Aquanet User’s Guide

Aerosol Release

4/25/91

Aguanet User's Guide

Table of Contents
How to use this documentation ; 1
1. Introduction 2
L1 SYSEIN OVEIVIEW ..ovovvrvueresriceeenssamnne e soasenesscseeesesesesessssssssssssesssse e seeesssseeeee e 2
1.2 Why would I US€ AQUANEE.......covmmmrrvcuvueereeesenneeeemeses s sesessoss e eoeseeeeoeseeeeee 3
1.3 An AQUAnet VOCADUIALYuucccnvreeresurueeeseeeseeeseseseesesseemssssses oo eeeeeeee e 3
2. System Requirements . 10
2.1 Running Aquanet on yOUI OWI PLOCESSOT u......veeveeueerersoseseoossoeeooeooeoseesse oo 10
Running Aquanet on the Liveboardcoeoeereeeeommroomseooooooo 10
2.2 Running Aquanet from an AQUANet SEIVETowveeemerreresssesssossosssmss oo 10
2.3 Other helpful dOCUMENtAHON.vvvveeerieees e eeesees s 10
3. Starting up Aquanet . 11
3.1 Starting AQGUANELoocoueucceueusemmsensmurassssssessssaseeesssssssessessssssssessssmnssseesseeseeeona, 11
Starting Aquanet from a Sun ruUNNINE X........covomeeeeceereereesseossesesossoee . 11
Starting Aquanet from a Sun NOt TUNMING X........ouovveeeeeereensneersee s, 11
Starting Aquanet from a Mac (not available yet)c.ooooc.crrvveessesn, 12
Using your .aquanetrc file to change important variables...................... 12
3.2 Mouse and ment CONVENHONSwvuurerruenrresnsressssseereesessesssssssssssoessssssseee 13
Menus ala ARAIEWcccovmrreueniiieniie st ees s emseseseset s ssssessessees s, 13
Mouse button CONVENHONSccorirveerrerieersssssee e sesess s ssessessess s 13
SOEOIIALS v cxspsucsssssssessssmvssssuisssssssmistiasesmmmmarmmessasssemsonsnssssesuereasssssssssmsisssssmssnisss 14
DHAlOE DOKOS.cocouasimsasssssessssusssssmussmssmsiissibiommmmamrissmsassesssessusesssssesssssapsssssssmies 14
3.3 QUIttNG AQUANEEc.courirrirrrrrirarineessseneseseeseeeseseemssesesssssssessesesessesesses e seeseenn e 14
HOW YOUT WOTK 1S SAVE....vuuurivvecrrienrraesssseesesemesseesessssssessessessssssesesssssses oo 15
QU EERGE AGUBIISE . cocypmonms s vssssassss o assib S5 mmmmsssasmssessatasnemmmasssasessmomrisss 15
Returning to the state you started in.............co.oevuuveeroneceneneeeseseeressesene s, 15
4. Using Aquanet 16
4.1 The AQUAanet WINAOW...........ccccevuiiiiiinnermesriensisssessessesmsessmssssssssssssssssssessssessssss, 16
THe MAiN VIBW ..o ivimeerivasceescrinssncissssaiesssssss s seonsssssssssssesssmssesesssssseonsesees 16
The AIEINAte VIEWicuucemeicenrsirrnsissinss et sessssseseseassessessessssnsssssssson, 17
The NOde CONENE VIEWcceuvvmrcrriiririssiees s sssscssessessssesssessssssssessssssenns 17
4.2 Aquanet and WYSIWID.............coecemesiuisinsisesssssssmssssssssessessessemsssssssssssessnees 17
4.3 Participating in @ diSCUSSION........cocomrunrimiitinres st ssessasenseesesessesssesseseesssssse. 17

Aguanet User's Guide

Figure 4.4-4. ChoOSING @ SCEMA ...ttt s 27
Figure 4.4-5. Creating a New ODJECE .uuoriuviimeiermsssmiemiisismms s s 27
Figure 4.4-6. Selecting the newly created OBJECt....oocuivimviminniismmmmmmisss st 28
Figure 4.4-7. Editing the selected ObJECt ..ot 28
Figure 4.4-8. Releasing the object and updating the displaycirsnssiississicscinnnss 29
Figure 4.4-9. Creating @ relation......cccouuurmmmmmsisisnresmsssssismsssiinims s 29
Figure 4.4-10. Filling a 510t in @ relation. ... 30
Figure 4.4-11. Selecting which s10t £0 fill ..o s 30
Figure 4.4-12. The results of filling a relation’s S0tcoovrcumiiemsissiinmiininnnisscens 30
Figure 4.4-13. The results of filling in slots in @ relation ... 31.
Figure 4.4-14. Using a basic object in @ NEW Iole ..., 32
Figure 4.4-15. The result of using Expand As to create a 1 (51a7 40 o - SRRETPR— 32
Figure 4.4-16. A growing Aquanet NetWOrk ... 32
Figure 4.5-1. The Aquanet schema editor ... 34
Figure 4.5-2. The types @ditOr.....cccucuciimiimmimmsissii e st 35
Figure 4.5-3 Editing @ SI0t...ccocooneiiimistiisii s 36
Figure 4.5-4 Editing a graphic lement ... s 37
Figure 4.5-5. The graphic appearance of a 510t Valuecooeuiecrmmiiiiinniinssinss 37
Figure 4.5-6. A graphic element and its KNOtS ..., 39
Figure 5.3-1. Aquanet key bindings ... 54
Figure 7-1. Database table summary (Part 1) ...t 57
Figure 7-2. Database table summary (part 2) e et s 58

Aquanet User's Guide
How to use this documentation

If you have never used Aquanet before, Section 1 is recommended reading. Ittalks about
system concepts and defines many of the terms that will be used throughout the
documentation. Section 2 is also for new users; it helps you determine whether you can
run Aquanet on your workstation or remotely on a server. Then, Section 3 tells you how
to start up Aquanet, and briefly discusses some of the mouse and menu conventions the
system uses. This section is recommended if you are not currently using X windows or
Andrew. It also tells you how to get out of Aquanet.

Sections 4 and 5 will help you use Aquanet. Section 4 is for new users; it steps you
through some common use scenarios like browsing a discussion, participating in a
discussion, starting a new discussion, and using the schema editor. Section 5isa
command summary for experienced users; it documents Aquanet commands on a menu-
by-menu basis. Italso talks about the schema editor, the text editor, and key bindings that
allow you to enter Aquanet commands from the keyboard.

Section 6 reports known bugs, unimplemented features, and some caveats about system
idiosyncracies. Because Aquanet is in the early prototype stage, this section will change
frequently. Make sure you have an up-to-date version of this document.

Section 7 is for system maintainers and database administrators. It contains a detailed
description of the Aquanet database. You don’t need to refer to this section for normal
Aquanet use.

o/

Aquanet User's Guide

Opening a diSCUSSION wov.vuucumerrreeesnsimssiismsisss i 18

Browsing a discussion NetWOIKceiisin s 19

Participating in @ diSCUSSION.......uuimuumrmmminrimss s sssssssssems s 20

4.4 Starting @ NEW diSCUSSION w.uvuuuersiiuiiisitsinsismiieris st sty 25
Naming youi discussion and defining who can access it......oun 26

ChooSINg @ SCHEIMAcociirinrnrtnnesessierses s ses e 26

Starting the diSCUSSIONuciuueimmierseceiiseirseim i 27

4.5 Creating a schema and editing itS apPeArance ... 33

The Schema EdItOrccoceveuieeerenrncnnniiministis sttt sessssoses 33

The TyPe EditOr.....euuirueeerninerisarisnss et 34

The SIot EREOTvcriiererernreesserseessessmsinssisisesssnanssssssssssssssassssssasisssnsssasssnssseseas s 36

The Graphic Appearance Editor.......ummminis 37

5. Aquanet Command Summary 40
5.1 Aquanet COMUMANGS........owuuerummmresssinnissr st 40
Aquanet SEArtUP MEMU .. ersmmersseiis i s sases 40

% 30 1= vy 31 O TS — 44

Basic ODJECt MENU.....ccuirmirer st s 46

Relation MEILL.....crvececuranriirinerensesstersassssssss e s ssssssesss st snas s asas sues e siass 48

Editing Text in the Node content VieW ... 49

Alternate VIEW IMENUSocviveviiiniensrarsssssssiss s s ssss s sss s s sssases 52

5.2 Aquanet key bindingsc.cocucerrrmnrmeencrimiei s 54

6. Known bugs and Caveatsowcssssrssssessnsssmsssssssssansessssssnsarsssssense 55
6.1 Features not yet implemented............ccouuiiimmmmmin s 55

6.2 SHAD BEFOOTS ovversarressrsassnsnsnasssissiesionssssssisssessasnseeseme s RENTaRESITSHHH LR SHSEHETIRA IR THRIIRITY 55

6.3 BURS...icotreriririmarsrsseasesss s st ses s b s R R SRR 55

7. The Aquanet Database.......cwmessscssssseassssrssnsrussssinsassssansaseassssssessessssas s DT

Aquanet User's Guide
List of Figures
Figure 1.1-1 Examples of graphically rendered representation schemes.................. 2
Figure 1.3-1. An example of an argument TEPIesentationcccovveieruenevsieirreenensennnns 3
Figure 1.3-2. Applying our simple argument layout to our example.............................. 4
Figure 1.3-3. Using a node in two different structures........ooooooooooooooo 5
Figure 1.3-4. The appearance of our simple argument and counterargument.................. 7
Figure 1.3-5. Interconnection though shared elements ..o 8
- Figure 32-1. An Andrew/Aquanet menu with five submenus.............oo....... 13
Figure 3.2-2. An Andrew/Aquanet AIAlOG DOX ...ovvev vttt 14
Figure 4.1-1. The AQUANet WiNdOWccocouuueeeeeeeeees e seemeeeeseoe oo 16
Figure 4.3-1. Opening a DiSCUSSION ...cc.cocuvveureecereoneeeeeeeeesseeesosoees oo soooseeses oo 18
Figure 4.3-2. Selecting the discussion you want t0 see.................oooooooooooooooo 18
Figure 4.3-3. A discussion and the diSCUSSiON MENU......ooocoseoercoooooooooooooooo 19
Figure 4.3-4. Selecting a node and looking at its CONENS v........oovoveooooooso oo 19
Figure 4.3-5. Creating a basic OBJECtuuuuuuuuueruuemmuesecesssessseosssssos oo eeseeoseeseseosseee 21
Figure 4.3-6. Selecting the NEW basiC OBJECEcumuweremmmeeeesmssmnmsemmeseseessseoeessesesessesos 21
Figure 4.3-7. Editing the content of a basic ObJECteevrrvvveoooeoeoooeoooooeoeoooeoeoooooooooeone 22
Figure 4.3-8. Completing the €dit..............oouuuwuuueeerecememeereeeeseesssesssssoseesosess oo oo 22
Figure 4.3-9. Filling a s10t in @ relation............cooeccoceeicceeeereeeeeeeenereesessooeoeooeeeoeeo oo 23
Figure 4.3-10. Specifying which slot t0 fillcocoeeeeveeveseeesoeooeoooeoooooooooooeoooeooooos 23
Figure 4.3-11. The results of filling @ S10t..................ceeveereeeeemverrensessenosssoooeoeoeoeooesoeeoeooe 23
Figure 4.3-12. Using a basic object il @ NeW 101uesreeeoovoooooooooooooooooooooooooooooos 24
Figure 4.3-13. A new relation (created by using Expand as).......co..coovvueveveceererernnsnnnn, 24
Figure 4;4-1. Starting @ NEW diSCUSSION ...v.uceueeernrrrrvvvsumuueneseeeseessseessssssesssess oo 26
Figure 4.4-2. Naming your diSCUSSIONvuveeeemeemeseeeeeeemeeeesssessossssssssssesssseseenssenene 26
Figure 4.4-3. Controlling access to yOUr diSCUSSION.........ovevoveveeemmeseenerereeeoesososoo oo 26

Aquanet User's Guide

1. Introduction

This documentation describes a new system called Aquanet. The remainder of this
section will give you a brief overview of the system, give you an idea of how the system
can be used, and define some terms used throughout the documentation.

Since Aquanet is a new system, it will change frequently. Make sure you have the latest
version of this document. We invite user comments and bug reports - send them to
AquanetSupport.parc@xerox.com.

1.1 System overview.

Aquanet is a hypertext tool for people trying to interpret information and organize their
ideas, either individually or in groups; we have been calling such activities knowledge
structuring tasks. Aquanet supports this kind of task by providing facilities for
 developing, modifying, and using graphically rendered representation schemes to
structure information and ideas. Figure 1.1-1 shows three examples of the kind of
graphical representation schemes that drove our thinking in developing Aquanet. The
tool (in particular, its schema editor and type editor) allows you to define and change both
the graphic appearance and the structure of these representation schemes.

For a more extensive overview of Aquanet, see "Aquanet: a hypertext tool to hold your
knowledge in place" (stored as a Framemaker document in /import/aqunet/doc/
aquanet-paper.doc and as a Postscript file in /import/aquanet/doc/ aquanet-paper.ps).

Datum _|_' - Claim President

Warrant VP-A VP-B VP-C
L Rebuttal: | [|
Backing .-
a. Abstract Toulmin micro-argument structure ¢. Abstract organizational chart
Pro
;;ﬂ“- Position Argument
Issue M‘l Con
"N Position Argument
Pro

h. Abstract IBIS network after Conklin and Begeman

Figure 1.1-1 Examples of graphically rendered representation schemes.

Aquanet User's Guide

1.2 Why would I use Aquanet.

You can use Aquanet in two different ways. First you can begin a task with the idea that
there is a particular methodology that will help you structure your work. For example,
designers have found Rittel’s Issue-Based Information Systems (IBIS) methodogy helpful
in structuring their discussions of design issues, or people doing argument analysis have
found Toulmin’s theory of micro-argument structure useful jn pulling apart complex
arguments. Some methodologies, like Toulmin’s, may even involve a specific graphical
representation scheme (see Figure 1.1-1a). Figure 1.1-1b shows Conklin and Begeman’s
interpretation of a graphical rendering of Rittel’s IBIS methodology.

The second way to use Aquanet is to build up a representation scheme as you work on a
task. At the outset of your task, you may start with a very general representation where
all your information and ideas are a single kind of thing, and all connections between
them are the same kind of connection. Then as you continue your work, you can begin to
identify categories of information, and refine the kinds of relationships that exist between
them. Aquanet provides facilities for you to extend and redefine your structuring
scheme.

1.3 An Aquanet vocabulary.

The Aquanet User’s Manual uses some special terms; in this section, we define these
terms. To illustrate the terms, we will refer to the following example:

Suppose we would like to discuss whether and how use of Xerox’s internal network
should be controlled. In particular, we’d like to examine some issues concerning the use
of electronic mail. First, we may want to understand an existing argument that concludes
that Xerox network administration should eliminate personal and recreational use of
distribution lists (dls) and should educate employees about the use of various forms of
email, including highly formatted messages.

