
253Lisp Library Modules, Release 1.15, TCP-IP

TCP-IP

The Transport Control Protocol - Internet Protocol (TCP-IP) family of networking

protocols was developed under the auspices of the Department of Defense to

standardize communication mechanisms within Department of Defense networks such

as the ARPANET.

The protocols are documented in a collection of working papers known as Requests for

Comments (RFCs). Appropriate RFC numbers appear throughout this document as

new protocols are introduced.

Requirements

TCP-IP has both hardware and software requirements.

Hardware

• Ethernet

• Cooperating host (yours or theirs)

• 110X/118X with an Ethernet controller (usually co-resident on an otherwise

inhabited module)

• XCVR interface cable

• XCVR installed on an Ethernet with a logical (direct or internet) connection to the

cooperating host.

Software

You need the files enumerated in the section titled "Interlisp Files." Files loaded by the

high-level modules TCPFTP, TCPFTPSRV, TCPCHAT, and TCPTFTP automatically

load their dependencies. If you load files from floppy, you must load their dependencies

first:

File Dependencies

TCP TCPLLIP

TCPCHAT TCP, CHAT

TCPCONFIG None

TCPDEBUG TCP

TCPDOMAIN TCPUDP

TCPFTP TCPNAMES, TCP

TCPFTPSRV TCPFTP

TCPHTE None

TCPLLAR None

TCPLLICMP None

TCPLLIP TCPHTE, TCPLLICMP, TCPLLAR

TCPNAMES None

TCPTFTP TCPUDP

TCPUDP TCPLLIP

254 Lisp Library Modules, Release 1.15, TCP-IP

TCP-IP

User Interface

TCP does not have a user interface module of its own. Its functions and variables are

accessible via an Interlisp Executive, and you can direct some of its debugging

information to a window.

As a network protocol module, it extends capability to other programs which may have

their own window interfaces, for example, Chat and FileBrowser.

Installation

The first step in installing TCP-IP is to add your workstation to a network supporting

TCP-IP and communications with others on the net. The rest of this section contains a

step-by-step set of directions for this installation.

After you are on the network, load the required .LCOM modules for the type of service

you want. For a full description of these modules, see the Interlisp Files section.

Module Implementation

TCPFTP TCP-based file transfer protocol

TCPFTPSRV TCP-based FTP server

TCPCHAT TELNET protocol for the Chat system

TCPTFTP TFTP protocol

Obtaining Network Addresses

The first thing you need to do is to get a TCP-IP address assigned to each of your

workstations from your network administrator. If your site supports Domains, get the

name of your local domain and the addresses of your domain server(s) from your

network administrator. You will also need to know the network addresses and

operating system of the hosts you want to communicate with and the addresses of any

network gateways you have.

Note: The maximum length of the domain and organization fields is 20 characters

each.

Be sure to find out whether your net is a true Class A, B or C network and is not broken

up into subnets. If it is broken up into subnets, be sure to read the discussion on

SUBNETMASKs in the Primer on IP Networks section.

Differences between TCP and the Medley File Systems

When running TCP-IP to a Sun from an 11xx, directory enumeration on an unmatched

directory path returns a listing for the top-level directory of the logged-in user. The

TCPFTP protocol does not support directory creation.

Warning: When running TCP-IP to a Sun, a file which is still open on the Sun can be

deleted.

Creating HOST.TXT File

Create a HOSTS.TXT file containing entries for the TCP-IP hosts needed by the user

community and place a copy of the file on either a directory contained in the

DIRECTORIES search path of each workstation on the net or the local disk of each

Interlisp workstation.

255Lisp Library Modules, Release 1.15, TCP-IP

TCP-IP

The following is a sample HOSTS.TXT file:

; Hosts.txt,

; Internet Hosts Table for Networks 192.20.10.0 and 174.23.0.0

; 12-Dec-86

;

; The format of this file is documented in RFC 810, "DoD Internet

; Host Table Specification", which is available online at SRI-NIC

; as the file

; [SRI-NIC]<RFC>RFC952.TXT

;

; It may be retrieved via FTP using username ANONYMOUS with

; any password.

;

; or as the file

; [INDIGO]<RFC>RFC952.TXT

; Read access to GV World. Valid GV credentials required.

;

; The format for entries is:

;

; GATEWAY: ADDR, ADDR : NAME : CPUTYPE : OPSYS : PROTOCOLS :

; HOST: ADDR, ALTERNATE-ADDR (if any): HOSTNAME,NICKNAME : CPUTYPE :

; OPSYS : PROTOCOLS :

;

; Where:

;; ADDR = internet address in decimal, e.g., 26.0.0.73

;; CPUTYPE = machine type (Xerox-11xx, VAX-11/780, SUN, etc.)

;; OPSYS = operating system (UNIX, TOPS20, TENEX, VMS, Interlisp, etc.)

;; PROTOCOLS = transport/service (TCP/TELNET, TCP/FTP, etc.)

;; : (colon) = field delimiter

;; :: (2 colons, NO space between) = null field

;

HOST : 192.20.10.1 : Bach : Xerox-1108 : Interlisp : TCP/TELNET, TCP/FTP

:

HOST : 192.20.10.3 : PARC-VAXC : VAX-11/780 : UNIX : TCP/TELNET, TCP/FTP

:

HOST : 192.20.10.15 : Oberon : VAX-11/780 : VMS : TCP/TELNET, TCP/FTP :

HOST : 192.20.10.71 : Explorer : TI-EXPLORER : TOPS-20 : TCP/TELNET,

TCP/FTP :

HOST : 174.23.77.22 : Sunrise : SUN : UNIX : TCP/TELNET, TCP/FTP :

HOST : 174.23.30.21 : Rutgers : VAX-11/780 : TOPS-20 : TCP/TELNET,

TCP/FTP :

HOST : 174.23.76.21 : Simba : SYMBOLICS : SYMBOLICS-3600 : TCP/TELNET,

TFP/FTP :

GATEWAY : 192.20.10.240, 174.23.77.250 : Hellsgate : VMS : IP/GW :

This example shows a host table that indicates that there are four hosts (Bach, PARC-

VAXC, Oberon, and Explorer) on net 192.20.10.0, three hosts (Sunrise, Rutgers, and

Simba) on net 174.23.0.0 and a gateway (Hellsgate) that connects the two.

In regard to the OPSYS field in the HOSTS.TXT file, it is preferable to use values

recognized by the Lisp variable NETWORKOSTYPES. Interlisp is the default value if a

host’s OSType is not declared.

256 Lisp Library Modules, Release 1.15, TCP-IP

TCP-IP

Note that if any host is accessible via another network protocol (for example, PUP or

NS), you may desire to call the host by an unambiguous name when it is accessed via

TCP. You can do this by giving it an unambiguous name in the HOSTS.TXT file.

If you ever modify the HOSTS.TXT table after TCP.LCOM has been loaded, use the

function (\HTE.READ.FILE ’HOSTTABLE) to reread the file.

