
A-1ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

APPENDIX A NOTEFILE
CONCEPTS

This document provides a brief explanation of the structure of

notefiles. It also describes how checkpointing, aborting, and

recovering a notefile after a crash work. Finally, it describes the

use of Inspect & Repair to repair a notefile with inconsistent links.

For additional information see Appendix B, The Notefile Inspector.

Note: The information in this appendix was copied whole from the

documentation for a prerelease of NoteCards and has not yet been

updated for this release. As such, it may be inaccurate in places.

Background Concepts

Unique identifiers: UIDs

All objects in NoteCards (i.e., cards, links, notefiles) are assigned a

unique identifier called a UID. Each UID is a 112-bit number that is

guaranteed to be unique across all time and space. UIDs are used

in many places in NoteCards as keys for indexing and retrieving

cards, links, and notefiles.

Card parts

For storage purposes a note card is decomposed into 4

independent parts: contents, title, property list, and links. Each of

these parts is stored separately in the data area of the notefile.

This is discussed in the Notefile Structure section below. When a

card is saved, only those card parts that have changed are

rewritten in the notefile.

The contents of the card are stored on the notefile in a manner

appropriate to its type. Thus a Text card’s content is a text stream

and is written on the notefile exactly the way TEdit writes out text

streams (i.e., text followed by "looks" information). In contrast, all

titles are stored as strings and all property lists as standard Lisp

lists. Storage of Links is described in Section 4 below.

Notefile Structure: index and data areas

A notefile consists of three parts, a header, an index, and a data

area. The header and the index are fixed in size for each notefile.

The data area follows the index area and grows as cards are added

to or modified in the notefile.

The notefile header contains the following information about the

notefile: its UID, a number identifying its format, the checkpoint

pointer, the size of the index, and a pointer to the next available

index entry. If the notefile header is destroyed, it cannot be

automatically reconstructed. Careful hand manipulation of the

A-2 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

APPENDIX A. NOTEFILE CONCEPTS

notefile by a NoteCards wizard is required to recover a notefile with

a bad header.

The structure of the index and data area is shown in Figure A-1 .

The index contains a fixed number of index entries. Each index

entry that is in use, contains information for one of the cards in the

notefile. Specifically, an index entry contains 5 fields: a status

character, the card’s UID, and 4 pointers. The status character

specifies whether the index entry is free (not in use) or contains

information for an active or a deleted card. If the index entry is not

free, the UID field contains the UID of the card refered to by this

index entry and the four pointer fields contain the location in the

data area of the 4 parts of its card: contents, title, links and

property list.

The number of index entries is fixed at notefile creation time. The

default is 1000 entries. The number of index entries is

automatically doubled by the notefile compactor if 75% of the

entries are used. The compactor also frees (i.e., makes unused) all

of the index entries that refer to deleted cards. In normal

operation, NoteCards prints a warning whenever more than 90% of

the index entries in a notefile are used. At this point, the notefile

should be compacted to increase the index size.

The data area contains the actual information about the card.

Whenever you change, say, the title of a card, the new title is

written at the end of the data area. The title pointer in the card’s

index entry is then updated to point to this new location in the data

area. Thus, in general, a notefile’s data area grows every time any

part of any card is changed.

The old information, now somewhere in the middle of the data area,

is not removed. However, it is no longer directly accessible

because there is no index entry that points to it. Thus, for most

purposes this old information can be considered "dead space" in

the notefile. The notefile compactor rewrites the notefile,

eliminating all such dead space.

A-3ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

APPENDIX A. NOTEFILE CONCEPTS

Notefile Header

Card A
Contents

Index Entry #2

Index Entry #1

 Active: UID: | | | |

Index Entry #N

...

 Index Entry #3

Card A
Title

Card B
Links

Card A
Links

Card B
Contents

Card A
Title

Card D
Title

Card B
Contents

Card A
Prop List

Index Entry for Card A

Legend

Dead Space

Index

Data
Area

Figure A-1. The structure of a notefile.

As long as the notefile has not been compacted, all the old

information can be accessed (and made to be "current") via the

notefile Inspect and Repair facility. Inspect and Repair does this by

ignoring the index and parsing the entire data area to produce a

listing of all the information (both current and old) about a card that

is stored on the data area. See the Inspect and Repair manual for

more information.

Notefile Checkpointing

As long as a notefile is open, its index area is cached in memory.

When a card part is saved, the card part’s information is written to

the end of the data area but the card’s actual index entry on the

notefile is not updated with this new location. Instead, the

appropriate pointer in the card’s in-memory index entry is updated.