To do this, we’d like to identify grounds for reaching this conclusion, and perhaps find
some rationale that explains why the grounds allow us to reach this conclusion. On
examination, we might find that the grounds for this conclusion is a general desire to
control Xerox’s internet as a corporate resource. We might also infer that the rationale
behind this argument is that personal and recreational dls make poor use of a limited
resource, thereby rendering its performance inadequate.

This type of argumentation might motivate a general layout to represent the relationship
between a conclusion, its grounds, and its rationale. One possible take on this layout
shown in Figure 1.3-1. Of course this simple structure does not provide any way of
arguing against any part of the argument, or any assertion in general. So, to this general
argument representation, we’ve added another component, a counterargument - a
response - that can address either a conclusion, its grounds, or its rationale. This
counterargument structure is also shown in Figure 1.3-1..

Using this structure, we can represent our electronic mail argument by mapping the

Aquanet User's Guide

Conclusion COUNTER-
ARGUMENT
ARGUMENT | Rationale -«+— Response
Grounds

Figure 1.3-1. An example of an argument representation

various assertions we’'ve made into the categories Conclusion, Grounds, and Rationale,
as illustrated in Figure 1.3-2. We have added a counterargument which we intend to flesh
out later.

Xerox network Xerox shouid
administration encourage net-
should eliminate |- work use to push
recreational & the limits of the
personal dls. technology.

Personal use of

email and recre-

ational dis make

r use of a lim-

ited rasource.
Use of Xerox's
Internet should
be optimized
(controlled).

Figure 1.3-2. Applying our simple argument layout to our example.

We will now use this example to define some key ideas and terms in Aquanet.

Knowledge structure.
A knowledge structure is a computer-based representation that depicts
objects and their interrelationships in some domain of discourse. Thus, in
the example from argumentative discourse presented above, the statements
are the objects and their interrelations are defined by our simple description
of the parts of an argument.

Graphical knowledge structure.
A graphical knowlege structure is a knowledge structure whose primary
presentation is as a graphic display on a computer screen. For the example

Aqguanet User's Guide

shown above, the graphical aspect of the knowledge structure is presented
as the spatial layout of the three argument elements and the one
counterargument element, and the lines drawn to clarify their interaction.
Other examples of graphical knowledge structures are shown in Figure 1.1-
1.

Basic object.

Basic objects are the atomic units of Aquanet; they may have properties
(such as a name, owner, creation date, time of last edit, and other attributes
useful in the context of a discussion or application). In our example, we
might decide to define two types of basic objects, a Statement and a N ote,
where a Statement is an assertion like "Use of Xerox’s Internet should be
optimized or controlled,” "Personal use of email and recreational dls make
poor use of a limited resource,” or "Xerox network administration should
eliminate recreational and personal dls," and a Note is an observation about
the schema itself, or the way the schema is being used, "Perhaps we
shouldn’t be displaying the rationale, since I'm having a hard time coming
up with them."

Relation.

Node.

Relations express how the basic objects can be connected in larger
structures. Standard hypertext links can be thought of as the simplest kind
of relation; that is, they are a relation between two objects. In our example,
we define a relation called an "Argument,” where Statements interact
through a relation that has three parts, a Conclusion, Grounds, and a
Rationale. We define a second relation, a binary relation, called a
"Counterargument,” which links a Response with the Statement it responds
to. ;

Nodes are a general way of referring to basic objects or relations. We use
this term to simplify operations that do not distinguish between the two.
For example, selection - picking a node from the display by clicking on it
with the mouse - is the same kind of operation whether the node is a basic
object or a relation since both are represented graphically. :

Virtual node.

Role.

A virtual node is a display copy of a node. It depicts the same actual node
as the original graphic. In the example schema, suppose we would like to
use the same statement, "Use of Xerox’s internet should be optimized
(controlled),” as the grounds for another argument (see Figure 1.3-3) about
the use of formatted electronic mail. A copy of the graphic presentation
allows it to be re-used in the network (the replicated node graphic is
indicated in the figure by thicker boxes).

In Aquanet, basic objects play roles in relations. In our example, the

-5

\J

Aquanet User's Guide

Xerox network Xerox network Xerox should
administration administration encourage net-
should educate should eliminate [~ work use to push
employees recreational & the limits of the
about email use. personal dls. technology.

Inappropriate Personal use of

use of formatted emait and recre-

email makes ational dls make

poor use of a fim-

ited resource.

poor use of a lim-

ited resource.

Use of Xerox's
Internet should

Use of Xerox's
Internet should et $
Etmzed be optimized

(controlled).

olled)

Figure 1.3-3. Using a node in two different structures

statement "Use ot Xerox’s Internet should be optimized (controlled)” plays
the role of Grounds in the Argument relation. The same statement might
play another role (for example, Conclusion) in another Argument relation.
The notion of roles sharing objects is what allows a user to build up
networks; two relations are connected together by the fact that a common
object plays a role in each of the relations.

Appearance.
Basic objects and relations both have appearances that specify what they
will look like on the screen. For example, Argument and Counterargument
relations and Statement and Note basic objects might appear in the forms
shown in Figure 1.3-4. Each of the dotted boxes in the two relations
indicates a region where a basic object will appear after the role has been
filled; the role’s name is indicated in the box. The two solid rectangles
correspond to the regions of each of the relations. The lines that are defined
for each of the relations will appear every time the relation is created.

The appearance of our Argument relation currently places equal emphasis
on each of the three roles. Later, we may decide to use the schema editor to
change this appearance; perhaps we’d like the person reading the argument
to focus on the Grounds and Conclusion of the argument, and de- -
emphasize the Rationale on the display. Then we might choose to represent
the Rationale role with an icon that is small relative to the size of the other
two roles.

Because basic objects also have an appearance, precedence will determine
whether they take on the appearance of the role they are filling, or whether
they will be displayed using their own appearance definition. See the

-6-

Aquanet Users Guide

discussion of node-centric relations later in this section for a more complete
description of when the appearance of basic objects takes precedence over
the appearance of the relations they are in.

------------- Counterargument:
§Conclusion§ oo . —
S | L : 5
Argument: T Assertion 4—— Response }
— Rationale
Note
i Grounds

Figure 1.3-4. The appearance of our simple argument and counterargument

It also should be noted that although this documentation is in black and
white, appearance characteristics include color as well. The role of color in
the design of object and relation appearance will be left to those creating
and modifying schemas for individual discussions.

Schema.
An Aquanet schema defines a set of basic object and relation types to be
used together. The schema includes a specification of what roles are
defined in the relations, and what types of basic objects can fill these roles
(see the discussion of slots below). In defining the roles and how they may
be filled, a schema specifies how instances of relations can be

interconnected. For example, by defining an Argument schema that allows
the roles of Grounds and Conclusion to both be filled by an Statement
object, the Argument relations can be chained together to form a network
such as the one shown in Figure 1.3-5. Likewise, if we allow both Assertions
and Responses to be filled by Statements, we can chain Counterarguments
to our Arguments.

Aquanet schemas also specify the graphical appearance of each basic object
and relation. Aquanet users to interact with schemas through the schema
editor described in Section 4.5.

Node-centric and relation-centric relations.

Relations in Aquanet can either be node-centric or relation-centric. This
property controls some important aspects of the layout of basic objects and
relations. In a relation-centric relation, the nodes filling entity-valued slots
are reshaped to fit the slots, and the slot position is as defined by the

7

U

Aquanet User's Guide

relation. On the other hand, in a node-centric relation, a node filling an
N entity-valued slot stretches the relation to conform to its position, and any
- node retains the size defined for its type, even if it is filling a relation’s slot.

Xerox network Xerox should
administration encourage net-
should eliminate |1 work use to push
recreational & the limits of the
personal dis. technology.

Personal use of
email and recre-
ational dis make
poor use of alim-
ited resource.

Usa of Xerox’s
Internet should
be optimized

{controlled).

We evaluate our
own practices by
benchmarking
them against our
competitors..

IBM, AT&T, DEC,
Amaahl, etc. con-
trol personal use
of their networks.

Figure 1.3-5. Interconnection though shared elements.

Slot.
Slots are the way a role or another kind of attribute is associated with a
specific value. In our electronic mail example, one slot might called the
Grounds slot, and for a specific Argument relation, it might be filled with
the statement "Use of Xerox’s Internet should be optimized (controlled).”

In general that slot might be constrained to accept only values that are
statements. This kind of slot, slots that take basic objects or other relations
as values, are referred to as e-slots. Only relations can have e-slots.

A second kind of slot associates a "primitive value” with the slot. By
primitive value, we mean a string or number as opposed to an object. These
') we refer to as p-slots. In the electronic mail example, we might want to

Aquanet User's Guide

associate a slot called "says-who" with a statement, and specify that it be !
filled by a string. This way, if the person making the argument wanted to u
supply an authority she was citing, she could fill in the slot with text. Both

basic objects and relations can have p-slots.

Multiple valued slots.
Multiple valued slots are e-slots that can be filled with more than one node.
For example, we may want our Argument relation to allow a Conclusion to
be support with more that one Grounds; thus we’d be able to specify a
number of Statements that fill the Grounds role.

Discussion.
Schemas are used in the context of a discussion. A discussion may be a
multi-user conversation using a schema to structure its content, or it may
simply be a single user’s network she is constructing based on a schema.
Discussions may be restricted if the participants want to limit access to
members of their own group.wide participation.

Aquanet User's Guide

2. System Requirements

Aquanet can be used in two ways. First, if you are running on hardware that meets the
system hardware requirements, you can run the Aquanet program on your own
processor and display the Aquanet window on your screen. Second, if you are running
on a system that can run X windows, you can run Aquanet from a server and display the
Aquanet window on your screen. Both modes of use are covered in this section.

2.1 Running Aquanet on your own processor.

Aguanet runs on any Sun 3 or 4 workstation, including SPARCstations. A color monitor
is best for displaying the Aquanet window, but a monochrome monitor may also be used
(with some potential cost in being able to distinguish different node types in the network
display). Aquanet can only be run from machines on the network.

Running Aquanet on the Liveboard.

You can run Aquanet on the Liveboard for meetings where one person is "driving,”
while the others are contributing verbally to the construction of the network. Since
the Liveboard is a monochrome display, the caveats discussed above apply.

2.2 Running Aquanet from an Aquanet server.

You can use Aquanet from any system that can display X windows, including Mac IIs
(and, in the future, Symbolics machines). Your terminal will display the Aquanet
window and a designated Sun will act as an Aquanet server. A monochrome display will
work, although Aquanet uses color to help you distinguish among the node types it
displays.

2.3 Other helpful documentation.

Supplementary documentation - like Unix man pages or the Andrew Help System - might

be useful, although we do not expect it to be necessary. For example, if you were writing
a report that used text from Aquanet, you might want to read the documentation on
Andrew’s text editor, EZ.

-10-

Aquanet User's Guide

3._Starting up Agquanet

This section covers the basics of getting in and out of Aquanet. An Aquanet startup script
will set up your system to run Aquanet according to the hardware configuration you
describe (color or monochrome display, Mac or Sun, and other scripts that are set up as
other X window implementations are available).

J

3.1 Starting Aquanet.

The first time you run Aquanet, you will need to execute a bringover script. This script
installs the necessary files on your home directory. To do this, type

bringover aquanet

at the prompt (often a "%"). If you already have the necessary files on your home
directory, the bringover script will replace them (and rename the old files by appending
their dates to their names).

You will also need to insert the following line in your .login file:
source /import/aquanet/top/enable

If you don't choose to add this command to your .login file, you will need to type it into
the shell window each time you start Aquanet. If you run aquanet before you login again _
(or before you source your .login), you will also need to typeitin, u

Starting Aquanet from a Sun running X.
From a shell window on the display where you want the Aquanet window to

appear, type
aquanet

at the prompt (often a "%"). The outline of a window will appear. Clicking with
the left mouse button anchors the window and causes it to display itself at the
designated position.

If you want to run Aquanet from a remote server and have the Aquanet window
appear on your display, type

aquanet [-display <yourhost>:<displaynumber>]

where <yourhost> is the name of the display’s host machine (to find out your
display’s host name, just type hostname at the prompt). If you have a single
display, <displaynumber> will be 0.0; a two-headed display may require a different
argument (for example, 0.1 to refer to the second display).

Starting Aquanet from a Sun not running X. o
If you are not currently running X windows and Andrew, you will need to \/

-11-

Aquanet User's Guide

bringover and enable each of them. If you are unfamiliar with the procedures for
doing this, you may need to consult your user support person. After you've done
this, to start X windows from a Unix login shell, type

runx twm -~ Xxnews

at the prompt. This command will start X windows (using the twm window
manager and the Sun Merged NeWS/X server). When this has completed, you
will have a shell window from which you can start Aquanet by simply typing

aquanet

at the prompt (often a "%"). The outline of the Aquanet window will appear on
your display. Clicking with the left mouse button anchors the Aquanet window
and causes it to display itself at the designated position.

Starting Aquanet from a Mac (not available yet).

To start Aquanet from a Mac running the standard MacOS, retrieve the Aquanet

application using Tops. It will be on the Aquanet directory. Double-clicking on its
icon will start Mac X. You will not actually be running Aquanet on your Mac, but
rather will be running Aquanet on the Aquanet server and displaying it on your

Mac.

Using your .aquanetrc file to change important variables.

Aquanet uses a file called .aquanetrc on your home directory to set variables that
dictate system behavior. The bringover script that you used to set up Aquanet
installed an initial version of this file. You can edit .aquanetrc to change the values
of these system variables.

The first of these variables is aquanet.PollingInterval; it tells Aquanet how
frequently to go to the database for updates. Currently, aquanet.PollingInterval
has a default value of 30 (meaning 30 seconds); if you are the only user, you may
want to raise this value to get better performance. In a multi-user highly
synchronous situation, you may find 30 seconds to be too long between updates;
to correct this, you can lower the value (eg. aquanet.PollingInterval:15).

If you prefer a different initial Aquanet window size, modify aquanet.DefaultSize
(e.g. aquanet. DefaultSize:1100x800).

- Currently, you must check out any node you plan to edit; if the value of the
variable aquanet.CheckoutOnSelect is true, any node you select will be
automatically checked out to you (so you'd set aquanet.CheckoutOnSelect:true).

Finally, if you want Aquanet to open the same discussion each time you start the
system, you can set the variable aquanet.DefaultDiscussion (eg.
aquanet.DefaultDiscussion:demo).

19-

Aguanet User's Guide

3.2 Mouse and menu conventions.
At the present, Aquanet inherits many of its mouse and menu conventions from Andrew
and X windows. This section discusses these conventions.