For example,

(\HTE.READ.FILE ’{DSK}<LISPFILES>HOSTS.TXT)

TCP.ALWAYS.READ.HOSTS.FILE [Variable]

Initially set to T. Setting it to NIL causes the system to parse the HOSTS.TXT

file only when the filename (stored in the configuration file) is different from the

previously read filename, or the write date of the file has changed. The

HOSTS.TXT file will always be read at least once when loading the software into

a clean sysout.

Creating the Local IP.INIT File

TCP.CONFIGURE brings up a menu that you complete.

If any field does not apply to your site, leave it blank.

257Lisp Library Modules, Release 1.15, TCP-IP

TCP-IP

Selecting Apply! writes the file {DSK}<LISPFILES>IP.INIT to the local disk.

Note: The file {DSK}<LISPFILES>IP.INIT must exist on each Interlisp machine

before TCP.LCOM is loaded. And this file must remain on the workstation and

must not be copied to other workstations. Also, the font GACHA 12 MRR must

be available.

Selecting Reset! resets the menu to the original state.

Selecting Quit! closes the window.

You must perform the TCP.CONFIGURE step individually on each workstation, but you

need to perform it only once. As long as there is an IP.INIT file on the workstation, the

TCP-IP module will be configured automatically whenever it is loaded or initialized.

If you change your IP.INIT file while TCP-IP is running, you will be prompted to

confirm Restarting TCP. In most cases, you should confirm the restart.

Adding Host and Operating System Names to NETWORKOSTYPES

The variable NETWORKOSTYPES is used during Chat to determine the sequence of

characters to send when performing auto-login. There should be an entry in

NETWORKOSTYPES for each TCP host that you want to communicate with in the form

(TCPHOSTNAME . OSTYPE).

For example:

((SUNRISE . UNIX)(RUTGERS . TOPS-20) etc)

End-of-Line Conventions

To ensure correct line spacing, set the TCPFTP.EOL.CONVENTION switch. The

associated function takes one argument, TYPE, which sets it correctly. TYPE can be one

of the following:

CR Set EOL to CR

LF Set EOL to LF

CRLF Set EOL to CRLF

OS Set it to something based on the OS

Other Set it to the default (CRLF)

258 Lisp Library Modules, Release 1.15, TCP-IP

TCP-IP

Loading TCP

Make sure the variables DIRECTORIES and LISPUSERSDIRECTORIES point to the

location of the .LCOM files of TCP-IP, or that they are in the connected directory.

You can then load TCP.LCOM which in turn loads its dependent files.

If you plan to do TCP file transfers, load TCPFTP.

If you plan to use the 11xx Lisp workstation as a TCPFTP Server host, load

TCPFTPSRV. To start the server, evaluate (TCPFTP.SERVER). An Interlisp machine

running the TCPFTP server should be identified as a TOPS-20 machine in the other

Interlisp machines’ HOSTS.TXT table. It will thus masquesrade as a TOPS-20 server.

The rest is automatic. You can treat an Interlisp host running the server just like any

other TCPFTP server. The default path for resolving filenames is {DSK}<LISPFILES>,

but you can change or override it.

For example, assume {ERIC} is a machine running the FTP server. From another

machine which has TCPFTP loaded, you can do SEE {ERIC}{FLOPPY}FOO, which will

type out the file FOO located on the floppy drive of {ERIC}.

If you plan to Chat to a TCP host, load CHAT, CHATTERMINAL, DMCHAT and then

TCPCHAT.LCOM. Be sure that hosts with which you wish to chat have their

NETWORKOSTYPES set.

If you plan to use the TCP Trivial File Transfer Protocol, load TCPTFTP.

Interlisp’s TCPTFTP also provides a TCPTFTP server. Load TCPTFTP.LCOM and

evaluate (TFTP.SERVER). You can then use the appropriate TFTP commands to copy

files from the Interlisp machine; for example TFTP.PUT and TFTP.GET.

Verifying TCP Connections

Load TCPDEBUG. Execute (TCPTRACE T) and you will be prompted to open a window

to show TCP packets. Select INCOMING, OUTGOING and CONTENTS from the

window’s menu. If the host that you are communicating with has a TCP echoserver

process you can then try (TCP.ECHOTEST ’HOSTNAME 3) . For example, using the

above HOSTS.TXT file this would be (TCP.ECHOTEST ’SIMBA 3).

You will be prompted to open a window for the echo test and should see text, for

example:

This is byte number 21

This is byte number 45

This is byte number 69

You should also see packets being sent and received in the TCPTRACE window.

Note: If a remote host is not running a TCP echo server process you will not get this

response.

Connecting, Transferring Files, and Chatting to a Host

First log in to the host by typing (LOGIN ’HOST); for example, (LOGIN ’SUNRISE).

You will then be prompted for a user name and password. This will be sent to the host

when you attempt to CONNect or Chat.

259Lisp Library Modules, Release 1.15, TCP-IP

TCP-IP

Use the command CONN {HOST}<DIRECTORY>SUBDIR> to connect to a particular host.

The local directory delimiters < and > can be used when connecting or file transferring.

When communicating with a remote host you can specify the directory path as

<DIRECTORY> SUBDIRECTORY> SUBDIRECTORY... , and the appropriate delimiters

are presented to the remote host. Determination of what delimiter is presented

depends upon the value of the OSTYPE field in the HOSTS.TXT file. If the field is

empty, OSTYPE = ’Interlisp’ is the default.

Using the above HOST.TXT file as an example you can do the following:

UNIX CONN {SUNRISE}<DIR>SUBDIR>SUBDIR>

VMS CONN {OBERON}<DIR>SUBDIR>SUBDIR>

TOPS-20 CONN {RUTGERS}<DIR>SUBDIR>

SYMBOLICS-3600 CONN {SIMBA}<DIR>SUBDIR>

You can then do a DIR of the remote host, COPYFILE files to and from the host,

assuming TCPFTP is loaded, MAKEFILE, etc.

Since the TCPFTP specification does not specify file type conventions, the variable

TCP.DEFAULT.FILETYPES is used to associate a file’s extension with the type of file it

is. It is a list in the form (extension . type); for example,

((LCOM . BINARY) (TXT . TEXT) etc)

Since UNIX systems are case-sensitive, you should also have the lower case version of

the file extensions on this list. If a file extension is not found on this list, the variable

TCP.DEFAULTFILETYPE is used as the default file type during file transfers.

To Chat to a remote host, select Chat from the background menu and enter the host

name when prompted. You will be prompted for a Chat window and should then be

able to chat to the host. If you have problems opening the Chat connection, try (CHAT

’HOST ’NONE). This will suppress the automatic login.

Warning: If no username or password has been provided for the TCP host, the

default ID and password will be sent. This may create a security hazard.

Making a Sysout that Contains TCP-IP

1. Load Medley sysout.

2. Create TCP host table.

3. Load TCPCONFIG.LCOM and run TCP.CONFIGURE if there is no IP.INIT file on

local disk.

4. Load TCP.LCOM.TCPFTP.LCOM, TCPCHAT.LCOM.

5. Load TCPDEBUG.LCOM if you always want to have trace and echo facilities

available.