Thus, the index in the notefile continues to point to the old

information in the data area, while the in-memory index points to

the new information.

Thus while a notefile is open, its current state is distributed between

the actual notefile and information cached in memory. The current

index is cached in memory. For cards open on the screen (or

cached in memory from the programmer’s interface), the "current"

card part information is contained in an in-memory cache. For all

A-4 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

APPENDIX A. NOTEFILE CONCEPTS

other cards, the current information is contained in the data area of

the notefile pointed to by the in-memory index entry.

If a machine crashes while a notefile is open, the information

cached in memory is lost. A crash not only discards changes made

to cards on the screen, but its also leaves the information stored

on the notefile in an inconsistent state. For example, the index on

the notefile may point to old information in the data area. This

occurs because the new information (e.g., a new title) is written to

the data area but only the in-memory index pointers (which are lost

in the crash) have been updated to point to the new information.

Checkpointing forces all of the in-memory information to be written

onto the notefile. Specifically, checkpointing causes all open cards

to be saved and the in-memory index to be written to the notefile’s

index area. Thus, immediately after checkpointing, the notefile

itself contains its current (and consistent) state. If the machine

were to crash at this point, no information would be lost and the

notefile would be consistent.

Checkpointing also writes a checkpoint pointer onto the notefile

header. The checkpoint pointer contains the location of the end of

the data area (i.e., the end of the notefile) at the time the

checkpoint is done.

As the notefile is used after the checkpoint, information is written in

the data area past the checkpoint pointer but only the in-memory

index entries are updated to point to this information. The on-file

index entries still point to the information in the data area before the

location referenced by the checkpoint pointer. Thus, a consistent

notefile can be constructed from the index area and all of the

information in the data area located before the checkpoint location.

This is essentially the notefile as it was at the time of the last

checkpoint. (Note: one small exception is that changes to a card’s

size on the screen are actually written in the middle of the data area

rather than at the end. Thus, truncating a notefile to its checkpoint

location cannot "undo" the reshaping of a card.)

When opening a notefile after a crash, the system will insure that

the notefile is in a consistent state. It does so by truncating the

data area to the last checkpoint location, saving the truncated

information if requested by the user. This leaves the notefile in the

state it was during the last checkpoint before the crash.

Aborting a notefile does the same thing. It truncates the data area

to the last checkpoint location, thereby eliminating all changes

made to the notefile since the last checkpoint. It also discards the

in-memory index. Thus, the notefile is left in the exact state it was

after the last checkpoint.

Finally, note that notefile Close forces a checkpoint. Therefore,

aborts and recovery after crashes actually restore the NoteFIle to

its state as of the last user-initiated checkpoint or close.

A-5ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

APPENDIX A. NOTEFILE CONCEPTS

Storing links and reparing notefiles with inconsistent links

The links card part is divided into three subcomponents: to-links,

from-links, and global links. The to-links is a list of all links whose

Source is the given card (i.e., that point from the card to some other

card). The from-links is a list of links whose Destination is the given

card (i.e., that point from some other card to the given card).

Finally, the global links is a subset of the to-links that includes only

the Global links originating in the given card.

Given this scheme, every link is stored on the notefile in three

different places. First, if the link is Local it is stored inside the link

icon which in turn is inside the content part of the link’s source card.

If the link is global, it is stored in the global links subpart of its

source card. Second, the link is stored in the to-links list of its

source card. Third, the link is stored in the from-links list of its

destination card.

These three records of the same link occasionally get out of synch,

resulting in an inconsistent notefile. There are a number of

symptoms of such inconsistency. For example, the ShowLinks

display for card may indicate that the card is a destination for a link

from some source card X while the ShowLinks display for X does

not include a ToLink to that destination card. Occasionally,

inconsistent links will also result in link icons that contain the words

"DELETED" or "FREE" when displayed on the screen. This usually

means that the card at one end of a link was deleted, but somehow

the links of the card at the other end were not updated. Such link

icons cause NoteCards to break when you try to follow them.

One function of the NoteCards Inspect & Repair facility is to

resynchronize the three records for all links in the notefile. The

inspector’s third phase rebuilds the links as follows. First it

removes all to- and from-links for every card. Then it reads the

contents for each card and recreates to-links and from-links by

looking at the links found inside the link icons in the card’s content

and in its global links list. In addition, the links rebuilder phase of

the notefile inspector can rebuild filebox contents from cards

pointed to by the filebox, and the set of all link types from the list of

all links.

A-6 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

APPENDIX A. NOTEFILE CONCEPTS

[This page intentionally left blank]