Menus ala Andrew.

Andrew has pop-up menus that stack - that is, the submenus (sometimes referred
to as menu cards in other documentation) group together sets of commands. The
submenus stack from left to right; if you move the cursor to left, the menu whose
edge you've touched will be revealed. To choose a menu option, keep the mouse
button pressed while moving the cursor to the menu item you want. When the
menu item reverses (white text on black), release the button to choose it. Figure
3.2-1 shows you an example of an Andrew-style menu used for Aquanet.

A submenu named "Schemas” | Deseribe I
Schemas B

- Groups |
The "Groups" submenu Participants |
@

Delete Discussion...
New Discussion...

e Open Discussion...
g&%nmi{"t{,"gwe'p - middle Open Discussion Read-Only...

Figure 3.2-1. An Andrew/Aquanet menu with five submenus

Mouse button conventions.

In the Aquanet window, you use the left mouse button for selection. For example,
in the Aquanet network display, clicking with the left mouse button in a node’s
area should cause the system to highlight the selected node and all copies of the
node. Left clicking will also activate the other panes of the Aquanet window and
select items from them. However, in an overlapping display (say of one node
partially obscuring another), left clicking will not bring the node to the top; explicit
commands are provided for that purpose. In text applications, right clicking
extends the selection you have made with the left button.

Inside a window, the middle button is reserved for application-specific

commands; thus all Aquanet commands are on the middle button pop-up menu.

These commands change with context - only the appropriate commands appear on

the menu. So you will see different items on the middle button menu depending u
on the situation.

-13-

Aquanet User's Guide

Window commands may be either on the middle mouse button or on the right

n mouse button, depending on how your Aquanet system is set up; to get them, you

' must click in the window’s title bar. You can shrink windows to an icon (and

expand them to full size again), bring the window to the front if it is partially
obscured, put it in the background if it is obscuring another window, redisplay it,
move it, shape it, and close it - in short, you can perform all the standard kinds of
window operations. If you select "Kill Window," you will terminate your Aquanet
sessiorn.

If you just want to move a window, holding down the right (or middle) mouse
button inside the window’s title bar will give you a wire frame corresponding to
the size of the window. You can use this frame to drag the window wherever you
want it on the screen. Holding down the right mouse button in the upper right
hand corner of the window allows you to change the size of the window.

Scrollbars.

Aquanet scrollbars are on the left side of the window panes; each pane may have
its own separate scrollbar. Clicking the left button in the s scrolls down, the right
scrolls up. The whole scrollbar is taken to represent the length of the contents of
the window, the white part represents the part of the text or graphics that is shown
on the screen, and the rectangle inside that represents the relative length of the
current selection.

N Dialog boxes.
' Sometimes Aquanet will use a dialog box to present you with a series of
alternatives. Figure 3.2-2 shows you a typical dialog box. The cursor will turn to
a large dot when you are selecting an item from it; the darkened option is the
default. You can also select an item by typing its first letter and hitting a carriage
return.

Really quit Aquanet?

Y Guit |

Cancel

Figure 3.2-2. An Andrew/Aquanet dialog box

3.3 Quitting Aquanet.

Quitting Aquanet is simple, and regardless of how you do it, the discussion network is
N\ left in a consistent state.

-14-

Aquanet User's Guide

How your work is saved.

Aquanet saves your work as you go; that is, whenever you complete a change,
either to the network or to text, your work is written to the Aquanet database.
(When you are editing text, your changes are written when you either use the
Check In command, or when you select another node or activate another part of
the window.) This ensures consistency in the event of a system crash. So, when
you quit Aquanet, you don’t have to go through any particular motions to save
your work.

Quitting Aquanet.

Clicking the middle mouse button in the Aquanet window will give you a stack of
the current submenus. On the top one, you will see a Quit option. Quit terminates
your connection to Aquanet and closes the Aquanet window. Aquanet will
prompt you (via a dialog box like the one shown in Figure 3.2-2) to either confirm
the Quit or Cancel.

If you just want to change discussions, you don’t need to Quit and restart. Instead
you can choose Close Discussion from the Discussion options (available on the
middle mouse button menu in the main view whenever a discussion is open), and
then open a new one.

Returning to the state you started in.

Because Aquanet is a multi-user system, there is no "abort session" command that
returns the discussion network to the state it was in when you started. If you want
to remove your changes, you must go through and delete them individually. This
way, if someone else is participating in the discussion at the same time you are, you

will be aware of their subsequent changes to objects or relations you have created.

U

Aquanet User's Guide

4. Using Aquanet

This section assumes that you've successfully started up Aquanet, and have its window
on your display. First we will describe the Aquanet window. The subsections following
that will walk you through how to participate in an existing discussion, how to starta new
discussion, how to use the schema editor to create and modify schemas, and how to use
Aquanet as a single-user tool.

4.1 The Aquanet window. |

Figure 4.1-1 shows the Aquanet window.

Window title/
Discussion name

Alternate view___,,

bar (vertical)

Node content view__,
{and its scroll bar)

Main view scroll bar
{horizontal)

Figure 4.1-1. The Aquanet window

The Aquanet window has three panes - a main view (the big region on the left), an
Alternate view (the upper right pane), and a Node content view (the pane on the lower
left). Each of these panes may have its own separate scroll bar so you can view contents
that are not currently displayed in the pane. The window has a title bar that will change
to réflect the name of the current discussion. Aquanet will sometimes prompt you for
input; these prompts may be displayed either in the strip running the length of the bottom
of the window, or in a separate dialog box. -

The Main view. :

The main view displays a portion of the discussion (the rest should be visible if
youscroll). You will be able to see a graphic representation of the instances of basic
objects and relations that have been created during the course of a discussion.
From this pane you can select any node (a basic object or relation), and see its
contents in the Node content view. You can also move a nodes presented in this

-16-

Aquanet User's Guide

display by pressing down the left mouse button and dragging it to a new position;
attached nodes may be dragged along with the node you are moving.

The Alternate view.

The Alternate view is used for a variety of purposes. Sometimes it is to present
you with a selectable list of options. For example, if the Aquanet prompt asks you
for a name of a discussion to open, the list of existing discussions will be presented
in the Alternate view pane. In general, it is wise to check this pane for options
when you are prompted to enter the name of a discussion or group. Youcan also
use it to look at a filtered list of all the nodes in the discussion.

The Node content view. ,

When you have selected a node in the main view, its contents are displayed in the
Node content view. These contents are usually editable (for example, you can
change the Name field, along with other primitive slots in the node). If the paneis
gray, it means that no node has been selected.

4.2 Aquanet and WYSIWID

Aquanet is intended to be used semi-synchronously like an on-line bulletin board; other
users may be accessing the same Aquanet discussion at the same time that you are, but
your session only polls the database periodically (at a default interval of thirty seconds).
Aquanet is thus a WYSIWID system - What You See Is What I Did. You will see changes
soon after another user is done making them.

Aquanet’s locking mechanism prevents users from changing the same node at the same
time (although several users can get into a tug-of-war trying to move portions of the
network; see the warning in Section 6). The system signals potential conflicts by warning
you that the node you are selecting is locked. Aquanet will tell you which user has the
node locked, so other communication (a phone call, a loud shout) can be initiated if you
want to change the same node.

When you select Edit on a node, or are creating or deleting a node, you initiate a lock on
that node that prevents someone else from inadvertantly editing the same node. When
you release a node by either selecting some other node, deselecting all nodes by clicking
in the main view, or by checking the node back in, other users can edit the node.

Because Aquanet only polls the discussion periodically (as specified in your .aquanetrc
file by the variable aquanet.PollingInterval), if you suspect someone else has changed a
node, and you aren’t seeing the latest version, you can force an update by selecting
Update from the discussion menu (Figure 4.3-3 shows you the discussion menu).

4.3 Participating in a discussion.

Aquanet is a group discussion tool; this section talks about how you can participate in
such a discussion, or just browse existing discussions.

Aquanet User's Guide

Opening a discussion.

To open a discussion, press down the middle mouse button while the cursor is in
the Aquanet window. A menu will appear like the one shown below. With the
middle button still down, select Open Discussion as shown in Figure 4.3-1. If you
are planning on only browsing the discussion rather than contributing to it, you
can choose to Open Discussion Read-Only.

Figure 4.3-1. Opening a Discussion

After you have chosen one of the two Open Discussion commands, a list of all
current discussions that you have access to will appear in the Alternate view as
shown in Figure 4.3-2. Choose a discussion by left clicking on an entry in the list.
Access to discussions is sometimes limited by groups (i.e. you must be a member
of a particular group to participate in a "restricted" discussion), but other
discussions are unrestricted - anyone who has access to Aquanet can participate.

Figure 4.3-2. Selecting the discussion you want to see

Aquanet User's Guide

Once you have selected a discussion, some portion of it will appear in the main
view. The discussion is organized according to a schema, a graphical knowledge
structure that was chosen when the discussion started and that can be modified
during the course of the discussion as needed. Section 4.5 goes into detail about
how you can create and modify schemas. Some aspects of the schema - such as any
defined regular spatial layouts - will be obvious from your initial view of the
network. '

Browsing a discussion network.

After the main view of the discussion has been displayed as in the example shown
in Figure 4.3-3, you can begin to browse it. You can use the vertical and horizontal
scroll bars on the main view to shift focus on various parts of the network, or you
can use the discussion display options that appear on the stack of menus that will
popup when you press the middle mouse button (also shown in Figure 4.3-3).
Zoom (not currently implemented) broadens your field of view, Pan-Out (not
currently implemented) narrows it, and Update goes out to the database to make
sure you have the most current version of the network (most useful if you suspect
someone’s changing the discussion while you're reading it).

Figure 4.3-3. A discussion and the discussion menu

You can also investigate the contents of individual nodes by selecting them with
the left mouse button and reading the their contents in the Node content view (see
the example in Figure 4.3-4). When you select a node, all copies of that node are
highlighted; this feature is useful for finding nodes that fill slots in several
relations. Note that this is true in Figure 4.3-4; the two copies of the same node are
both highlighted.

Two other important operations for browsing are Top and Bottom; they appear on
the Node submenu (the top untitled submenu) when you have either a relation or
basic object selected and you press the middle mouse button. Since both relations
and nodes can be stacked on top of one another, Top and Bottom are useful for

19-

\/

Aquanet User's Guide

ﬁi—ii
j

%
[
a

Figure 4.3-4. Selecting a node and looking at its contents

revealing nodes that are hidden. In particular, if a node is partially hidden from
view, you might want to select it (by clicking with the left button) and choose Top.
Or if you suspect a node is completely obscuring another node (or nodes),
successive applications of the Bottom command will help you leaf through the
hidden nodes.

Participating in a discussion.

If you have opened a discussion without using the read-only option, you can
contribute to the discussion in several ways. First, you can change the way the
discussion is laid out. Second, you can add to or modify its structure by adding
basic objects or relations, or by using existing basic objects in different roles in the
network by putting them in other relations. Finally, you can edit the content ofa
node - you can change the text or values displayed in the Node content view. You
can also change the schema underlying the discussion and alter the structure in
fundamental ways, but that will not be addressed until Section 4.5 on the schema
editor.

Changing the layout.
Any selected node can be dragged around the main view using the left

mouse button. If the node is part of a larger network with a fixed layout,
the network will also move with node.

Warning: When you leave a discussion, only the x-y position of nodes is saved; if
you have made changes in the Top/Bottom orientation of nodes, they may be lost.

Creating new basic objects and relations.

One way to contribute to a discussion is by creating new basic objects and
relations. To create a new object (or a new relation), left click in the
background of the network to de-select any previously selected nodes; the
Node content view will become gray if you have nothing selected. Then use

-20-

Aquanet User's Guide

the middle mouse button to bring up the set of discussion menus. Pull over
to the Create submenu, and you will see a list of the possible objects and
relations you can create.

Figure 4.3-5 shows the Create submenu that would appear in a discussion
that uses the Simple Arg schema. It has two kinds of basic objects, a
Statement and a Note (intended to be something like a post-it), and two
kinds of relations, an Argument and a CounterArg. In the figure, a
Statement is being created. The graphic representation of a Statement will
appear where you last left-clicked in the main view.

If you create a new basic object or relation, and can’t see it, it is possible that
last place you left-clicked is not currently visible in the main view. Or if you
have never left-clicked in the main view, the new node has been placed in
the upper left corner of the main view. You may have to scroll to find it.

Figure 4.3-5. Creating a basic object -

Once you have created a new basic object or relation, you will probably
want to edit its content. To do this, left click on the new node, and its
content (empty) will appear in the Node content view. In Figure 4.3-6, the
new Statement created in Figure 4.3-5 has been selected. Note that the
Statement is highlighted; if there had been any other copies of the Statement
(e.g. if it had been used in one or more relations), they would be highlighted
as well.

Editing the content of a node.

To edit the content of a node, first click in the Node content view (at the
lower right of the Aquanet window), then use the middle button to bring up
the editing menu shown in Figure 4.3-7. Selecting Check Out from this
menu locks the node; that is, while you're changing the node contents, no
one else can be changing them.

-21-

Aquanet User's Guide

— e |

Figure 4.3-6. Selecting the new basic object

The text editor uses the familiar copy-cut-paste model. Typing will go
where the caret appears, and the current selection is highlighted in reverse-
video. There are other commands on the text editing menu, but they are
mostly unneccessary in this context.

h_.—

e e A
Figure 4.3-7. Editing the content of a basic object

After you've finished the edit, click anywhere in the main view to unlock
the node. This way other discussion participants once again have write
access to the node and will see the current version of its contents. Any part
of the node’s contents that have been changed (in many cases, the Name p-
slot) will be updated in the main view. You can also explicitly check the
node back in by choosing the Check In option in the Node submenu. Figure
4.3-8 gives you an example of the results. You can also choose options on
the Node submenu to save or reset the node’s contents without checking it
back in.

Filling a relation’s slots.

Another way to participate in a discussion is by adding structure - putting
basic objects in relations. To do this, select the relation you want to add to.
The middle button menu will then include a submenu called Slots. From

-99.

Aguanet User's Guide

=]

[=

Figure 4.3-8. Completing the edit

that menu, select Fill (Fill with New will create a new basic object of the
appropriate type in the slot). Figure 4.3-8 shows the Slots submenu.

Figure 4.3-9. Filling a slot in a relation

Fill will ask you (by way of the dialog box shown in Figure 4.3-10) to click
on the name of the slot you want to fill in the selected relation. In this case,
we’ve selected the Argument’s Rationale slot.

Fill then asks you to specify which basic object to putin the slot. In this case,
we‘ve clicked on the Statement created in Figure 4.3-6. Figure 4.3-11 shows
the results of this operation.

Creating interconnected relations.

