH *ROOMS*)
;; bootstrap *CURRENT-ROOM*

(SETQ *CURRENT-ROOM* NIL)
(SETQ *POCKET-ROOM-NAME* "Pockets")
(MAKE-ROOM *POCKET-ROOM-NAME* :PLACEMENTS

;; put promptwindow in pockets

(LIST (MAKE-PLACEMENT IL:PROMPTWINDOW))

: BACKGROUND

(COPY-TREE ' ((:WHOLE-SCREEN (:EVAL IL:WINDOWBACKGROUNDSHADE)))))
(SETQ *CURRENT-ROOM* (MAKE-ROOM "Original"))
(SETQ *MONITOR-LOCK* (IL:CREATE.MONITORLOCK "Rooms"))
(IL:WITH.MONITOR *MONITOR-LOCK* (GO-TO-ROOM-INTERNAL *CURRENT-ROOM*))

;; install our aroundexitfn last so it gets called before greet
(UNLESS (MEMBER ’AROUNDEXITFN IL:AROUNDEXITFNS)
(SETQ IL:AROUNDEXITENS (NCONC IL:AROUNDEXITEFNS (LIST ’AROUNDEXITFEN))))
;; do reset forms
(DOLIST (FORM *RESET-FORMS*)
(EVAL FORM))
;; may have lost some windows...

(CHECK-LOST-WINDOWS))
(pEFGLoBALVAR OLD-WHOLESCREEN (coPY-REGION IL:WHOLESCREEN))
(pEFGLoBALVAR *SCREEN-CHANGED-FUNCTIONS* (LIST ’%INTERNALIZE-ALL-PLACEMENTS))

(oeErun AROUNDEXITFN (evenT)

(CASE EVENT
((IL:BEFORESAVEVM IL:BEFORELOGOUT IL:BEFORESYSOUT IL:BEFOREMAKESYS))
((IL:AFTERSAVEVM IL:AFTERLOGOUT IL:AFTERSYSOUT IL:AFTERMAKESYS) (UNLESS (EQUAL IL:WHOLESCREEN
OLD-WHOLESCREEN)
(DOLIST #’ *SCREEN-CHANGED-FUNCTIONS*
(FUNCALL FUNCTION))
(SETQ OLD-WHOLESCREEN (COPY-REGION
IL:WHOLESCREEN
))))))

(oEruN %INTERNALIZE-ALL-PLACEMENTS ()
;;; called when we re-boot on different sized screen. re-scales the placement regions & icon-positions of all placements.

(LET ((OLD-SCREEN-WIDTH (REGION-WIDTH OLD-WHOLESCREEN))
(OLD-SCREEN-HEIGHT (REGION-HEIGHT OLD-WHOLESCREEN)))

(UPDATE-PLACEMENTS)

(DO-ROOMS (ROOM)
;; do all the named rooms
(%INTERNALIZE-PLACEMENTS ROOM OLD-SCREEN-WIDTH OLD-SCREEN-HEIGHT)
(ROOM-CHANGED ROOM :PLACEMENTS))

;; redisplay the current room.

(IL:PROCESS.RESULT (GO-TO-ROOM *CURRENT-ROOM* :NO-UPDATE T)
T)))

(DEFUN %INTERNALIZE-PLACEMENTS (rROOM OLD-SCREEN-WIDTH OLD-SCREEN-HEIGHT)

(DOLIST (PLACEMENT (ROOM-PLACEMENTS ROOM))

{MEDLEY } <rooms>ROOMS-CORE.;1 (%INTERNALIZE-PLACEMENTS cont.)

;; re-scale placements to new size of screen

(LET ((REGION (PLACEMENT-REGION PLACEMENT)))
(SETF (PLACEMENT-REGION PLACEMENT)
(INTERNALIZE-REGION (MAKE-REGION :LEFT (EXTERNALIZE-COORDINATE (REGION-LEFT REGION)
OLD-SCREEN-WIDTH)

:BOTTOM

(EXTERNALIZE-COORDINATE (REGION-BOTTOM REGION)
OLD-SCREEN-HEIGHT)

:WIDTH

(EXTERNALIZE-COORDINATE (REGION-WIDTH REGION)
OLD-SCREEN-WIDTH)

:HEIGHT

(EXTERNALIZE-COORDINATE (REGION-HEIGHT REGION)
OLD-SCREEN-HEIGHT)))))

(LET ((POSITION (PLACEMENT-ICON-POSITION PLACEMENT)))
(WHEN POSITION
(SETF (PLACEMENT-ICON-POSITION PLACEMENT)
(INTERNALIZE-POSITION (MAKE-POSITION (EXTERNALIZE-COORDINATE (POSITION-X POSITION)
OLD-SCREEN-WIDTH)
(EXTERNALIZE-COORDINATE (POSITION-Y POSITION)
OLD-SCREEN-HEIGHT))))))))