6. Evaluate (TCP.STOP)

7. Evaluate (STOPIP)

8. Evaluate

(SETQ RESTARTETHERFNS (LIST ’(LAMBDA NIL (AND \IPFLG

(\IPINIT)))))

9. Load any other files that you want in this sysout.

260 Lisp Library Modules, Release 1.15, TCP-IP

TCP-IP

10. Evaluate SYSOUT to the device of your choice. Evaluate (\TCP.INIT) to re-

enable TCP.

11. Load TCP sysout on other machine.

12. Create TCP host table.

13. Evaluate (TCP.CONFIGURE) and identify the new machine.

14. Evaluate (\TCP.INIT) to re-enable TCP.

15. Evaluate (\IPINIT) to restart the IPLISTENER process.

TCP-IP Protocol Layers

The TCP-IP family consists of four principal protocol layers: the link layer, the internet

layer, the transport layer, and the application layer.

Link Layer

The physical link layer, the medium for transferring packets between hosts, is assumed

to be any medium capable of transporting packets of data between hosts. Common link

layers in this family include the Ethernet and the ARPANET.

The Address Resolution (AR) Protocol enables hosts to map between internet addresses

and link layer addresses.

For example, the internet layer protocol IP (see below) uses a 32-bit combined unique

host and network address; the host address field is of variable size and depends on the

pattern encoded in the high-order bits of the address. On the other hand, the 10 MB

Ethernet uses a fixed-size 48-bit unique host address. The Address Resolution protocol,

documented in RFC826, allows hosts to discover dynamically the link layer address

equivalents of other internet hosts.

Internet Layer

The internet layer is responsible for routing packets between hosts. Unlike the link

layer, the internet layer is capable of moving packets between hosts that are not

connected to the same network. The term IP in TCP-IP refers to the Internet Protocol,

the protocol that performs this task in the TCP-IP family. IP is documented in RFC791.

IP is not assumed to be error-free; packets may be lost or duplicated while moving

through the internet. It is the responsibility of the transport layer (see below) to

guarantee perfect delivery, should the client require it.

IP also depends on an associated protocol called the Internet Control Message Protocol

(ICMP). ICMP is responsible for handling exception conditions that arise between hosts

using IP. Such conditions include the inability to deliver packets, errors in packet

formats, etc. ICMP is documented in RFC792.

Transport Layer

The transport layer is responsible for assuring error-free, duplicate-free, sequenced

delivery of packets between communicating processes. The most common transport

layer is TCP, the Transport Control Protocol. TCP maintains the appearance of a

perfect byte stream between processes. TCP is documented in RFC793.

261Lisp Library Modules, Release 1.15, TCP-IP

TCP-IP

An unreliable transport layer called the User Datagram Protocol (UDP) allows for

packet exchange between communicating processes, but makes no attempt to guarantee

delivery, suppress duplication, etc. Clients of UDP must provide their own error-

recovery mechanisms if necessary. UDP is documented in RFC768.

262 Lisp Library Modules, Release 1.15, TCP-IP

TCP-IP

Application Layer

Many applications exist in the TCP-IP family. The most common applications are file

transfer, virtual terminal interaction, and mail delivery.

File Transfer

Two principal file transfer applications are in use: FTP, based on TCP and documented

in RFC765; and TFTP (the Trivial File Transfer Protocol), based on UDP and

documented in RFC783. Both are implemented in Interlisp, and are discussed at

greater length below.

Virtual Terminal Interaction

The TELNET protocol, documented in RFC854, specifies the protocol for virtual

terminal interaction between a user and a remote system. The Chat module will use

the TELNET protocol to connect to TCP-only hosts.

Mail Delivery

The Simple Mail Transfer Protocol (SMTP) enables the delivery of mail between system

elements using TCP. It is not currently implemented in Interlisp. SMTP is

documented in RFC821. The format of messages is described in RFC822.

Primer on IP Networks

The Internet Protocol internetwork is a collection of IP networks, a subset of which may

communicate with each other. Each network is assigned an IP address, which is

composed of a network number and a host number. No two hosts in the internetwork

have the same network and host number combination; the composition of the network

and host number for a particular host unambiguously identifies that host within the

internetwork.

Network Addresses

The address space of the internetwork is formed of the concatenated network and host

numbers of its constituent hosts, and is 32 bits long. This 32-bit address space is

currently partitioned into three classes of network addresses, known as class-A, class-B,

and class-C:

Class-A addresses consist of 7 bits of network number and 24 bits of host number.

Class-B addresses consist of 14 bits of network number and 16 bits of host number.

Class-C addresses consist of 21 bits of network number and 8 bits of host number.

Thus, there may be 128 class-A networks, 16,384 class-B networks, and over two

million class-C networks. In addition, a single class-A network has the capacity to

address over 16 million hosts, while a class-C network can address only 255 hosts. The

class to which a particular IP network belongs may be determined by examining the most

significant bits of its address.

Network number assignments are strictly controlled by a central authority.

Institutions requesting network assignments are given class-A, -B, or -C networks

263Lisp Library Modules, Release 1.15, TCP-IP

TCP-IP

depending on their estimated eventual size (numbers of hosts). Sites without assigned

network numbers may request an assigned number by contacting:

Joyce Reynolds

USC Information Sciences Institute

4676 Admiralty Way

Marina del Rey, California 90292-6695

Phone: (213) 822-1511

ARPANET: JKREYNOLDS@USC-ISIF.ARPA

IP addresses are normally stored or exchanged as single 32-bit numbers. The printed

representation of an IP address takes the form W.X.Y.Z, where W through Z are the

decimal equivalents of each of the 8--bit bytes that constitute the address. Class-A

addresses are of the form N.H.H.H; class-B addresses are of the form N.N.H.H; and

class-C addresses are of the form N.N.N.H, where N indicates a byte of the network

number, and H indicates a byte of the host number.

Class-A: N.H.H.H The first number is between 0-127 (for example, 122.0.2.1)

Class-B: N.N.H.H The first number is between 128-191 (for example, 153.4.23.5)

Class-C: N.N.N.H The first number is between 192-255 (for example, 194.5.67.3)

For example, 36.47.0.12 is an address on network 36, a class-A network; and

192.10.200.1 is an address on network 192.10.200, a class-C address.

Broadcast Address

The Internet Protocol defines an address in which the host field contains all ones to be a

broadcast address for its network. Thus, the address 36.255.255.255 is the broadcast

address on network 36, and 192.10.200.255 is the broadcast address on network

192.10.200.

Subnets

It is quite common for class-B networks to be partitioned into a set of smaller

subnetworks, which are really class-C networks, but have the wrong network number to

be recognized as class-C networks. This is just as common is partitioning a class-A

network into many class-B subnetworks. An implementation of TCP-IP that is not

prepared to handle this violation of the IP standard will not be able to communicate

with hosts on the same network but different subnetworks. Fortunately, extending an

IP implementation to support subnetworks is straightforward.