Still another way of participating in a discussion is to build up networks of
interconnected structure. In Aquanet, networks are built up through
relations sharing elements. In the example we have been developing,
suppose we want to make a counterargument to the statement, "IBM,
AT&T, DEC, Amdahl, etc. control personal use of their networks."

We can do this by making the statement a False-Claim in a CounterArg
relation. To do this, we select the Statement we want to share (by left

-23-

\/

Aquanet User's Guide

Figure 4.3-11. The results of filling a slot

clicking on it). Pressing the middle mouse button down, and pulling over
to the Expand As submenu gives us the options shown in Figure 4.3-12.
Note that we can use the Statement in a variety of roles in the new relation
that will be created as a result of this operation.

Figure 4.3-13 shows the results of the Expand As operation. A new
CounterArg relation has been created.

Deleting basic objects and relations and clearing slots.

If you want to delete any of the basic objects or relations you have created,
select the basic object or relation you want to delete and use the Delete
option on the Node submenu.

Only the copy you have selected will be deleted. You can only delete basic
objects you've created. Itis also possible to remove a basic object from a slot

-24-

Aquanet User's Guide

Figure 4.3-13. A new relation (created by using Expand as)

without deleting it by using the Clear Node option. To do this, select the
relation containing the slot in question, and use the Clear Node option on
the Slots submenu. Clear Node will prompt you to select the slot you want
to clear. The basic object will still be in the same position after you've
removed it from the slot, but it will no longer be in the slot. Hence you can
drag it to some other convenient (and less confusing) place in the main
view.

For further examples of creating and using objects and relations, see the next
section.

4.4 Starting a new discussion.

This section describes how you can start a new discussion. With your cursor in the main
view, press the middle button. You will see the menu shown in Figure 4.4-1. Keeping the

-25.

Aquanet User's Guide

mouse button depressed, select New Discussion.

Figure 4.4-1. Starting a new discussion

Naming your discussion and defining who can access it.

When you let go of the mouse button, you will be prompted for the name of your
discussion in a dialog box like the one shown in Figure 4.4-2; this name is what
other users will see when they try to open a discussion. It will also become part of
the window title.

Enter the name of the discussion

|email controversy,

[accept | | cancel |

1._—_'....._—__—-—-—-——-—-—-—-—-——-—-

Figure 4.4-2. Naming your discussion

Next you will be asked (via the dialog box shown in Figure 4.4-3) whether you
want the discussion to be Unrestricted or Restricted. If you select Unrestricted (the
default), then anyone who can run Aquanet can participate in the discussion. If
you select Restricted, then you will need to use Participants submenu commands
to designate which groups or individuals can participate. '

Choosing a schema.
Next you will prompted to choose a schema on which to base the discussion. The

list of defined schemas will appear in the Alternate view in the upper right corner
of the Aquanet window (as shown in Figure 4.4-4).

Choose a schema by left clicking on one of the schema names in the list; in Figure

-26-

Aquanet User's Guide

!
|

Figure 4.4-3. Controlling access to your discussion

4.4-4, the Simple Arg schema described in Section 1 is being selected tor the "email
controversy" discussion. If you want to bail out of creating the new discussion, just
click on ~CANCEL-~. If none of the schemas listed are appropriate for your
discussion, you may want to define a new one. This process is described in the
next section. —

o] #System Typesy
Big o

Tou minMg

bugs-n-features

cnoter

machine translation
ANCEL -~

Fig-t;re 4.44. Choosing a schema

Starting the discussion.

To start a discussion, you can begin creating objects and relations based on the
schema you have selected. The Create menu is a submenu of the Discussion menu
that you get when you depress the middle mouse button. Figure 4.4-5 shows this
submenu as it would appear if the Simple Arg schema were selected. Note that the
two top choices are the basic objects of the Simple Arg schema, Statement (an
assertion which can be used in a number of different roles) and Note (an
annotation or meta-level comment); the bottom two choices on the list, Argument
and CounterArg, are the relations defined in the Simple Arg schema. In the figure,
-a Statement is being created.

After the object has been created, it will appear in the main view where you last

-27-

o/

Aquanet User's Guide

i Discussion: emad controversy [

Describe P
Views |
Groups |

- Schemas |
Participants |

Argument
CounterArg

Figure 4.4-5. Creating a new object

left-clicked. If you click on the object with the left mouse button, you have selected
the object; it will be highlighted on the display (in red on a color display; in a gray
shade on a black and white display) and its contents will be shown in the Node
content view. You can move the object by selecting it and dragging it with the left
 mouse button. In Figure 4.4-6, the Statement we created in Figure 4.4-5 has been
selected. Its contents (as yet empty) are shown in the pane on the lower right.

Figure 4.4-6. Selecting the newly created object

Editing an object.

To edit the object, you must first left click in the Node content view to
activate it. Then, by pressing the middle mouse button, you can get the
menu that will allow you to start editing (see Figure 4.4-7). By selecting the
Check Qut option on this menu, you will lock the node; this prevents other
users from editing a node simultaneously. After you have selected Check
Out, left click in the slot you want to edit. A caret will appear, and you can

begin typing.

-28-

Aquanet User's Guide

Figure 4.4-7. Editing the selected object

To release the node when you are done editing its contents, left click
anywhere in the main view. It will change to reflect the modifications to its
contents. In Figure 4.4-8, the Statement’s name has changed to reflect the
contents of the Name slot in the Node content view. Releasing the node also
unlocks it so other users can edit it.

Figure 4.4-8. Releasing the object and updating the display

Creating and filling a new relation.

Creating a new relation is similar to creating a new basic object. Figure 4.4-
9 shows a new Argument relation being created using the Simple Arg
schema. As before, you get this menu by pressing the middle mouse button
and sliding over to the Create submenu.

After you have selected the relation, you can fill its slots. In this example,

we’d like to use the statement "Xerox network administration should

eliminate recreational and personal dls" as a Conclusion in the Argument _
relation we have created. Figure 4.4-10 shows the options that will appear u

.29.

Aquanet User's Guide

Figure 4.4-9. Creating a relation

when you press the middle mouse button and pull over to get the Slots
submenu. Since we already have created the statement that will be used in
the slot, we select Fill.

Figure 4.4-10. Filling a slot in a relation

Fill will use a dialog box to ask you which slot you want to fill (unless the
relation only has one kind of slot). Figure 4.4-11 shows the dialog box for
filling the Argument relation.

Then Fill will prompt you for a node to fill it with. In this case, we have

selected the Statement we created earlier. Figure 4.4-12 shows the results of
this operation. Note that there is now a virtual copy of the statement filling
the slot. If either the basic object or its virtual copy are selected, both will be

highlighted.

Aquanet User's Guide

e 4.4-12. The results of filling a relation’s slot

Figur

The other way to till slots in a relation is to use the Fill with New option on
the Slots submenu. When you select this option, Aquanet will ask you to
select which slot you want to fill, then it will create an object of the
appropriate type (if there is only one appropriate type) and put it in theslot.
If there are multiple types of basic objects that can fill the slot, Aquanet will
put up a dialog box so that you can indicate which type of object you'd like
to put in the slot.

In this way, a relation can be filled out with objects. Figure 4.4-13 shows a
(mostly) filled relation.

Building up networks.

Once you have created one relation, you may want to connect it with others.
In Aquanet, relations are connected by sharing elements. In the example we
have been using, suppose we want to support the Argument's Grounds

31-

Aquanet User's Guide

Figure 4.4-13. The results of filling in slots in a relation

"Use ot Xerox’s Internet should be optimized (controlied)” by making it the
Conclusion of another Argument relation.

To do this, we would select the Statement that is acting as the Grounds in
the existing Argument. Pressing the middle mouse button down, and
pulling over to the Expand As submenu gives us the options shown in
Figure 4.4-14. Note that we can use the Datum in a variety of roles in the
new relation that will be created as a result of this operation.

Figure 4.4-14. Using a basic object in a new role |

Figure 4.4-15 shows the result this operation. A new Argument relation has
been created with the Grounds of the first relation being used as its
Conclusion.

To complete the example in this section, the two interconnected Arguments
have been filled with statements that duplicate those in Figure 1.34. Figure
4.4-16 shows this structure as a Aquanet network.

-32-

Aquanet User's Guide

Figure 4.4-16. A growing Aquanet network

4.5 Creating a schema and editing its appearance.

In Aquanet, discussions are always structured by schemas; the schemas can be complex
descriptions of a knowledge domain or a process, or they can be very simple and used as
a means to organize unexplored territory. The schema editor allows you to define
schemas and modify them as your understanding evolves.

Schemas consist of a group of types; the types may be basic objects or relations that
specify how basic objects can be connected into a network. This section discusses how to
use the main schema editing window and its types editor to create a schema from scratch
or modify an existing schema. This section assumes that you have brought up the
schema editor on your display by choosing either Create or Edit from the Schema
submenu in the main view.

The Schema Editor.
The schema editor is simply a list of the types that have been defined for the

-33-

o/

Aquanet User's Guide

schema and some buttons for controlling the schema editor; Figure 4.5-1 shows the
schema editor.

Editor for schema "Simp

Schema "Simple Arg”

Types in this schema

Sta:ﬁmfnti (BasicObject) any statement about | { Remove Selected Type)
e e topic
Argument (Relation) to giue together
assertions _ (Add New Type)
CounterArg (Relation) for attacking an element
of an Argument ar another assertion
Nete (BasicObject)

(Update Database)

(Done l

(_Exit without Updating)

Figure 4.5-1. The Aquanet schema editor

The list on the left side of the window tells you the names of the schema’s types,
whether each is a basic object or a relation, and any comments describing its use.

Any of these types can be selected by left clicking on the type (selection is indicated
to you by bold).

The top set of buttons on the right side of the window controls access to the types
editor (described in the next subsection). Edit Selected Type causes the type editor
to be brought up on the selected type; the type editor will appear in its own
window. Remove Selected Type removes the selected type from this schema. Add
New Type brings up a fresh type editor window.

The bottom set of buttons on the right side of the window allows you to exit the
schema editor, and possibly update the database. Update Database writes the
schema changes that you have made thusfar to the database; it does not exit from
the schema editor; Done saves your changes to the database and exits from the
schema editor; and Exit without Updating flushes the changes you’ve made since
the last Update Database and exits from the schema editor.

The Type Editor.

The type editor (shown in Figure 4.5-2) can be divided by its four basic functions,
indicated in the figure by dashed lines. First it allows you to define the name and
basic properties of the type. Second, it allows you to specify Supertypes that the
type is to be modelled after. Third, it allows you to define the type’s slots. Finally,

.34.

Aquanet User's Guide

it enables you to specify the type’s graphic appearance.
| Eiitar (or type "Argument: i scheme SWTEIS rg. _'_ﬂ_-_.—_

Type Name: |Argument 7 Graphi¢ Appearance
Description: M\ue together F

ONodeeent.rIe ﬂlnstanﬁable @Rel:ﬂor

Supertypes
- Argument ! :
. [™| Relation - T
Basic Opject S

New Supertype: | ¢ it

(_Add Before)(Add After }{ Remove)

Slots

| Grounds (Entity ; the basis far

r-' the argument) [no default

valug

Conclusion (Entity , the claim
of the argument) [no def auit
value)

Rationalé (Entity , rationale for
reaching contlusion) [no
dafault value|

Name (String ; na description)

___J {no cefault vatus}

T (_Add Graphic Element }

Edit }(Add }(Delete)
Done Update

Figure 4.5-2. The types editor.

The upper left-hand area of the type editor provides two text input regions. The
top one allows you to name the type (if you are creating a new one), or change the
name of an existing type. The lower text input region allows you to write a short
comment about the type’s purpose. Below these two text input regions are three
toggles. Nodecentric, if it is toggled on (indicated by the toggle switch turning
black) specifies that this type (which must be a relation) uses the nodes it contains
in its slots to determine its layout. Instantiable simply tells Aquanet whether users
are allowed to create this type within a discussion - if Instantiable is toggled on,
then the type will appear on the Create submenu. The third toggle allows you to
specify whether the type is a basic object or a relation.

The middle left region allows you to specify Supertypes for a type - one or more
types which the selected type inherits slots from. You must type the name of the
new Supertype in the text input region, then specify via the buttons below it
whether you want it added before or after the selected type. You can also remove
a Supertype from the list. Supertypes are an important shortcut that allow a new

-35-

Aquanet User's Guide

type to inherit properties such as slots and behavior from existing types. For
example, if you wanted to create a second kind of statement, a specialization called
an Assertion, you can type in Statement to use as a supertype.

All basic objects inherit behavior from the system type Basic Object. Similarly, all
relations inherit behavior from the system type Relation. Naturally, Aquanet will
become confused if you give a new type some conflicting Supertypes.

The Slot Editor.

The bottom left region of the type editor allows you to edit, add, or delete a slot
from the type (refer back to Figure 4.5-2). The scrollable list contains all the slots
associated with the selected type. The Name p-slot is supplied automatically by
the system when you create a new type. The others are all added through the
schema editor. Each slot is displayed with a short description (which the slot’s
creator supplies) and a default value (if there is one).

When you have selected a slot name from the scrollable list and clicked on the Edit
button, the display changes to look like Figure 4.5-3. It will also change to this form
if you have no slot name, selected and click on the Add button. Using this slot
editor, you can name the slot (the top text input field), flip through the available
types for a slot (only if you're adding a new slot - Aquanet does not currently
support changing the type of a slot), specify the types of nodes that are allowed to
fill Entity-valued slots (e-slots), and comment on the purpose of the slot.

Editing Slot...

Slot name: [Raxionale]

Siot type: (O Entity

Allowsbie Node Type: iStatement l

Comment: [rationale for reaching |

Figure 4.5-3 Editing a slot

The slot types you will see when you click on the circular arrow are Integer, Real,
String, Text, Date, Money, Collection, Entity, and Boolean. Integer and Real are

numerically-valued types. Strings allow you to store limited-length pieces of text
(<255 characters). The Text type allows you to store text of unlimited length in the
slot. Dates, Money, and Collection are special Aquanet datatypes. A slot of type

Aquanet User's Guide

Boolean can only contain values 1 and 0, interpreted as TRUE and FALSE,
respectively. Entity-valued slots are only permitted in relations; they will display
whatever node has been used to fill them.

If you have specified that the slot is an e-slot (by clicking the Chooser until Entity
shows up as the Slot type), a text input area will appear so you can specify what
node types can fill the slot. This is where you constrain what types in your schema
can be used to fill a slot in a relation. Note that in this case, we’ve said that the
Rationale slot can only be filled with a Statement.

When you have completed editing the slot, clicking on either Done (to save your
changes) or Cancel (to cancel your changes) will return you to the original Types
Editor display. If you've clicked Done, your changes are not yet written to the
database; they are only written to the database after you click on either Update
Database or Done in the main schema editor (see Figure 4.5-1).