(IL:DECLARE\: IL:DOEVALQ@COMPILE IL:DONTCOPY

(IL:GLOBALVARS IL:PROMPTWINDOW IL:AROUNDEXITENS)
)

(EVAL-WHEN (LOAD)

;; smash system code which moves windows around on reboot so we don'’t fight with it.
(PUSHNEW ’ (IL:CHANGENAME ’IL:\\STARTDISPLAY ’IL:\\MOVE.WINDOWS.ONTO.SCREEN ’IL:NILL)

RESET-FORMS :TEST ’EQUAL)
)

;; random
(IL:PUTPROPS GO-TO-ROOM IL:ARGNAMES (ROOM &KEY NO-UPDATE BAGGAGE))
(sepIT:DEF-LIST-FORMAT DO-INCLUSIONS :1npeENT (1)

:ARGS (:KEYWORD :BINDING NIL)
:SUBLISTS (2))

(SEDIT:DEF-LIST-FORMAT DO-ROOMS :1NDENT (1)
:ARGS (:KEYWORD :BINDING NIL)
:SUBLISTS (2))

(IL:PUTPROPS IL:ROOMS-CORE IL:COPYRIGHT ("Venue & Xerox Corporation" 1987 1988 1990 2020))

Page 11

{MEDLEY }<rooms>ROOMS-CORE.;1

9-Oct-2024 02:37:44
—— Listed on 9-Oct-2024 02:42:44

FUNCTION INDEX

$INTERNALIZE-ALL-PLACEMENTS 10 FIND-PLACEMENTviuinnn.. 7 PLACE-PLACEMENTSc.0uonn. 7
$INTERNALIZE-PLACEMENTS 10 FIND-PLACEMENTS 7 PLACE-TTY-PROCESS 8
ADD-PLACEMENTocvuinenn... 4 FIND-ROOMS—CONTAINING 9 RENAME-ROOMivurennennnnnnnnnn 3
ALL-ROOMS .+ etvvinneinnnnnnnnnnnnn. 3 GO—TO-ROOM + s e vveineinannannnnnn 5 RESET tivvvitnnnennnnnnnnnnnnnnns 10
AROUNDEXITENoninennnnnn.n 10 GO-TO-ROOM-INTERNAL 5 ROOM-CHANGEDviiiennnnnnnnnn 9
CALL-ENTRY-FUNCTIONS 6 GO-TO-ROOM-PROCESS 5 ROOM-INCLUDERSviitennnnnnnnn. 9
CALL-EXIT-FUNCTIONS 6 IN-ROOM? & iittiiineienenanannnnnn 2 ROOM-SORT-FUNCTION 3
COPY-PLACEMENTcconiuennnn 4 MAKE-PLACEMENT 4 UPDATE-PLACEMENT 7
COPY-ROOM . .titiiininnnaanannnn 2 MAKE-ROOM .. .vvitinnnnnnennnnnnnn. 2 UPDATE-PLACEMENTS 6
DELETE-PLACEMENTc00v... 5 MOVE-PLACEMENTcvuivennnn. 4 UPDATE-TTY-PROCESS 8
DELETE-ROOMviiuennnnnnnnnn 4 PLACE-PLACEMENT 8

VARIABLE INDEX
CURRENT-ROOM 2 *ROOM-CHANGED-FUNCTIONS* 9 *SCREEN-CHANGED-FUNCTIONS* 10
MONITOR-LOCK 5 *ROOM-ENTRY-FUNCTIONS* 5 OLD-WHOLESCREEN 10
POCKET-ROOM-NAME 5 *ROOM-EXIT-FUNCTIONS* 5
RESET-FORMScoivenn... 10 FROOMS* iiitiiiiiiieeeienannn 2

MACRO INDEX
DO-INCLUSIONScvivnnnnnnnnn 9 FIND-PLACEMENT-IN-ROOM 7 ROOM-NAMED .. ivvninennennnnnnnnnn 4
DO-ROOMS . iittiiiiiiiiinanaanannn 3 PLACEMENT-PROPcovennnnn. 4 ROOM-PROP .. .iitiiineinnnannnnns 3
SEDIT-FORMAT INDEX

DO-INCLUSIONSouvennn.. 11 DO-ROOMS . iviiiiniieiinanannnn. 11

STRUCTURE INDEX
PLACEMENT ...itiiinennnnnnennnnnn 4 ROOM & tittiiieiiiiiiiiieeeeanennn 2

PROPERTY INDEX
GO-TO-ROOM .. .tvvinniinnnennnnn 11

FILE-ENVIRONMENT INDEX

IL:ROOMS-COREouivvnnennnnn. 1