SUBNETMASK is a 32-bit parameter that resembles an IP address. The purpose of the

mask is to enable a host to determine when a destination IP address is or is not on the

same subnet as the sending host itself.

The SUBNETMASK has the following properties:

• The bitwise-AND of a source host’s address (for example, this machine) and the

SUBNETMASK must be equal to the bitwise-AND of a destination host’s address and

the SUBNETMASK if and only if the two hosts are on the same subnetwork.

• The bitwise-AND of a source host’s address and the SUBNETMASK must not be equal

to the bitwise-AND of a destination host’s address and the SUBNETMASK if and only if

the two hosts are on different subnetworks.

As an example, consider network 39.0.0.0. This is a class-A network. Suppose this

network consists of a number of subnetworks; for example, subnetworks with numbers

like 39.47.*.* and 39.9.*.*. According to the IP specification, these subnetworks should

264 Lisp Library Modules, Release 1.15, TCP-IP

TCP-IP

really be one monolithic network, such that a host desiring to communicate with any

other host whose address begins with 39... should have to take no special action with

regard to routing packets to that host. Let us assume that this is not the case. The

only way a machine has of telling which hosts are on different networks is to compare

the masked version of the address with the masked version of its own address.

To continue the example further, assume the following:

Host A has address 39.9.0.6. Host A’s SUBNETMASK is 39.255.0.0.

Host B has address 39.9.0.7. Host B’s SUBNETMASK is also 39.255.0.0.

Host C has address 39.47.0.6. Host C’s SUBNETMASK is also 39.255.0.0.

When host A sends to host B, it compares its masked address with host B’s masked

address, and finds them equal:

39.9.0.6 AND 39.255.0.0 = 39.9.0.0; 39.9.0.7 AND 39.255.0.0 = 39.9.0.0

However, when host A sends to host C, it finds the masked comparison does not match:

39.9.0.6 AND 39.255.0.0 = 39.9.0.0; 39.47.0.6 AND 39.255.0.0 = 36.47.0.0

Class-A networks that are subdivided into class-B subnetworks have SUBNETMASKs that

look like X.255.0.0, where X is the class-A network number. Likewise, class-B networks

subdivided into class-C subnetworks have SUBNETMASKs that look like X.Y.255.0, where

X.Y is the class-B network number. Finally, networks in which subnet routing is not in

use have SUBNETMASKs identical to their network addresses. For example, if network

36 did not use subnet routing, its SUBNETMASK would be 36.0.0.0.

The definitive document on this approach to subnetwork routing is RFC940.

Interlisp Files

The files that implement the TCP-IP protocol suite are divided into two classes: those

that implement low-level functionality, normally not of interest to general users, and

those that implement higher-level functionality for user programs (either application or

transport layer protocols).

The higher-level functions reside in the files TCP, TCPDEBUG, TCPFTP, TCPCHAT,

TCPNAMES, TCPPUDP, and TCPFTP.

TCP The TCP layer. Implements TCP streams, based on the buffered

TCP device (for example , BIN runs in microcode).

TCPDEBUG Contains routines to help debug TCP and TCP-based applications.

TCPFTP Contains the TCP-based file transfer protocol. Creates a new

virtual I/O device, allowing transparent filing operations with TCP-

only hosts.

TCPFTPSRV Contains the TCP-based FTP server program. When the server

program is running on a Xerox 1100-series workstation, other TCP-

based hosts may transfer files to and from the workstation.

TCPNAMES Implements translation of file name formats between operating

system types.

TCPCHAT Implements the TELNET protocol for the Chat system.

TCPUDP Contains the UDP layer.

265Lisp Library Modules, Release 1.15, TCP-IP

TCP-IP

TCPTFTP Implements the TFTP protocol. Creates a buffered TFTP device to

allow efficient bulk transfer between hosts.

The low-level functions reside in the files TCPLLIP, TCPLLICMP, TCPLLAR, TCPHTE, and

TCPCONFIG.

TCPLLIP Implements the IP layer.

TCPLLICMP Implements ICMP for IP.

TCPLLAR Implements ARP for the 3- and 10-megabyte Ethernets.

TCPHTE Implements the functionality necessary to parse RFC810-style

HOSTS.TXT files. This allows name-to-address translation within

the Interlisp host.

TCPCONFIG Provides a function to carry on a configuration dialog when TCP-IP

is first installed on a machine. This file needs to be loaded only

once, to produce the file {DSK}IP.INIT. Thereafter, TCPCONFIG is

needed only to reestablish or modify IP parameters.

 TCPDOMAIN Implements a domain host address lookup client.

TCP

TCP implements the transport control protocol for Interlisp. After TCP is loaded,

Interlisp supports a TCP stream capable of bidirectional I/O to a remote system

element. The following functions are intended for use by applications programs.

(TCP.OPEN DST.HOST DST.PORT SRC.PORT MODE ACCESS NOERRORFLG

OPTIONS) [Function]

Opens a TCP stream to DST.PORT on DST.HOST from SRC.PORT.

DST.HOST can be a host name, an IP host address in text format (such as

192.10.200.1), or the 32-bit integer representation of an IP host address as

returned by the function DODIP.HOSTP (which is documented under TCPLLIP).

DST.PORT is a 16-bit number representing a TCP port open in LISTENING

mode on the remote system.

SRC.PORT is also a 16-bit number, but may be supplied as NIL to obtain a

defaulted unique local port number.

MODE is either ACTIVE, meaning to act as initiator of the connection, or

PASSIVE, meaning to wait for a remote system element to initiate the

connection.

ACCESS is either INPUT, OUTPUT, or APPEND (OUTPUT and APPEND are treated

in the same manner).

If NOERRORFLG is non-NIL, TCP.OPEN will return NIL if the connection fails;

otherwise, TCP.OPEN will call ERROR to signal failure.

OPTIONS is an optional parameter which allows the application program to

control some of the characteristics of the TCP connection. OPTIONS is supplied

in property-list format. Currently, the only recognized option is MAXSEG,

whose value should be the number of data bytes the remote TCP sender is

allowed to place into a single TCP segment (Ethernet packet). The maximum

value of MAXSEG is 536.

266 Lisp Library Modules, Release 1.15, TCP-IP

TCP-IP

If TCP.OPEN succeeds, it returns a STREAM open as specified by ACCESS. The

generic operations BIN, BOUT, PEEKBIN, BINS, BOUTS, READP, EOFP, OPENP,

GETFILEPTR, FORCEOUTPUT, and CLOSEF may be performed on streams opened

for suitable access.

(TCP.OTHER.STREAM STREAM) [Function]

Returns the STREAM open in the other direction with respect to STREAM (for

example, if STREAM is open for INPUT, TCP.OTHER.STREAM returns a

STREAM open for OUTPUT, and vice versa).

(TCP.URGENT.EVENT STREAM) [Function]

Returns an event upon which a user process may wait for URGENT data to

arrive on STREAM.

(TCP.URGENTP STREAM) [Function]

Returns T if STREAM is currently reading URGENT data.

(TCP.URGENT.MARK STREAM) [Function]

Marks the current point in STREAM as the end of URGENT data. STREAM

must be open for OUTPUT.