The Graphic Appearance Editor.

The right half of the type editor window allows you to describe a type’s graphic
appearance. This is done through direct manipulation of graphic elements in the
graphic appearance editor (consisting of the large rectangular area in Figure 4.5-4
labelled "Grapic Appearance” and the control panel beneath it). To get the full
graphic editing control panel, select one of the graphic elements in the appearance
display by clicking on it with the left button or sweeping out a region around it by
holding down the left button.

In Figure 4.54, the graphic appearance editor contains the graphic elements of the
Argument relation used in the examples in earlier sections. Note that it consists of
the regions where the entity-valued slots appear, the three lines that connect them,
and a piece of fixed text (an "R:"). In Figure 4.5-4, we have selected the vertical line
for editing. Notice that the area below the Graphic Appearance display changes to
reflect the kinds of things you can change about Fixed Lines..

To add a new graphic element, select Add Graphic Element to get into the
appearance editor (rather than selecting an existing element). The cursor will turn
into crosshairs so you can sweep out the bounding box for the new element. Using
the top button that appears, you can specify what kind of graphic element you
want to add to the type’s appearance - Rectangle, Oval, Circle, Fixed Line, Text, or
Value of a slot. The other options will change accordingly.

If the option that you've picked for graphic element type is Value of a slot, click on
the Change Slot button to specify which slot should be displayed in the area you've
sweptout. You will be prompted to click on the desired slot from the list displayed
in the lower left corner of the type editor. In our example, a Statement displays its
Name slot (and a second element, a black rectangle). Figure 4.5-5 shows the
graphical appearance editor brought up on this element.

When you’re adding or editing a graphic element, after you have selected a set of

v

\/

Aquanet User's Guide

Graphic Appearance

Type: (3 Fixed Line Unewidth: (1
Foreground Color: e Black

Line Type: (¥ Vertical
(Front }(Back)(Delete) (Apply)(Done)

Figure 45-4 Editing a graphic element

[[Name]]

Type: GVaJueufaslu(Font size: 010

Foreground Color: c Black

Slot: Name (m
(_Front)(Back)(Deleta) (Apply)(Done)

Figure 4.5-5. The graphic appearance of a Slot Value

Aguanet User's Guide

acceptable options, you can cause the type’s graphical appearance to reflect those
options by clicking the Apply button. When you are done editing the element,
click Done.

If you want to change the shape of an element, select it in the Graphic Appearance
display, and use its "knots" (see Figure 4.5-6) to reshape it. The knots at any of the
four corners allow you to stretch the graphic in both directions at once (thus
reshaping it); by contrast, use the knots in the middle of any of the sides to resize
only one dimension at a time. The knot in the middle of the graphic is used for
dragging the graphic to another position without changing its shape.

Graphic Appearance

[Neme] l

Figure 4.5-6. A graphic element and its knots

After you have completed editing a particular type, click the Done button at the
bottom of the types editor; this will return you to the main schema editor (shown
in Figure 4.5-1). At this point, you can either edit another type, Update the
database with the changes to the type you've just edited (advisable, even if you are
about to edit another type, since you may not want to keep the changes you've
made to that one), exit the Schema Editor saving your changes (by clicking Done),
or exit the schema editor without saving any changes that you’ve made since the
last update.

-39-

Aquanet User's Guide

5. Aquanet Command Summary

This section contains a context-by-context overview of commands. It also lists key
bindings that work as command shortcuts.

5.1 Aquanet commands.
This section describes ail the middle button commands available in Aquanet.

Aquanet startup menu.

This is the menu that you will see when you start Aquanet and press the middle
mouse button anywhere in the main view. The menu has five Aquanet submenus,
Discussion commands (unlabeled), Participants, Groups, Schemas, and Views.
The commands on these menus enable you to set up and participate in discussions,
define who else can participate, delimit groups to control discussion access, create
and modify the schemas, and start new views in the Alternate view pane. The
startup menu also includes the Describe submenu; it allows you to find out some
information about the system.

Discussion submenu.

With Discussion commands, you can enter and participate in an on-going
discussion, browse a discussion without contributing, or create a new one.
You can also deactivate any discussions you've started, access a help file
that describes startup menu commands (similar to the one you are now
reading), or quit from your Aquanet session.

New Discussion... New Discussion allows you to initiate a new
discussion. It will ask you for its name in a dialog box.

Aquanet will then list all existing schemas in the Alternate view, and
request that you select one of them to use as a basis for the new
discussion. Note that if you want to base the new discussion on a
new schema, you must create the schema first, using the Create
option on the Schema submenu.

After you have selected a schema, a dialog box will appear to ask you
whether the discussion is Unrestricted or Restricted. An
Unrestricted discussion means that anyone who can run Aquanet
can participate in your discussion, while restricting a discussion
allows you to limit participation to a specific group or individuals. If
you have restricted the discussion, you will need to use the
Participants submenu to specify who has access.

Open Discussion... Open Discussion allows you to participate in
any existing discussion that you have access to (either by being a
member of the discussion group or by virtue of the discussion being
open to the community at large). The command shows you a list ot

40-

Aguanet User's Guide

all such discussions in the Alternate view of the Aquanet window. |
Use the left mouse button to select the discussion you want to \/
participate in. After a brief wait while the system consults the

database, Open Discussion will display the current version of the

network in the main view.

Open Discussion Read-Only... Open Discussion Read-Only allows
you to browse any existing discussion that you have read access to.
The command shows you a list of all such discussions in the
Alternate view of the Aquanet window. Use the left mouse button
to select the discussion you want to browse. After a brief wait while
the system consults the database, Open Discussion Read-Only will
display the current version of the network in the main view.

Delete Discussion... Delete Discussion makes a selected discussion
inaccessible. Only the discussion’s initiator may delete the
discussion. When you choose Delete Discussion, you will be offered
a list of all existing discussions in the Alternate View. Using the left
mouse button, select the one you want to delete. The contents of the
discussion are not removed from the database, but it will no longer
appear in the list of active discussions.

Help. Help will present this material to you on-line in an Andrew
Help window. u

Quit. Quit ends the Aquanet session and closes its window. When
you select Quit, a dialog box will appear to check whether you really
meant to exit Aquanet; Cancel returns you to Aquanet.

All changes to the discussion are saved as they are made (or as nodes
are checked in), so quitting just ends the session.

Participants submenu.
The Participants submenu contains commands for controlling access to a
particular discussion.

Add Participant. First, Add Participant prompts you to select which
discussion you want to add a participant to; the list of discussions is
displayed in the Alternate view. Then it lists all groups and users

s0 you can select whom you want to add to the discussion. Finally,
it asks you (in a dialog box) to specify the access level (Read Only, or
Read/Write) of the new participant. You can only add participants
to discussions that you have created.

Change Access. Change Access allows you (as the owner of a

discussion) to change a discussion participant’s access to a ,.
discussion from read access to read /write access and vice versa. You U

-41-

Aquanet User's Guide

will be prompted for the discussion, the member, and the new access
level.

Remove Participant. Remove Participant allows you to remove a
current participant from a discussion (when all other means of social
control have failed). Remove Participant will prompt you for the
discussion and member or group; both selection lists will appear in
the Alternate View.

Change Restriction. Change Restriction allows you to switch a
discussion from restricted to unrestricted, and vice-versa. You will
be asked which discussion you want to change the restriction on,
then you will be given a choice of the two options (unrestricted and
restricted) in a dialog box. If you have changed an unrestricted
discussion to be restricted, you will need to use the Participants sub
menu to designate which people and groups now have access. Only
the person who created the discussion can change its restriction.

Groups submenu.

Group commands define and modify the membership of groups thatserve
as access control for discussions. Using Group commands, you can modify
who can access particular discussions, or you can create a new group for the
purpose of restricting access to a discussion you are initiating.

Add Member. Add Member displays a list of all the active groups in
the Alternate view. Use the left mouse button to select the one you
wish to add a new member to. The system then displays a list of
current Aquanet users so you can select which one you want to add.

You can only add members to groups if you created the group. Since
Aquanet maintains its own tables of users and groups, you can
define groups and their members freely without changing their
status in any outside (e.g. Unix or NS) groups. User names
correspond to the user’s login name.

Remove Member. Remove Member displays a list of all the active
groups in the Alternate view. Use the left mouse button to select the
one you wish to remove a member from; the system will display the
names of all the members in the Alternate view. Again, use the left
mouse button to select the appropriate entry. Like Add Member,
Delete Member requires that you have the authority to perform the
requested operation. Thus you cannot use Remove member as a
secondary argumentation strategy.

Create Group. Create Group creates a new active group. This

command is useful if you want to initiate a restricted discussion, and
want to define who can participate in the discussion. Create Group

42-

Aquanet User's Guide

just allows you to name the new group; you will need to define its
membership by using Add Member. \/

Delete Group. Delete Group deactivates a group; it lists all active
groups in the Alternate view. Use the left mouse button to select any
group you have created from the list. This command is useful when
a discussion is over or has been deleted, and you no longer need the
group you have defined.

Schema submenu. '

Schema commands bring up the Schema Editor (in its own window, which
you will be prompted to place), so you can edit an existing schema or define
a new one.

Create Schema... Create uses a dialog box to prompt you for the
name of a new schema, then brings up the Schema Editor on it. See
Schema Editor commands for further details on editing schemas.

Edit Schema... Edit lists existing schemas in the Alternate view.

After you use the left mouse button to select one, the system will
brings up the Schema Editor on the chosen schema. See Schema
Editor commands for further details on editing schemas.

Views submenu, -
Views commands provide you with alternate views of the discussion. \./

Node List. Node List turns on a feature which will give you a list of
the names of all nodes in the current discussion. The list will appear
in the Alternate View; list elements are selectable and the node
contents will appear in the Node content view.

User List. User List displays a list of who is currently using Aquanet
and what discussion they have open.

Describe submenu.

The Describe submenu appears at the back of every group of Aquanet
menus. Describe commands provide information about the Aquanet
system. Only the two most useful of the options are covered here.

Show Key Binding. Show Key Binding will tell you what menu
command a particular keystroke corresponds to. You will be
prompted to type the key(s) you are interested in. Show Key Binding
is context dependent; thus it will only show you the key bindings
relevant to the particular situation you are in.

Show Bound Keys. Show Bound Keys will bring up a new window
that shows you a list of which keys correspond to which menu U

Aquanet User's Guide

options. Once again, this option will only give you the bindings that
h pertain to the set of menus you see in this context. A complete list of
o key bindings for Aquanet commands appears in Section 5.4.

Main view menu.

This is the menu you will see after you enter a discussion and press the middle
mouse button anywhere in the Aquanet window. The menu has six submenus,
one (unlabeled) containing Discussion and overview display options, one that
allows you to create new objects and relations, and the Participants, Groups,
Schemas, and Views submenus. As always, the Description submenu is also
available so you can display information about the Aquanet system.

Discussion submenu.

By using the Discussion commands, you can change the status of the
current discussion, ensure that you have the discussion’s current state, or
change your perspective on it. You can also quit from the discussion or
display the appropriate help file.

Close Discussion. Close Discussion ends your current session in the
discussion, allowing you to enter another one. If you are closing the
discussion just to exit Aquanet, use the Quit command instead.

, Delete Discussion. Delete Discussion makes the current discussion

inaccessible. Only the discussion’s initiator may delete a discussion.

m Even after it has been deleted, the discussion and its contents remain
in the database.

Update. Update forces your view of the discussion to reflect its
current state. Update is useful if you are working on the network at
the same time someone else is, and you don’t want to wait for the
view to update automatically. For example, if you believe that
someone has edited the content of the object you're currently reading
in the in the Content View, and you’'d like to know what the changes
are before you respond, you can select Update to get the latest
version of the object.

Relayout. Not currently implemented. When it is implemented, it
will automatically relayout the network according to the algorithm
associated with the schema appearance. Because many schemas
have layout properties that make them most readable when done by
hand, this option has been left for future implementation.

Zoom. Zoom makes the elements of the network proportionately

larger in step sizes of 10 percent. This command allows you to focus

on small areas of the network. If you have previously used the Pan

Out command to look at a large area of the network, you can use the
M Zoom command to restore your display.

-44-

Aquanet User's Guide

Pan Out. Pan Out does an Unzoom on the network. That is, it will
make the elements of the network proportionately smaller in step
sizes of 10 percent. This command enables you to see a larger
portion of the whole network. It can be undone by successive uses
of the Zoom command.

Help. Help displays this information about main view menu
commands in a separate Andrew Help System window. After you
have selected Help, you will be prompted to place the new window.

Quit. Quit ends the Aquanet session and closes its window. When
you select Quit, a dialog box will appear to check whether you really
meant to exit Aquanet; Cancel returns you to Aquanet.

All changes to the discussion are saved as they are made (or as nodes
are checked in), so quitting just ends the session. '

Create submenu.
Create commands allow you to create new instances of the objects and
relations that have been defined by the schema for this discussion.

(varies). This menu will vary according to what objects and relations
are defined by the schema your discussion is using. In the
argumentation example introduced in Section 1, the Create menu
allows you to create one of two Basic Objects - a Note or a Statement
- or an empty Argument or Counterargument Relation. You can see
an example of this menu in Sections 4.3 and 4.4.

Participants submenu.
The Participants submenu allows you to control access to the current
discussion (if you created it).

Add Participant. Add Participant displays a list of all groups and
users (in the Alternate View) so you can select whom you want to
add to the open discussion. You are also prompted for the new
participant’s access level.

Change Access. Change Access allows you (as the owner of a
discussion) to change a participant’s access from read access to
read/write access and vice versa. You will be prompted for the
member or group and the new access level.

Remove Participant. Remove Participant allows you to remove a
participant from the current discussion (when all other means of
social control have failed). Remove Participant will prompt you for

the name of the individual member or group (in the Alternate View).

45-

Aquanet User's Guide

Change Restriction. Change Restriction allows you to switch the
current discussion between restricted and unrestricted. You will be
given a choice of the two options in a dialog box. If you have
restricted a discussion, you will need to designate which people and
groups now have access. Only the person who created the
discussion can change its restriction.

Schemas submenu.
The schema command on this submenu allows you to modify the schema
for the current discussion.

Edit Schema. Edit allows you to modify the schema you are using
as a basis for this discussion. It will bring up the Aquanet Schema
Editor (in its own window) and display the schema for you to
modify. '

Groups submenu.

This submenu is the same the one that appears on the Aquanet startup
menu. Use it to define groups and their membership. Used in the context
of an active discussion, it is useful for adding or removing a participant or
whole groups of participants.

Views submenu.
Views commands provide you with alternate views of the discussion.

Node List. Node List turns on a feature which will give you a list of
the names of all nodes in the current discussion. The list will appear
in the Alternate View; list elements are selectable and the node
contents will appear in the Node Content View.

User List. User List displays a list of who is currently using Aquanet
and what discussion they have open.

Describe submenu.

Describe conimands appear in every group of Aquanet menus. They are
useful for finding out information about the Aquanet system. The most
important of these options (Show Bound Keys) allows you to find out
which keystrokes are shortcuts for applying which commands for this set of
pop-up menus. These key bindings are also summarized in Section 5.4.

Basic object menu.

This is the menu you will see after you have selected a basic object from either the
main or alternate view. It has three submenus, Node (unlabeled), Expand As, and
Views, in addition to the usual Describe submenu.

Node submenu (unlabeled).
The Node commands available in this context include two display options,

Aquanet Users Guide

Top and Bottom, which change the depth of the selected basic object, and a
third option, Delete, which removes the basic object from the network.
Help displays a help file about basic objects.

Top. Top puts the selected object on top of the other nodes
occupying the same x-y area. In other words, if the object is partially
obscured by other nodes (objects and relations) displayed in the
view, then Topping it puts it in front.

Bottom. If a node is either partially or fully obscuring other objects
and relations in the display, then Bottoming it allows you to see the
other nodes and relations.

Delete. Delete gives you the opportunity to remove any basic object
that you've created from the discussion. Note that it does not work
on objects created by others, but only on those you've created.

The Delete command asks you to either confirm or cancel the delete
in a dialog box that appears once you have selected the command
from the menu.

Delete does not remove all virtual copies of the basic object from the
network; it only deletes the specific copy that you have selected.

Help. Help gives you information about basic objects, what they are
and what the commands are on the basic object menu, in a separate
Andrew Help System window. After you have selected help, click
left to place the help window.

Expand As submenu.
Expand As commands allow you to use the selected object in a different
role in another (a new) relation.

(varies). The items offered on this submenu will vary according to
what objects and relations are defined by the schema your discussion
is using. In the Argument example introduced in Section 1, the
Expand As menu allows you to use a Statement as either Grounds,
Conclusion, or Rationale in an Argument, or as a False-Claim or
Response in a CounterArg. When you select one of these options, a
new instance of the relation will be created, with the selected basic
object (in this case, a Statement) filling the slot you have chosen from
the menu.

Describe submenu.

Describe commands appear in every group of Aquanet menus. They are
useful for finding out information about the Aquanet system. The most
important of these options (Show Bound Keys) allows you to find out

47-

Aquanet User's Guide

which keystrokes are shortcuts for applying which commands for this set of
pop-up menus. These key bindings are also summarized in Section 5.4.

Relation menu.

This is the menu you will see after you have selected a relation from the main or
alternate view. It usually has three submenus, Nodes (unlabeled), Slots, and
Views, in addition to the standard Describe submenu. It may also have an Expand
As submenu if the relation you've selected can be used to fill a slot in another
relation.

Node (unlabeled) submenu.

The node commands available for Relations include two display options,
Top and Bottom, which change the depth of the selected relation, and a
third option, Delete, which removes the relation from the network. Help
displays a help file about relations.

Top. Top puts the selected relation on top of the other nodes
occupying the same x-y area. In other words, if the relation is
partiaily obscured by other nodes (objects and relations) displayed in
the view, then Topping it puts it in front.

Bottom. Similarly, if a relation is partially or completely obscuring
another node of interest, the Bottom command causes the selected
relation to be in back of the other nodes it is covering. If you suspect
there may be a node that you can’t see because it is completely
obscured by layers of other relations, using the Bottom command
several times is a good strategy for finding it.

Delete. Delete allows you to remove any relation that you've created
from the discussion. Note that it does not work on relations created
by others. Delete asks you to either confirm or cancel the delete in a
dialog box.

Help. Help gives you information about relations, what they are and
what commands are on the Relation menu, in an Andrew Help
System window. After you have selected Help, click left to place the
help window

Expand As submenu.

This submenu only appears if you can use the selected relation in a role in
another relation. The items offered on this submenu will vary according to
the role constraints introduced by the schema used by this discussion.

Slots submenu.
Slots commands allow you to fill the relation’s slots with basic objects.

Fill. Fill allows you to fill a slot in the selected relation with an

Agquanet User's Guide

existing basic object. After you have selected Fill, you will first be
requested to choose one of the relation’s slots from a list that pops up
in a dialog box (if there is more than one type that can be used to fill
the slot); you can cancel the operation by clicking CANCEL.

Aquanet then prompts you to click on the node to fill the slot. A copy
of the basic object will appear in the slot (in a relation-centric type of
relation) or the relation will stretch to encompass the object in the slot
(in a node-centric type of relation). If you do not click on an existing
node, the slot will remain empty. If you attempt to fill the slot with
a node of a different type than the schema specifies, the system will
tell you that it could not put the node in the slot.

Fill with New. Fill with New allows you to fill a slot in the selected
relation with a new instance of the appropriate type of basic object.
The system will display a dialog box so you can select the slot you
want to fill; you can cancel the operation at this point.

Aquanet creates an instance of the appropriate type of object, and
displays it in the slot (as specified in the relation’s description in the
schema). If the schema used by your discussion specifies more than
one possible type of slot filler, a dialog box will appear so you can
choose which one to fill the slot with.

Clear Node. Clear Node allows you to remove a node from a slot
without deleting the node. It prompts you for the slot to clear. After
you have performed the Clear Node operation, the object that used
to be in the slot can be moved freely - it is no longer participating in
the relation. If you click outside of the relation’s slot areas when you
are clearing a node, you will cancel the operation.

Describe submenu.

Describe commands appear in every group of Aquanet menus. They are
useful for finding out information about the Aquanet system. The most
important of these options (Show Bound Keys) allows you to find out
which keystrokes are shortcuts for applying which commands for this set of
pop-up menus. These key bindings are also summarized in Section 5.4.

Editing Text in the Node content view.
If you have either a relation or basic object (i.e. any node) selected, you can edit its
content in the Node content view (the lower right pane of the Aquanet window).

To edit the content of a selected node, first click in the Node content view to
activate it, then select Check Out off the middle button menu that appears in that
pane. You can now use a simple text editor to make changes in any one of the p-
‘slots that appears in this pane. Note that the pane as a whole has a scroll bar to
allow you to see p-slots that are out of the display. Note also text p-slots have a

49-

Aquanet User's Guide

scroll bar so you can see longer pieces of text. Changes in the slots displayed in the
M main view will appear after you have stopped editing and have either clicked
' somewhere else in the Aquanet window, selected another node, or selected Check
In from the Node submenu.

The text editor allows you to move the input selection by clicking with the left
mouse button. If you hold down the left button or click with the right one, youcan
extend the current selection. The middle button gives you some text editing
commands that are described below. More extensive description of many of these
commands can be found in the Andrew EZ text editor documentation.

Node Check Out submenu.

This submenu will appear after you activate the node content view by
clicking in it when a node is selected. It enables you to lock the node (check
it out for write access) so you can edit it or get help on the text editor. The
Views and Describe submenus are also available.

Check Out. Check Out will ensure that you (and only you) have
write access to the node. Thus, while you have the node checked out,
no-one else can edit it. After you check itback in (either by using the
menu option or clicking on something in the main view), the new
content will be stored in the database, and other discussion
participants will be able to see your changes.

M Help. Help displays a help file about editing nodes in Aquanet. The
help file will come up in an Andrew help system window.

Node Check In submenu.

This submenu appears on the top of the submenu stack if you click
anywhere in the content view that's notin a p-slot’s region; otherwise it will
appear toward the back of the submenu stack. The Node Check In submenu
enables you to reset the node to its original value, save your changes
without checking the node back in, check the node back in, or get help on
editing a node’s content.

Reset. Reset restores the node’s original values (the values its p-slots
contained when you checked it out). This is useful if you've edited
the text and regret what you've done. Choosing Reset will not
relinquish the write lock; the node will remain checked out to you.

Save Changes. Save Changes writes your changes to the database
without checking the node back in. Thus if any of the other
participants of the discussion do an Update (or one is done
automatically), your changes will show on their displays. Also,
extensive changes can be saved intermittantly this way to checkpoint
your work.

Aquanet User's Guide

Check In. Check In relinquishes the write lock on the node and
writes your changes to the database.

Help. Help displays the contents of a help file on editing node
content in an Andrew Help System window.

Text editing submenu.

You will see a number of text editing commands when youclick in a p-slot’s
region after you check out a node. The top submenu gives you the ability
to cut, copy or paste text, and allows you to strip off layers of formatting.
Cut and Copy appear only when text is selected, and Paste appears only
when there is something in the "cut buffer” (i.e. text has been previously cut
or copied) and there is a point (not a region) selected.

Cut. Cut removes the selected region of text and puts itin a "cut
buffer” so it can be pasted elsewhere in the document. Note that if
no text is selected, this option does not appear on the menu.

Copy. Copy places a copy of the selected region of text in the "cut
buffer” so it can be pasted elsewhere in the document. Note that if
no text is selected, this option does not appear on the menu.

Paste. Paste puts the contents of the "cut buffer” at the selected point
in the text. Note that if any text is selected, this option does not
appear on the menu. Thus if you want to "paste over" some text, you
must first remove the text you want to replace, then get the text you
want to put there (by either copying or cutting), and then use the
Paste command.

Plainer. Plainer removes a "layer" of formatting from the text. That
is, if you’ve made a selection bold, then italic, so you have bold-italic
text, Plainer will make the text bold again. Applying plainer a
second time will remove the bolding,

Plainest. Plainest removes all formatting from the text. That is, if
you've made a selection bold, then italic, so you have bold-italic text,
Plainest will make the text plain again.

Search and Spell submenu. ,

Search and Spell commands let you search for a string in the field or p-slot
you've selected, or check the spelling of that field or p-slot. Note that none
of these commands work across p-slots. If you want to search all of a node’s
p-slots for a string, you must perform muitiple searches. The commands
only work with the active p-slot.

Forward. Forward searches for a string starting at the selected point
or region and continuing to the end of the field or p-slot. You will be

51-

\/

Aquanet User's Guide

prompted for the string in the Aquanet prompt at the bottom of the
window.

Backward. Backward searches for a string starting at the selected
point or region and continuing to the beginning of the field or p-slot.
You will be prompted for the string in the Aquanet prompt at the
bottom of the window.

Search Again. Search Again repeats the search starting at the
selection point or region. This command is useful if you have
multiple occurrences of the string in the active p-slot

Query Replace. Query Replace is a string search-and-replace with a
variety of options. You are prompted for the search string, the
replace string, and how you want to replace instances of the search
string. See the Andrew EZ documentation for a discussion of this
command.

Check Spelling. The Check Spelling command invokes the Andrew
spelling checker on the text field.

Page submenu.

The Page submenu contains some standard Andrew document editing
commands. These commands are not expected to be relevant to most
Aquanet uses.

File submenu.
The File submenu mainly allows you to import unformatted text or text that
has been formatted with the Andrew text editor.

Insert File. The Insert File command will prompt you for a Unix file
name. It will import the text of this file at the selected point.

Describe submenu.

Describe commands appear in every group of Aquanet menus. They are
useful for finding out information about the Aquanet system. The most
important of these options, Show Bound Keys, allows you to find out which
keystrokes are shortcuts for applying which commands for this set of pop-
up menus. These key bindings are also summarized in Section 5.4.

Alternate view menus

You can use the commands on the Views submenu that appears in most Aquanet
menu stacks to generate an alternate view of the discussion. Currently there are
only two views available, a Node List, and a User List. Each has two submenus (in
addition to the standard Views and Describe submenus) that let you control the
order of the list, and how it s filtered. Since the commands available for the Node
List are slightly different than those available for the User List, each is described

-52-

separately.

Aquanet User's Guide

Node List menu.
The menu that appears when you middle-click at the top of the Alternate
view containing a node list has two special submenus, Order By and Show.

Order By submenu.
The Order By submenu lets you control the order in which nodes are listed.

Name. Name alphabetizes the nodes according to the value of their
name p-slot. Name is a standard p-slot for all nodes.

Create Date. Create Date lists the nodes from oldest to newest.

Edit Date. Edit Date lists the nodes by the date they were last edited,
oldest to newest. This is a good way to see the most recent changes
to a discussion.

Type. Type lists the nodes by type, thus grouping together nodes of
the same type.

Owner. Owner lists the nodes by who owns them (who created
them).

Show submenu.
The Show submenu allows you to filter the list.

All Nodes. All Nodes is the default option; it shows you all the
nodes in the current discussion.

New Nodes. New Nodes shows you all the nodes that have been
created before or after a specific date. You will be prompted to type
in the date (the format is specified in the prompt), and whether
you're interested in nodes created before this date or after.

Changed Nodes. Changed Nodes shows you any nodes that have
been edited before or after a specific date. You will be prompted to
type in the date (the format is specified in the prompt) and whether
you're interested in nodes edited before this date or after. Thisisa
good way of finding out what's new in a discussion you’'ve been
following,.

By Type. By Type allows you to specify what type of node you want
to see in the list (for example, Argument).

By Owner. By Owner allows you filter the list by user name.

53-

Aquanet User's Guide

User List menu.
The menu that appears when you middleclick at the top of the Alternate
view containing a user list has two special submenus, Show and Order By.

Show submenu.
The Show submenu allows you to filter the list.

All Users. All Users is the default option; it shows you all active
Aquanet users (users with any discussion open).

Users of this Discussion. Users of this Discussion just shows you
who currently has this discussion open.

Order By submenu. ‘
The Order By submenu lets you control the order in which nodes are listed.

By User. By User alphabetizes the list according to the users’ names.

By Discussion. By Discussion alphabetizes the list according to the
discussion names.

5.2 Aquanet key bindings.

Key bindings provide you with a shortcut way of invoking Aquanet commands through
keystrokes rather than through menus. Figure 5.4-1 shows current Aquanet key
bindings. Youcan see the list of key bindings for the current context by selecting Show
Bound Keys off the Describe submenu. To close the key binding list window, select Quit
or Delete Window from the middle button menu.

For all contexts:

AX-AC Exit Aquanet.
AL Redraw the window.
H Help on appropriate context.

For main view:

*C Close discussion.

e Open discussion.

*R Open discussion read-only.

A Force update from database.

< Zoom (not implemented).

> Unzoom (also called Pan out - not implemented).

For nodes (basic objects and relations):

B Move object to the bottom of the display stack.

AT Move object to the top of the display stack.
For content view:

°E Check out node for editing.

Figure 5.3-1. Aquanet key bindings

-54-

Aquanet User's Guide

6. Known bugs and caveats

This section contains a list of bugs and some caveats about features not yetimplemented,
network-related "effects,"” and other problems.

6.1 Features not yet implemented.

Aquanet has no undo. Aquanet has no undo for any of its operations. This is
clearly a desirable feature for some operations like delete, but it has not been
implemented yet.