(TCP.CLOSE.SENDER STREAM) [Function]

Closes the output side of STREAM, which may be either the INPUT or OUTPUT

stream for the connection. This function differs from CLOSEF in that the INPUT

side of the connection is not closed (although the remote system element may

close the connection once the local output side of the connection is closed).

(TCP.STOP) [Function]

Disables the TCP protocol, closing all open TCP streams.

(\TCP.INIT) [Function]

(Re)initializes the TCP module.

\TCP.DEFAULT.RECEIVE.WINDOW [Variable]

Is the default number of bytes allowed outstanding from the remote system. It

is initially 4,096.

\TCP.DEFAULT.USER.TIMEOUT [Variable]

Is the default number of milliseconds a remote system element is allowed to

remain silent before the TCP connection is declared broken. It is initially

60,000.

TCPDEBUG

TCPDEBUG implements tracing and test functions used to debug TCP and TCP-based

applications.

267Lisp Library Modules, Release 1.15, TCP-IP

TCP-IP

(TCPTRACE) [Function]

Opens a trace window and attaches a menu to the window’s top.

The menu entries represent state changes or data elements to be traced; each

entry is a toggle. Clicking on the toggle once will activate the trace of the

particular element and will gray-over the entry; clicking a second time will

deactivate the tracing and ungray the menu item. The following data

elements/transitions may be displayed:

Contents Displays a line’s worth of packet contents. The Incoming

or Outgoing switch must be on.

Incoming Displays incoming data.

Outgoing Displays outgoing data.

Checksums Displays checksums for each TCP segment.

Time Displays the time interval since the last action on the

connection.

Transitions Displays state transitions on the TCP state machine.

(PPTCB TCB FILE) [Function]

Prints the state of a TCP connection. PPTCB is normally the INFO function for

the process that monitors a connection; thus, selecting INFO in the process

status window will cause a window to pop up containing a report on the status

of the associated connection.

(TCP.ECHOTEST HOST NLINES) [Function]

Opens a TCP connection to the TCP echo port on HOST and sends NLINES of

random text. The echo responses are displayed in a window. If NLINES is NIL,

the echo test will run forever.

(TCP.ECHO.SERVER PORT) [Function]

Starts a TCP echo server on PORT (defaults to the TCP echo port). It is usually

more useful to start the echo server as a process by doing (ADD.PROCESS

’(TCP.ECHO.SERVER PORT)).

(TCP.SINK.SERVER PORT) [Function]

Starts a TCP sink server on PORT (defaults to the TCP sink port). Any data

sent to this port will be acknowledged and discarded. As with the TCP echo

server, it is usually more useful to start this server as an independent process.

268 Lisp Library Modules, Release 1.15, TCP-IP

TCP-IP

(TCP.FAUCET HOST PORT NLINES) [Function]

If HOST is non-NIL, this function opens a connection to PORT on HOST and

sends NLINES of text (the default is to send lines of text forever). PORT

defaults to the TCP sink port. If HOST is NIL, this function waits for a remote

system to connect to the TCP faucet port and then sends out NLINES of random

text.

TCPFTP

TCPFTP implements a virtual I/O device that performs Lisp filing operations

transparently using the RFC765 FTP protocol. The standard filing operations of

reading, writing, renaming, deleting, and directory enumeration are supported by the

TCPFTP device. However, neither random access filing nor GETFILEINFO are

supported, as there is no protocol specification for performing these operations on files.

Interlisp operations such as RECOMPILE will not work when files are stored on TCPFTP

file servers.

Once TCPFTP is loaded, filing operations should be transparent to users; no additional

initialization need be performed. There are, however, three important global variables:

TCPFTP.EOL.CONVENTION [Variable]

This variable controls the end–of–line convention usedwith files accessed via

 TCP. Generally, you should set it to match the convention on the system where

the files reside. The value can be one of those shown below.

(TCPFTP.EOL.CONVENTION TYPE) [Function]

Sets the variable TCP.EOL.CONVENTION to TYPE. TYPE can be one of the

following:

CR Set EOL to CR

LF Set EOL to LF

CRLF Set EOL to CRLF

OS Set it to something based on the OS

Other Set it to the default (CRLF)

TCPFTP.DEFAULT.FILETYPES [Variable]

This variable is an association list, keyed by common extensions of file names,

and contains appropriate file types (for example, TEXT or BINARY) for such files.

The TCPFTP protocol provides no mechanism for determining the type of a file

about to be retrieved. The file type is usually known in the case of output

operations (for example, COPYFILE or MAKEFILE to a file server). However, in

the case of COPYFILE from a file server, the TCPFTP module has to infer the

file type from other knowledge. The module tries to match the extension of the

file name with an entry on the list TCPFTP.DEFAULT.FILETYPES. If it finds a

match, it uses the value of the entry in the list as the file type of the file; if it

doesn’t find a match, it uses the value of TCP.DEFAULTFILETYPE for the file

type of the file.

TCP.DEFAULTFILETYPE [Variable]

If no matching extension is found for the file being opened, the TCPFTP module

uses the value of TCP.DEFAULTFILETYPE as the file type of the remote file.

The initial value of TCP.DEFAULTFILETYPE is BINARY.

269Lisp Library Modules, Release 1.15, TCP-IP

TCP-IP

The following functions are available for debugging broken file server

connections.

(FTPDEBUG FLG) [Function]

If FLG is T, this function opens a scrolling trace window that displays FTP

commands as they are issued. PUPFTP commands will also be displayed in this

window (the window is the value of FTPDEBUGLOG).

(\TCP.BYE HOST) [Function]

Breaks an FTP connection to HOST.

(\TCPFTP.INIT) [Function]

(Re)initializes the TCPFTP module.

TCPFTPSRV

The TCPFTPSRV module contains a program which implements an FTP service for

Interlisp. When this program is running on a workstation, other hosts are able to store

and retrieve files from the workstation.

(TCPFTP.SERVER PORT DEFAULT.FILE.PATH) [Function]

To start the server program, evaluate the form (TCPFTP.SERVER). If PORT is

supplied, the FTP server program will listen for connections on the TCP port

specified by PORT; otherwise, the server will listen on the default FTP server

port, port 21.

If DEFAULT.FILE.PATH is supplied, the initial path for resolving file names

will be relative to DEFAULT.FILE.PATH; the default value of this variable is

{DSK}<LISPFILES>.

TCPFTP.SERVER.USE.TOPS20.SYNTAX [Variable]

This variable controls whether file names sent back to FTP client programs are

formatted in Tops-20 or Interlisp syntax. If the variable is true (the default), all

file names will be formatted in Tops-20 syntax. This permits an Interlisp

workstation to masquerade as a Tops-20 mainframe for the purposes of file

transfer to and from other vendors’ machines.

TCPNAMES

The TCPNAMES module provides a set of functions for translating among the file-

naming conventions of different operating systems. This is needed by the TCPFTP

module in order for it to convert between Interlisp format file names and the file name

formats of other operating systems.