Aquanet has no "abort session." Aquanet has no way of removing all your
changes from a discussion. So if you enter a discussion, make some contributions,
and then want to exit, nullifying whatever you've done during the session, you
must delete all nodes you've created. Otherwise your contribution will remain in
the Aquanet database. :

The z dimension (node depth) does not get saved. Aquanet currently does not
save the depth of nodes. Thus, if you've arranged a group of overlapping nodes
by an artful series of Tops and Bottoms, your arrangement will not be preserved
after you've exited the discussion.

Moving nodes does not initiate a lock. Because moving a node may initiate a
ripple effect through a large interconnected network of other nodes, it is possible
for several users to get into a tug-of-war. If this happens, let the other user move
first, since the last move is the one that will be stored in the database. Performance
considerations make node-locking on move a prohibitively expensive solution.

Zoom and Pan Out are not implemented. The Zoom and Pan Out options on the
Discussion menu are not fully implemented yet. If either is used, youwill find that
scaling is erratic. However, it's easy to recover if you accidentally either Zoom in
or Pan Out since each of the operations exactly reverses the other.

Relayout is not implemented. Relayout is not implemented.
6.2 Side effects.

Loss of database connection. Occasionally you will lose your connection with
Sybase, either because the network is flaky or there are too many people trying to
access Sybase at the same time, and Aquanet will temporarily freeze.

6.3 Bugs.

Menus are occasionally incomplete. If the menu that appears when you middle
click in a window does not correspond to the documentation, just try it again.
Sometimes you may have to click left to change the window focus. This is
particularly true for the discussion menu.

Aquanet User's Guide

Drag updates are slow. Sometimes dragging nodes around in the main view can
be annoyingly slow. We expect to fix this problem in the bouffant release of the
tool.

Relations sometimes don’t display their slots in the proper position. Dragging
relations a minor distance sometimes will cause slot contents to be "left behind.”
This is a display bug - the slot contents are intact and will often display properly if
you move them again. '

If you try to delete a relation you don’t own, you will clear its slots. Although
you can’t delete a relation you don’t own, if you try, the nodes filling its slots will
be cleared (ie. freed) from the relation.

The schema editor’s toggles, choosers, and buttons look strange. If the schema
editor’s toggles, choosers, and buttons don’t look like they do in the figures in this
user’s guide, you may have a missing font. To get this font, change your font path
by typing the following command into your shell window:

xset +fp /import/local/andrew /X11fonts

Bugs not on this list can be reported to AquanetSupport.parc@xerox.com.

-56-

Aquanet User's Guide

7. The Aquanet Database

This section describes the Aquanet database; full details of the database schema are
documented in Appendix A.

Aquanet uses Sybase (arelational database) as its backend to provide reliable storage and
concurrancy mechanisms. All Aquanet discussions are stored in a single Sybase database
called "Aquanet.” The database has twenty-odd tables. Items in the tables are identified
by a UID (Unique Identifier). Some also have names which are user-readable. The
following list summarizes the tables in the database:

Table Description
Aquanet Special user-defined types for the Aquanet database schema: this table defines
Datatypes UIDs, types of primitive slot values, and types of change log actions.

Schemas Basic information about each schema (identifier, name, whether it has been
deleted, and help string). :

Types Basic information about each relation and object type, including its identifier,
name, whether it's node-Centric, width, height, and graphic appearance.

Schema_Types List of types and included schemas used in each schema.

Type_Supertypes List of supertypes for each type (to be used by the inheritance mechanism -
includes order for multiple inheritance).

Type_Slots List of both primitive and entity-valued slots used in each type, including the
slot’s name, the type of values it accepts, and its defautt value.

Slot_TypeList List of legal types (by Type_ID) accepted by each entity-valued siot (ESlots, by

Siot_ID).
Discussions Basic information on each discussion, including its identifier, its name, who
created it, whether it's restricted or has been deleted, and what schema it uses.
Sessions Information about a user's session in a discussion, including an identifier for the
session, user, aquanet process, hostname, discussion, and window info.
Nodes Information about each nade, including its identifier, identifier for its contents,
what discussion it's in, who created it when, and its size and location.
Objects Information about each object, including its identifier, who created it, its type, its

name, when it was created, and when it was last edited.

Objects_<type_id> Each type of object defines a separate table, each with information specific to
the p-slots of objects of this type. The tables are not partitioned by discussion.

Figure 7-1. Database table summary (part 1)

Table
Object_Chiidren
Node_Children
Next_UIDs
Change_Log
Locks

Entities

Group_Members

Discussion_Mem-
bers

Schema_Visible-
Types

Aquanet User's Guide

Description

List of nodes in each entity-valued slot in each relation; the table connects slots
in a relation with the nodes that fill them.

Similar to Object_Children, except list is of actual (as opposed to virtual copies)
nodes in each entity-valued slot.

Next available unique identifier (by type) for a schema, discussion, type, slot,
node, object, entity (user or group), or session.

List of changes to discussions including time of the transaction, session, type of
action performed, what object(s) and discussions were changed.

This table lists the objects locked for write, including what type of object is
locked, its identifier, the session that created the lock, and when it was created

List of all Aquanet users and discussion groups; table associates unique
identifier with each entity (user or group).

List of alf discussion groups, including which groups they include and who their
members are.

Table associates a discussion with the users and groups that have access to
them; the list distinguishes between read and write access.

Table tells what types appear in the create menu for discussions associated with
each schema..

Figure 7-2. Database table summary (part 2)

Associated with the Aquanet database are a set of stored procedures for performing some
useful maintenance functions such as purging the change log, purging unreferenced
objects, purging incomplete links, deleting discussions, users, or nodes from the database,
and creating locks. Appendix A contains a complete list of these procedures along with

their arguments.

Several common SQL queries that a user maintaining the Aquanet database might make
are also documented in Appendix A.

-58-

Aguanet User's Manual
Index

Symbols

.aquanetrc 12

A

abort session 55
Add Graphic Element (graphic appearance editor command) 37
Add Member (command) 42
Add New Type (schema editor command) 34
Add Participant (command) 41, 45
alternate view
definition of 17
menus 52
Andrew menus 13
appearance
definition of 6
* editing 37
Aquanet
alternate view 17
definition of 2
key bindings 54
locking mechanism 17
main view 16
node content view 17
overview of 2
quitting 14
reporting bugs 56
saving work in 14
the Aquanet window 16
using 16
window 16
‘Aquanet startup menu 40
aquanet.CheckoutOnSelect 12
aquanet.DefaultDiscussion 12
aquanet.DefaultSize 12
aquanet.PollingInterval 12, 17
AquanetSupport 56
Argument structure
example of 4
interconnection of 8

basic object
creating 20, 21, 27
definition of 5
deleting 24, 47
editing content of 21, 22, 28, 49
selecting 21

Aquanet User's Manual

Basic object menu 46
Bottom (command) 19, 47, 48, 55
Bugs 55

C

Cancel (slot editor command) 37
caveats 55
Change Access (command) 41, 45
Change Restriction (command) 42, 46
Change Slot (graphic appearance editor command) 37
Check In (command) 51
Check Out (command) 50
Clear Node (command) 25, 49
Close Discussion (command) 44
Copy (text editing command) 51
Create Group (command) 42
Create Schema... (command) 43
Create submenu 21, 27, 29, 45
‘ controiling the types that appear 35
creating

basic objects 20, 21, 27, 45

discussions 40

groups 42

nodes 20, 45

relations 20, 45, 47,48

schemas 33, 43
Cut (text editing command) 51

D

Delete (command) 24, 47, 48
Delete Discussion (command) 44
Delete Discussion... (command) 41
. Delete Group (command}) 43

deleting

basic objects 24, 47

discussions 41, 44

groups 43

nodes 24

relations 24, 48
Describe submenu 43, 46, 47, 49, 52, 54
discussion

access control 26

adding a participant 41, 45

browsing 19

changing a participant’s access 41, 45

changing restriction of 42, 46

closing 44

creating 40

definition of 9

deleting 41, 44

Aquanet User's Manual

listing all nodes in 43, 46

listing current users of 43, 46

naming 26

opening 18, 40

opening read-only 41

participating in 17

removing a participant 42, 45

restricted 40 '

selecting 18

starting 25

unrestricted 40
Discussion submenu 40, 44
Done (schema editor command) 34, 37
Done (slot editor command) 37
Done (type editor command) 39

E

Edit Schema (command) 46
Edit Schema... (command) 43
Edit Selected Type (schema editor command) 34
editing
basic objects 21, 22, 28
nodes 21
schema of current discussion 46
schemas 33, 43
Editing text 49
e-slot
definition of 8
specifying what can fill 37
Exit without Updating (schema editor command) 34
Expand As submenu 24, 32, 47, 48

F

File submenu (for text editing) 52
Fill (command) 30, 48
Fill with New (command) 31, 49

G

graphic appearance
adding a new elernent 37
changing an element’s shape 39
kinds of elements 37
slot values 37

graphic appearance editor 37

graphical knowledge structure
definition of 4

Groups submenu 42, 46

-61-

Aquanet User's Manual

H

hardware requirements 10
Help (command) 41, 45, 47, 48

I

importing text 52
Insert File (text editing command) 52

K

key bindings 54
AB 54
AC 54
AE 54
AH 54
AL 54
A 54
AR 54
AT 54
AU 54
AX-AC 54
keystroke commands 54
knowledge structure
definition of 4
M
main view
definition of 16
Main view menu 44
mouse button conventions 13

multiple-valued slot
definition of 9

N

network

building up 31

changing the layout of 20
New Discussion (command) 26
New Discussion... (command) 40
node

changing the layout of 20

check out for editing 50

creating 45 '

definition of 5

editing the content of 21

listing 43, 46

locking 17, 21

resetting the content of 50

saving editing changes 50

selecting 19

-62-

Aquanet User's Manual

virtual 5
Node Check In submenu 50
Node Check Out submenu 50
Node content view 49
node content view
definition of 17
Node List (command) 43, 46
Node List menu 53
Node submenu 24, 46, 48
node-centric relation
definition of 7
specifying 35

o

Open Discussion (command) 18, 40
Open Discussion Read-Only (command) 18, 41
Order By submenu 53, 54

P

Pan Out (command) 45, 55
Pan-Out (command) 19
Participants submenu 41, 45
Paste (text editing command) 51
p-slot

definition of 8

Name p-slot 36

Q
Quit (command) 41, 45

R

relation

creating 20, 29, 47, 48

creating interconnections 23

definition of 5

deleting 24, 48

editing content of 49

filling 29

filling slots of 22

node-centric 7

relation-centric 7
Relation menu 48
relation-centric relation

definition of 7
Relayout (command) 44, 55
Remove Member (command) 42
Remove Participant (command) 42, 45
Remove Selected Type (schema editor command) 34
requirements

M

Aquanet User's Manual

hardware 10
Reset (command}) 50
role |

definition of 5

S

Save Changes (command) 50
schema

choosing 26

creating 33, 43

definition of 7

editing 33, 43, 46
schema editor 33

adding a type 34

editing a type 34

exiting without saving changes 34

finishing an edit 34

removing a type 34

updating the database 34
Schema submenu 33, 43, 46
Search and Spell submenu (text editing) 51
Show Bound Keys (command) 43, 54
Show Key Binding (command) 43
Show submenu 53, 54
slot

adding a slot to a type 36

clearing 24

definition of 8

deieting from a type 36

editing a type’s slots 36

e-slot 8

multiple-valued 9

p-slot 8

types 36
slot editor 36
Slots submenu 22, 25, 31, 48
SQL queries 58
starting Aquanet

from a Mac 12

from a Sun not running X 11

from a Sun running X 11
Sybase 57

T

Text editing submenu 51
Top (command) 19, 47, 48, 55
type editor 34

adding a slot 36

deleting a slot 36

editing a type's slots 36

naming a type 35

-64-

Aquanet User's Manual

specifying supertypes 35

U

undo 55

Update (command) 19, 44

Update Database (schema editor command) 34, 37
User List (command) 43, 46

User List menu 54

A%

variables 12
aquanet.CheckoutOnSelect 12
aquanet.DefaultDiscussion 12
aquanet.DefaultSize 12
aquanet.PollingInterval 12, 17
in .aquanetre file 12

Views submenu 43

virtual node
“definition of §

w

WYSIWID
definition of 17

Z
Zoom (command) 19, 4, 55

Appendix A: Aquanet Database Schema

m

Table: Aquanet Datatypes Special user-defined types

User type Storage type Description

uid int Used for unique identifiers
integer int Integer slot types

real float Real number slot values

string varchar(255) String slot values

freetext text Long blocks of text for slot values
boolean tinyint Boolean valued slots

monetary money Cash valued slots

date datetime Date and time slot type
action_type int Types of actions in the change log
lock_type tinyint Types of locks in the Locks table

A-1

Appendix A: Aquanet Database Schema

Graphic_Appearance text

Table: Schemas Basic per schema info
Column name Type Description Index
Schema_ID uid Unigue identifier for this schema
Schema_Name varchar(255) User name for this schema
Owner_ID uid UID of entity who created this schema
Deleted boolean Has this schema been deleted?
Comment varchar(255) Help String about this schema

Table: Types Basic per type info
Column name Type Description Index
Type_ID uid Unique identifier for this type
Type_Name varchar(255) User name for this type
Table_Name varchar(255) Name of table for type's instances
IsRelation bit Relation or BasicObject? U
IsVisible bit User createable vs. hidden type
IsNodeCentric bit Node centric or Relation centric?
Default_Width smalilnt The standard initial width
Default_Height smallint The standard initial height

Text description of the appearance
(documented in this appendix)

Comment varchar(255) Help string about this type
Table: Schema_Types List of types for each schema
Column name Type Description Index
Schema_iD uid Unique identifier for a schema
Type_ID uid Unigue 1D for this type
Deleted boolean Deleted from table?

A-2

Appendix A: Aquanet Database Schema

Table:

Schema_VisibleTypes Types visible in Create menu

Column name Type Description Index

Schema_|D uid Unique identifier for a schema

Type_ID uid Unique identifier for a type

Table: Type_Supertypes List of supertypes for each type

Column name Type Description Index

Type_ID uid Unique identifier for a type

Supertype_ID uid Unique identifier for the supertype

Precedence tinyint Order for multiple inheritence

Table: Type_Slots List of slots for each type

Column name Type Description Index

Type_ID uid Unique identifier for a type C

Slot_ID uid Unique identifier for a slot /i

Slot_Name varchar(255) Name for a slot in this type

Slot_Type tinyint Type of values for this slot where (O_Integer
1=Real; 2=String; 3=Text; 4=Date;
5=Monetary Unit; 6=Collection; 7=Entity;
8=Boolean; 9=AndyObj; 255=unknown type)

Default_Value varchar(255) Default value for this slot

Maximum_Value smallint Max Nodes for ESlot

Minimum_Value smallint Min Nodes for ESlot

Comment varchar(255) Comment about the Slot

Deleted boolean is this slot deleted?