(REPACKFILENAME.STRING NAME FOROSTYPE) [Function]

NAME is a file name in some operating system’s format. FOROSTYPE is the

name of an operating system. REPACKFILENAME.STRING attempts to translate

NAME into a format acceptable to the operating system named by

FOROSTYPE. NAME may be a string or atom; the function always returns a

string.

270 Lisp Library Modules, Release 1.15, TCP-IP

TCP-IP

Currently acceptable operating system types are:

IFS

INTERLISP

MS-DOS

SYMBOLICS-3600

TENEX

TOPS-20 (also TOPS20)

UNIX

VMS

(TI-Explorers should use TOPS-20 as their operating system.)

The correspondence between the target operating system type and the file name

translation function is maintained in an extensible hash table.

(\REPACKFILENAME.NEW.TRANSLATION OSTYPE FUNCTION) [Function]

This function adds a new file name translation function for a new operating

system type. The function must be a LAMBDA-NOSPREAD function, and must

be prepared to receive either a single property-list format argument, such as

would be returned by UNPACKFILENAME, or an arbitrary number of arguments

in property-list format.

File names in the above format will be passed to the translation function

adhering to the conventions of many operating systems; the function must

recognize the operating system type and produce the desired output format,

which must be a string.

\REPACKFILENAME.OSTYPE.TABLE [Variable]

This variable is the hash table that stores the correspondence between

operating system types and translation functions.

TCPCHAT

TCPCHAT implements the TELNET protocol for virtual terminal I/O between Interlisp

and a remote system. Once loaded into Interlisp, the standard Chat system will use

TCP TELNET to communicate with hosts that are believed to support the protocol.

No user-callable functions reside in this module, although the following variables may

be of interest.

TCPCHAT.TELNET.TTY.TYPES [Variable]

This variable is an association list that maps internal names of Chat terminal

emulators to official terminal names as specified in RFC884, the TELNET

Terminal Type Option. This allows TCPCHAT to set the user’s terminal type

automatically when a connection is established.

TCPCHAT.TRACEFLG [Variable]

If this variable is non-NIL, TELNET negotiations will be printed to

TCPCHAT.TRACEFILE (see below). This is sometimes useful in debugging

negotiation problems.

TCPCHAT.TRACEFILE [Variable]

TELNET negotiations are printed to this file if TCPCHAT.TRACEFLG is non-NIL.

271Lisp Library Modules, Release 1.15, TCP-IP

TCP-IP

TCPUDP

UDP implements the user datagram protocol. The following functions are meant to be

called by client applications.

(UDP.INIT) [Function]

Initializes the UDP module. This function is normally called when UDP is

loaded and should not need to be called again under normal circumstances.

(UDP.STOP) [Function]

Disables the UDP module, closing any open UDP sockets.

(UDP.OPEN.SOCKET SKT# IFCLASH) [Function]

Opens a socket for UDP operations.

SKT#, if supplied, is a 16-bit number and will default to a number between

1,000 and 65,535.

IFCLASH specifies what to do if the requested socket is already open and is

handled as in OPENPUPSOCKET and OPENNSOCKET (see the IRM).

It returns an instance of an IPSOCKET.

(UDP.CLOSE.SOCKET IPSOCKET NOERRORFLG) [Function]

Closes an open IPSOCKET. If IPSOCKET is not an open socket and

NOERRORFLG is NIL, an error will occur; otherwise, NIL is returned if the

socket is not active, and T is returned if the socket is active.

Any remaining packets on the socket’s input queue are discarded when this

function is called.

(UDP.SOCKET.EVENT IPSOCKET) [Function]

Returns an event that a process may use to wait for packet arrival on

IPSOCKET.

(UDP.SOCKET.NUMBER IPSOCKET) [Function]

Returns the socket number of IPSOCKET.

(UDP.GET IPSOCKET WAIT) [Function]

Returns the next packet waiting on IPSOCKET. If no packets are waiting, does

one of the following based on the value of WAIT.

NIL Returns immediately.

T Waits forever for a packet to arrive.

a number FIXP waits up to WAIT milliseconds for a packet to

arrive and returns NIL if none arrived during that time.

Thus, this function is like GETPUP and GETXIP.

(UDP.SETUP UDP DESTHOST DESTSOCKET ID IPSOCKET REQUEUE) [Function]

Initializes a fresh packet (as returned from \ALLOCATE.ETHERPACKET). The

packet will be sent to DESTSOCKET on DESTHOST.

 ID is a number to be placed in the IP header ID field (zero is fine).

272 Lisp Library Modules, Release 1.15, TCP-IP

TCP-IP

REQUEUE specifies what to do with the packet after it is sent; NIL (the

default) means no special treatment; FREE means to release the packet and

return it to the free packet queue. Any instance of a SYSQUEUE will cause the

packet to be queued on the tail of the specified queue.

UDP.SETUP initializes all IP and UDP fields and sets the packet up as a

minimum-length UDP packet.

(UDP.SEND IPSOCKET UDP) [Function]

Sends UDP, a UDP-formatted packet, out from IPSOCKET.

(UDP.EXCHANGE IPSOCKET OUTUDP TIMEOUT) [Function]

Sends OUTUDP out from IPSOCKET and waits TIMEOUT milliseconds for a

response; returns NIL if no response came in during the specified interval, or

the packet that did come in during that time.

Clears the socket’s input packet queue before waiting for a packet to arrive.

(UDP.APPEND.BYTE UDP BYTE) [Function]

Appends BYTE to the UDP data portion of UDP and increments the UDP and

IP length fields by one.

(UDP.APPEND.WORD UDP WORD) [Function]

Appends WORD to the UDP data portion of UDP and increments the UDP and

IP length fields by two.

(UDP.APPEND.CELL UDP CELL) [Function]

Appends CELL to the UDP data portion of UDP and increments the UDP and

IP length fields by four.

(UDP.APPEND.STRING UDP STRING) [Function]

Appends STRING to the UDP data portion of UDP and increments the UDP

and IP length fields by the length STRING.

TCPTFTP

TFTP implements the trivial file transfer protocol. This protocol is useful for

transferring unimportant files rapidly (for example, between workstations and

printers). The following user-callable functions exist.

(TFTP.PUT FROM TO PARAMETERS) [Function]

Sends a file to a TFTP host.

FROM may refer to any accessible file; TO must refer to a file accessible via

TFTP.

No attempt is currently made to translate between Interlisp file name syntax

and remote system file name syntax for TO.

For example, if TO resides on a UNIX host, it would take a syntax like

{HOST}/DIRECTORY/SUBDIRECTORY/FILENAME.

273Lisp Library Modules, Release 1.15, TCP-IP

TCP-IP

PARAMETERS is currently a list of parameters in the same format used by

OPENFILE in .PARAMETERS; for example ((EOLCONVENTION 1) (TYPE

TEXT)).

Note: TFTP transfers between Xerox Lisp and UNIX hosts initiated from

Xerox Lisp should have the PARAMETERS argument be

’((EOLCONVENTION 10)).

(TFTP.GET FROM TO PARAMETERS) [Function]

Gets a file from a TFTP host. FROM must be a file accessible by TFTP; TO may

be any file.

The file name syntax caveats for FROM are the same as for TO in TFTP.PUT.

PARAMETERS is also as in TFTP.PUT.

(TFTP.SERVER LOGSTREAM) [Function]

Starts a TFTP server process.

LOGSTREAM may be left NIL, causing a new window to appear when the

TFTP server is first invoked. Remote systems that support TFTP clients may

store or retrieve files through any Interlisp workstation running the TFTP

server.

The full Interlisp syntax for file names is supported; thus, requests to store files

whose names include hosts will result in the Interlisp workstation’s

transparently storing the files on the designated hosts.

(\TFTP.OPENFILE FILENAME ACCESS RECOG PARAMETERS) [Function]

Returns a STREAM to open for ACCESS on FILENAME.

PARAMETERS is the usual format; TYPE is the only recognized parameter

(BINARY opens a stream in octet format; TEXT, the default, opens a stream in

NETASCII format; see RFC783).

BIN, BOUT, READP, EOFP, etc., may be used on this stream.

The stream is not RANDACCESSP.

(\TFTP.CLOSEFILE STREAM) [Function]

Closes the open stream. This is normally useful for streams open for OUTPUT;

for INPUT streams, end-of-file will occur eventually.

TCPLLIP

For users planning implementations on top of IP, the following low-level TCP functions

are available.

IP Socket Access

(\IPINIT) [Function]

Reinitializes the IP world; for example, after some catastrophe.

(STOPIP) [Function]

Disables IP.

274 Lisp Library Modules, Release 1.15, TCP-IP

TCP-IP

(DODIP.HOSTP NAME) [Function]

If NAME is an integer, NAME is returned unaltered. If NAME is a text format

IP host address (such as 192.10.200.1), DODIP.HOSTP returns its integer

representation.

If NAME is a string or atom name, DODIP.HOSTP attempts to convert NAME to

its IP host address integer value, using information supplied in the HOSTS.TXT

file (see TCPHTE, below), followed by doing a domain query if TCPDOMAIN is

loaded.

If NAME is unknown, DODIP.HOSTP returns NIL.

If NAME is known, it is cached with its corresponding address so that the

function IPHOSTNAME may be used later to convert the address back to a name.

(IPHOSTNAME IPADDRESS) [Function]

Tries to convert IPADDRESS to a host name.

If IPADDRESS has no known name, it is converted to the text representation of

an IP address (for example, 192.10.200.1).

(IPTRACE MODE) [Function]

Turns on tracing of IP activity. This function is like PUPTRACE and

XIPTRACE, which are documented in the IRM.

If MODE is NIL, IP tracing is disabled.

If MODE is T, verbose IP tracing is enabled.

If MODE is PEEK, concise IP tracing is enabled. If MODE is either T or PEEK,

the user is prompted for a window into which trace output will be printed.

(\IP.ADD.PROTOCOL PROTOCOL SOCKETCOMPAREFN NOSOCKETFN INPUTFN

ICMPFN) [Function]

Defines a new IP-based protocol. The lowest-level IP functions maintain a list

of active protocols and perform packet delivery based on the existence of open

sockets for protocols of received packet types.

PROTOCOL is a protocol number, a number between 1 and 255. The following

protocols are defined and should not be disturbed:

TCP 6

ICMP 1

UDP 17

SOCKETCOMPAREFN is a function with two arguments, an IP packet that

has just been received and an open IPSOCKET. This function should return

NIL if the packet does not belong to the supplied socket, or T if it does. The

function will typically be interested in the IPSOCKET field of the IPSOCKET.

NOSOCKETFN is a function with one argument, an IP packet that has just

been received. Its purpose is to handle received packets for which no socket can

be found. If NOSOCKETFN is NIL, the default function,

\IP.DEFAULT.NOSOCKETFN, will be used; this function simply returns an

ICMP message indicating the socket is unreachable.

INPUTFN is a function with two arguments, a received IP packet and an open

IPSOCKET. The INPUTFN is supposed to handle reception of packets when

275Lisp Library Modules, Release 1.15, TCP-IP

TCP-IP

their destination socket has been found. If INPUTFN is NIL, the default

function, \IP.DEFAULT.INPUTFN, will be supplied.

INPUTFN enqueues the received packet on the IPSQUEUE field of the

IPSOCKET if the current queue length (stored in the IPSQUEUELENGTH

field) is less than the allocated length (stored in the IPSQUEUEALLOC field).

INPUTFN also increments the IPSQUEUELENGTH field, and notifies the

event stored in the IPSEVENT field.

ICMPFN is a function with two arguments and is called when an ICMP packet

referring to the protocol is received. The first argument is a pointer to the

received ICMP packet. The second argument is a pointer that may be used as if

pointed to the original outgoing packet included in the ICMP data. This allows

the protocol functions to parse the data in the ICMP packet to determine which

socket sent the offending packet. The ICMPFN must never attempt to

deallocate the packet identified by the second argument; however, it is quite

permissible (and expected) that the ICMPFN will release the packet identified

by the first argument. The default ICMPFN simply releases the packet

identified by the first argument.

\IP.ADD.PROTOCOL returns an IPSOCKET datum, which represents the active

protocol; it is not in fact a useful IPSOCKET and may be safely ignored.

(\IP.DELETE.PROTOCOL PROTOCOL) [Function]

Deactivates a protocol with protocol number PROTOCOL. Any open sockets are

closed.

(\IP.OPEN.SOCKET PROTOCOL SOCKET NOERRORFLG SOCKETCOMPAREFN

NOSOCKETFN INPUTFN) [Function]

Attempts to open an IPSOCKET for protocol PROTOCOL.

SOCKET is the identifying information for this socket; this quantity will be

EQUAL-compared with other sockets open on PROTOCOL. Should a match be

found, an error will occur unless NOERRORFLG is T, in which case the existing

socket will be returned.

SOCKETCOMPAREFN, NOSOCKETFN, and INPUTFN may be supplied to

override the functions specified when the protocol was defined; they are not

normally useful, however.

(\IP.CLOSE.SOCKET SOCKET PROTOCOL NOERRORFLG) [Function]

Closes a socket open on PROTOCOL. SOCKET is the same quantity passed to

\IP.OPEN.SOCKET; it is currently not an instance of an IPSOCKET. If

NOERRORFLG is T, an error will not occur if the socket is not found.

IP Packet Building

The following functions are useful for placing bytes into IP packets (as allocated by

\ALLOCATE.ETHERPACKET).

Most applications will probably want to define a block record to overlay the data portion

of an IP packet. Here is an example of such a block record.

Note: Users who are developing new IP-based protocols will need to load

EXPORTS.ALL from the library.

276 Lisp Library Modules, Release 1.15, TCP-IP

TCP-IP

(ACCESSFNS UDP

((UDPBASE (\IPDATABASE DATUM)))

(BLOCKRECORD UDPBASE

((UDPSOURCEPORT WORD)

(UDPDESTPORT WORD)

(UDPLENGTH WORD)

(UDPCHECKSUM WORD)))

(ACCESSFNS UDP

((UDPCONTENTS

(\ADDBASE

(\IPDATABASE DATUM)

(FOLDHI \UDPOVLEN BYTESPERWORD))))))

(\IP.APPEND.BYTE IP BYTE INHEADER) [Function]

Appends BYTE to the IP data portion of IP and increments the IP length field

by one. If INHEADER is T, the IPHEADERLENGTH field is appropriately

incremented so that the bytes appear to have been appended to the options

portion of the IP header. There must not be any data bytes in the data portion

of the packet if this function is to work correctly.

(\IP.APPEND.WORD IP WORD INHEADER) [Function]

Appends WORD to the IP data portion of IP and increments the IP length field

by two. INHEADER is as in \IP.APPEND.BYTE.

(\IP.APPEND.CELL IP CELL INHEADER) [Function]

Appends CELL to the IP data portion of IP and increments the IP length field

by four. INHEADER is as in \IP.APPEND.BYTE.

(\IP.APPEND.STRING IP STRING) [Function]

Appends STRING to the IP data portion of IP and increments the IP length

field by the length STRING.

IP Packet Sending

(\IP.SETUPIP IP DESTHOST ID SOCKET REQUEUE) [Function]

Initializes IP. This function should be called just after IP is obtained from

\ALLOCATE.ETHERPACKET; if this is not done, the append functions above will

fail.

DESTHOST is the 32-bit IP address to which this packet will be sent.

ID is an arbitrary 16-bit quantity that will become the IPID field of the packet.

SOCKET is the open IPSOCKET from which the packet will be sent.

REQUEUE defaults to FREE and controls the disposition of the packet after

transmission (see the IRM for the documentation of SETUPPUP or

FILLINXIP).

(\IP.TRANSMIT IP) [Function]

Tries to send IP. Performs IP checksum algorithm prior to sending. Returns

NIL if successful, otherwise it returns a status indication, such as NoRouting or

277Lisp Library Modules, Release 1.15, TCP-IP

TCP-IP

AlreadyQueued. This function is like SENDPUP and SENDXIP, except that no

socket argument is required.

278 Lisp Library Modules, Release 1.15, TCP-IP

TCP-IP

TCPHTE

HTE provides functions for parsing HOSTS.TXT files as documented by RFC810. This

file is loaded automatically by LLIP and is used by \IPINIT to read in the initial file,

HOSTS.TXT. The following variable and function may be of interest.

HOSTS.TEXT.DIRECTORIES [Variable]

Is the search path for the file HOSTS.TXT. This variable is initialized to NIL;

thus the search path to be used is by default DIRECTORIES.

(\HTE.READ.FILE FILE WANTEDTYPES) [Function]

Reads a HOSTS.TXT file.

WANTEDTYPES is a list of types drawn from the set {HOST, NET,

GATEWAY}, to be read from the file; types not specified in WANTEDTYPES are

ignored. WANTEDTYPES defaults to (HOST).

TCPDOMAIN

TCPDOMAIN enhances the host address lookup to do queries to a domain name server

as specified by RFC883. This allows the system to only keep in memory the addresses

of hosts that are actually communicated with, resulting in considerable savings of space

on large networks. There is a slight delay in establishinig communications with a host

the first time. Since it is faster to initiate communications with hosts defined in the

HOSTS.TEXT file, we recommend that frequently-communicated-with hosts be defined

therein.

(DOMAIN.INIT) [Function]

(Re)initializes the TCPDOMAIN package.

(DOMAIN.TRACE) [Function]

Opens up a window for tracing domain queries. (The window is the value of

DOMAIN.TRACE.FILE.

(DOMAIN.LOOKUP NAME TYPE SERVER) [Function]

Looks up a host named NAME and type TYPE from server SERVER. If

SERVER is unspecified, uses the default server.

(DOMAIN.LOOKUP ADDRESS NAME SERVER DONT.GET.OSTYPE) [Function]

Looks up the address of host NAME from server SERVER. If SERVER is

unspecified, uses the default server. If DONT.GET.OSTYPE is T, will not get the

OSTYPE of the host.

(DOMAIN.LOOKUP.NAMESERVER NAME SERVER) [Function]

Looks up the server serving the domain of NAME. If SERVER is unspecified,

chooses the "best" server based on its knowledge of the namespace.

(DOMAIN.GRAPH WINDOW) [Function]

Draws a graph of the namespace in window WINDOW. Opens a new one if

WINDOW is unspecified.

279Lisp Library Modules, Release 1.15, TCP-IP

TCP-IP

TCP Debugging Aids

With TCPDEBUG loaded use (TCPTRACE T) to open up a trace window of TCP traffic.

The appropriate items need to be selected from the windows menu in order for data to

be seen.

(SETQ TCPCHAT.TRACEFLG T) will print TELNET negotiations to a file, which is

what the variable TCPCHAT.TRACEFILE points to.

(FTPDEBUG T) opens a scrolling trace window that displays FTP commands as they

are issued. You will see unencrypted passwords if they are issued.

Limitations

You must use the 1186 microcode in order for TCP-IP to work on an 1186 (microcode for

the 1185 will not do).

TCP-IP will not work with UNIX systems that have trailer encapsulation enabled.

Connections will hang and then eventually break.

Directory enumeration on a VMS system results in NIL.

Known Problems in TCPFTPSRV

It does not handle error conditions in the middle of file transfers.

Doing a DIR gives you only filename and version: no author, creation date, etc. This is

because the TCPFTP protocol specification doesn’t support author, creation date, etc.

If there are multiple files on the system, deleting a file without specifing a specific

version deletes the most recent version. The workaround is to give the specific version

to delete.

The subdirectory structure is not presented back to the client host. If you have a file on

both the <lispfiles> directory and a subdirectory, when you do a DIR *.* you do not see

the subdirectory listed, but you do see that there are two files on the host with the same

version number.

References

Users with access to the ARPANET may retrieve any RFC from host SRI-NIC.ARPA

with the file transfer protocol (FTP) anonymous log-in option. RFCs are stored under

<RFC>RFCnnn.TXT, where nnn is replaced by the number of the particular RFC.

From points on the Xerox internet, the RFC files can be retrieved from {Indigo}<RFC>.

{Indigo} is an IFS host. From Lisp, you can simply (LOGIN) and supply your GV

credentials if you haven’t already, open a FileBrowser on that directory, and retrieve

the file to the local workstation environment.

280 Lisp Library Modules, Release 1.15, TCP-IP

TCP-IP

The following RFCs are mentioned in this manual:

RFC765 (superseded by RFC 959)

RFC768

RFC783

RFC791

RFC792

RFC793

RFC810 (superseded by RFC 952)

RFC814

RFC821

RFC822

RFC826

RFC854

RFC894

RFC895

RFC903

RFC904

RFC940

281Lisp Library Modules, Release 1.15, TCP-IP

TCP-IP

[This page intentionally left blank]