A3

Appendix A: Aquanet Database Schema

A4

Table: Slot_TypelList List of legal types for ESlots
Column name Type Description Index
Slot_ID uid Unique identifier for a slot C
Type_ID uid Unique identifier for a type

Table: Discussions Basic per discussion info
Column name Type Description Index
Discussion_ID uid Unique identifier for this discussion u/i
Discussion_Name varchar(255) Name for this discussion uA
Owner_ID uid UID of the creator C
Schema_|(D uid Schema this discussion uses O
IsOpen bit Is this discussion restricted?
Comment varchar(255) Comment about the Discussion
Deleted boolean Has this discussion been deleted?

Table: Sessions Discussion Portals
Column name Type Description Index
Session_ID uid Unique ID for this sessions U/
User ID uid UID from User table |
Process Number smallint process number of aquanet
Host_Name varchar(255) Host machine name
Discussion_ID uid ID of discussion being viewed C
X smaltlint X coord of view portal
Y smallint Y coord of view portal
w smallint W coord of view portal
H smalilint H coord of view portal
Start_Time datetime When this session started

Appendix A: Aquanet Database Schema

Table: Nodes Node specific info
Column name Type Description Index
Node_ID uid Unique identifier for this node
Object_|ID uid The substance object
Discussion_ID uid Discussion this node is in
Owner_ID uid UID of the creator
X smallint X Coord of the node
Y smallint Y Coord of the node
W smallint Width of the node
H smailint Height of the node
Create_Date datetime Date the node was created
Edit_Date datetime Date this node was last edited
Deleted boolean Has this node been deleted?
Table: Objects Fixed per object info
Column name Type Description Index
Object_ID uid Unigque identifier for this object
Owner_ID uid UID of the creator
Type_ID uid Type of this object
Name varchar(255) Human-readable name of this node
Create_Date datetime Date the object was created
Edit_Date datetime Date this object was last edited
Table: Objects <TYPE_ID> Type specific per object info
Column name Type Description index
Object_ID uid Unique identifier for this object
Slot_<Slot_ID> Slot Type Value of slot <Slot_ID>
Slot_<Slot_ID> Slot Type Value of slot <Slot_ID>

Appendix A: Aquanet Database Schema

Table: Object_Children

List of Nodes in Entity Slots

Column name Type
Object_ID uid
Slot_ID uid

Child_ID uid

Description Index
Unique identifier for this object

Unique identifier for the slot

Unique identifier for the child node

Table: Node_Children

List of changes to discussions

Column name Type
Node_ID uid
Slot_ID uid
Child_ID uid

Description Index
Parent Relation Node Object ID

ID for the slot

ID of the node in the slot

Table: Next_UIDs

Next, unused UID values

Column name Type
UID_Type tinyint
Next_UID uid

Description Index

The type of UID where (0=schema;
1=discussion; 2=type; 3=slot; 4=node:
S=0bject; 6=entity; 7=session)

Next available schema UID

U

Appendix A: Aquanet Database Schema

Table: Change_Log List of changes to discussions
Column name Type Description Index
Time - datetime Time (to msec) change was made
Action action_type Type of action where (0O=node created;

1=node deleted; 2=node moved; 3=node
locked; 4=node lock broken; 5=nodes linked;
6=nodes unlinked; 7=object deleted;
8=0bject updated; 9=0object locked;
10=0bject lock broken; 11=discussion
renamed; 12=discussion deleted,;
13=schema deleted; 14=schema renamed;
15=schema edited; 16-21 not used;
22=person joined discussion; 23=person left
discussion; 24=person changed view)

Target_|D uid Object affected by action
Data_ID uid Secondary object of change
Discussion_ID uid Discussion affected, zero if global
Session_ID uid ID of the editing session

Table: Locks Object lock table
Column name Type Description Index
Lock_Type lock_type Type of locked object where (0O=0bject;

‘ 1=node; 2=discussion; 3=schema)
Target_ID uid UID of the locked object
Session_ID uid ID of the session which created the lock
Lock_Time datetime Time the lock was created

A-7

Appendix A: Aquanet Database Schema

Table: Entitles

Users and Groups

Column name Type Description Index
Name varchar(255) Name of the entity
Entity_ID uid Unique identifier of this entity
Owner_iD uid ID of the object owner (seif if user)
IsGroup bit Is this entity a group?
Deleted boolean If 1, entity has been deleted
Last_Login datetime When this entity’s last session began
Table: Group_Members Members and Sub groups of Groups
Column name Type Description Index
Group_ID uid Parent group
Member_ID uid ID of the member (group or user)
Table: Discussion_Members Access List for Discussions
Column name Type Description Index
Discussion_ID uid UID of the discussion
Member_ID uid UID of the group
WriteAccess tinyint If TRUE, user has write access to discussion

A-8

Appendix A: Aquanet Database Schema

Stored DB Procedures:

AddGroup(name:varchar(255), owner:varchar(255), groupiD:uid)

Adds a new group ‘name’ with owner ‘owner’ to the Entities table if there isn’t
already one by that name; grouplD is set 10 the uid of the new group (or the
uid of the existing group if there aiready is one by this name).

Return status of O - a new group has been created
Return status of 1 - the group already exists

AddNode(sessionlD:uid, ob]iD:uid, did:uid, ownerlID:uid, x:smallint,
y:smallint, w:smallint, h:smallint, nodelD:uid)

Adds a node to the Nodes table given the session ID, object ID, discussion
ID, owner ID, the node's x, y coordinates, and its width, and height. Returns
the uid for the new node. Also records an entry in the Change Log.

AddObject(sessioniD:uid, ownerlD:uid, typelD:uid, objID:uid)

Adds an object to the Objects table given the session ID, owner ID, and
Aquanet type ID. Returns the uid for the new object.

AddType(sessioniD:uid, name:varchar(255), schemalD:uid, isRelation:bit,
isVisible:bit, isNodeCentric:bit, width:smallint, height:smailint,
comment:varchar(255), typelD:uid)

Creates a new entry in the Types table using the parameters passed in and
returns the uid of the new type in TypelD. Sets the new type’s graphic
appearance to null, updates the the Schema_Types table to associate the
new type with the schema it belongs to, and creates the
Objects_<object_ID> table.

AddUser(name:varchar(255), userlD:uid)

Adds an Aquanet user to the Entities table if a user by the input name
doesn't aiready exist. Returns the uid of the new user (or the uid from the
Entities table if the user already exists).

Return status of 0 - new user successfully added
Return status of 1 - user already exists

BreakLock(locktype:lock_type, targetiD:uid, sessioniD:uid,
lockOwner:varchar(255))

If the lock exists, it is broken by deleting its entry from the Locks table;
otherwise the name of the lock's owner is returned.

Return status of 0 - lock successfully broken
Return status of 1 - lock not broken

A9

Appendix A: Aquanet Database Schema

CanFiliSlot(parentID:uid, childID:uid, siotiD:uid)

Checks whether a node can be putin the specified slot by seeing how many
nodes aiready fill the slot in the Node_Children table, and comparing this
number to the maximum number of children allowed for the slot in the
Type_Slots table.

Return status of 0 - slot can be filled
Return status of 1 - slot can't be filled

ChangeParticipantAccess(dName:varchar(2585), user:varchar(255),
access:tinyint, owner:varchar(255)) -

If the discussion exists and its owner is the access change requestor, the
new access for user is written to the Discussion_Members table; if the
access is passed as -1, the participant is deleted from the discussion. Users
who are not in the table are added.

Return status of 0 - successful completion

Return status of 1 - the discussion doesn't exist

Return status of 2 - requestor is not discussion owner
(owner's name is returned)

CollectGarbage(void)
Calls PurgeChangelog, PurgeUnreferencedObjects, and PurgeBadLinks.

CompactSystemTables(void)

Removes entries with the Deleted bit set. Also removes unreferenced
Types, Supers, Slots, Nodes, and Objects and Discussions without
schemas.

CreateDiscussion(dName:varchar(255), sName:varchar(255), owneriD:uid,
openOrClosed:bit, did:uid)

Creates a new discussion in Discussions and returns its uid.
Return status of 0 - successful discussion creation
Return status of 1 - discussion by the same name already exists
Return status of 2 - schema chosen for the discussion doesn't exist

CreateSchema(name:varchar(255), comment:varchar(255), schemalD:uid)
Creates a new schema in the Schemas table and returns its uid.
Return status of O - successful schema creation
Return status of 1 - schema by this name already exists
(its uid is returned)

A-10

Appendix A: Aquanet Database Schema

DeleteDiscussion(sessioniD:uid, dName:varchar(255), owner:varchar(255))

Deletes a discussion from Discussions, and all its nodes from the Nodes
table by setting the Deleted bit to 1; members are also deleted from the
Discussion_Members table and the Change Log is updated. For the delete
to be successful, the discussion must exist, the requestor must own the
discussion, and no other users can be accessing the discussion.

Return status of 0 - successful delete

Return status of 1 - requestor is not the discussion’s owner
(owner's name returned)

Return status of 2 - discussion doesn'’t exist

Return status of 3 - others are accessing the discussion; can't delete

DeleteGroup(group:varchar(255), owner:varchar(255))

Deletes a group by removing it from the Entities table and removing its
members from the Group_Members table. It also removes the group from
any discussions it has access to.

Return status of O - successful group deletion
Return status of 1 - requestor is not group owner
(owner’s name is returned).

DeleteNode(nodelD:uid, sessionlD:uid, breakLock:bit,
nodeOwner:varchar(255))

Deletes a node if the requestor is the owner and the node isn't locked; to
delete the node, a transaction is initiated where all previous actions
concerning the node are removed from the Change Log and a new entry is
inserted and the node is removed from the Nodes table.

Return status of 0 - successful node deletion
Return status of 1 - requestor is not node owner
Return status of 2 - node is locked

DeleteSchema(schemalD:uid, sessioniD:uid, owner:varchar(255))

Sets the Deleted bit to 1 for this schema in the Schemas table and records
action in the Change Log. Requestor must be owner of the schema;
otherwise the schema is not deleted and the owner's name is returned.

Return status of 0 - successful schema deletion

Return status of 1 - requestor is not schema owner
(schema not deleted)

Return status of 2 - schema does not exist

DeleteSesasion(sessioniD:uid, user:varchar(255))
Deletes an entry from the Sessions table and updates the Change Log.

A-11

Appendix A: Aquanet Database Schema

Returns the name of session owner if user is not the owner.
Return status of 0 - successful session deletion
Return status of 1 - requestor is not session owner

(session is not deleted)
Return status of 2 - session does not exist

DeleteSlot(typelD:uid, siotiD:uid)

Deletes a slot associated with the specified type by setting its Deleted bit to
1in the Type_Slots table.

Return status of 0 - successful deletion of slot
Return status of 1 - no such slot associated with type

DeleteType(typelD:uid, schemalD:uid, sessionlD:uid)

Deletes a type from the specified schema by setting the Deleted bit in
Schema_Types to 1.

Return status of O - successful deletion of type from schema
Return status of 1 - type does not exist in this schema

DeleteUser(username:varchar(255))

Deletes a user from the Entities table by setting the entry’s Deleted bit to 1.
Also removes user from all groups he or she belongs to in the
Group_Members table.

GetAccessLevel(user:varchar(255), dName:varchar(255))

Gets the specified user's access level to a discussion. Unrestricted
discussions are assumed to mean that all users have read/write access,
and discussion owners are assumed to have read/write access. For
restricted discussions, individual access levels are recorded in the
Discussion_Members table.

Return status of 0 - user has no access to the discussion
Return status of 1 - user has read access to the discussion
Return status of 2 - user has read/write access to the discussion

GetDiscussionName(discussioniD:uid, name:varchar(255))

Returns the discussion name given its ID by looking it up in the Discussions
table.

Return status of 0 - successful lookup of discussion name
Return status of 1 - ID not found in Discussions table

GetDiscussionSchema(dName:varchar(255), did:uid, sName:varchar(255),

A-12

v,

Appendix A: Aquanet Database Schema

sid:uid)

Returns the schema ID, schema name, and discussion name associated
with the specified discussion ID.

Return status of 0 - successful completion
Return status of 1 - lookup was unsuccessful

GetNextUID(uidtype:tinyint, nextUiD:uid)
Returns a new uid of the specified type.
Return status of 0 - new ID has been successfully generated
Return status of 1-8 - no new UID (return status = the uidtype)

GetObjiDFromNodelD(nodelD:int, objiD:int)
Returns an object ID from the Nodes table given its node (D.

GetSlotinfo(parentiD:uid, childID:uid, siotiD:uid, slotName:varchar(255))

Given the ID of a parent and child node, returns the name and ID of the slot
the child is filling.

Return status of 0 - successful query for siot info
Return status of 1 - no such parent/child pair

GetTypeinfo(typelD:uid, name:varchar(255), isRelation:bit, isVisible:bit,
isNodeCentric:bit)

Given the ID of a type, returns its name, whether it's a relation, whether it
appears on the create menu, and whether it's node centric.

Return status of O - successful query for type info
Return status of 1 - no type exists with this ID

GetUserName(useriD:uid, name:varchar(255))
Looks up a user's name in the Entities table given a user ID.
Return status of 0 - successful lookup of user name
Return status of 1 - ID not found '

InitSession(useriD:uid, processiD:smallint, hostname:varchar(255),
seesioniD:uid) '

Initlalizes a session given the user ID, the process ID, and the host name of
the user's machine. Generates a new uid for the session and inserts the
session information into the Sessions table.

Return status of 0 - successful completion

JdnGroup(mombor:varchar(ZGS), group:varchar(2585), owner:varchar(255))
Adds a new member to the specified group in the Group_Members table,

A-13

e)

Appendix A: Aquanet Database Schema

provided that the group exists and the requestor is the owner of the group.
Return status of 0 - successful addition of member to group
Return status of 1 - requestor is not group owner
(owner’'s name is returned)

LeaveGroup(member:varchar(255), group:varchar(255), owner:varchar(255))

Removes a member from a group by deleting the member’s entry in the
Group_Members table.

Return status of 0 - member successfully removed from group
Return status of 1 - requestor is not owner of group
(owner's name is returned)

MakeL ock(locktype:iock_type, targetiD:uid, sessionID:uid,
lockOwner:varchar(255))

Locks a node passed in as targetID by making an entry in the Locks table
using the information passed to it. If there's already a lock on this node,
MakeLock returns the owner of the lock.

Return status of 0 - node has been successfully locked
Return status of 1 - node locked by another user
(lock owner’s name is returned)

PurgeBadLinks(void)

Removes non-existant links from the Node_Children table by checking
whether both parent and child nodes exist in the Nodes table.

PurgeChangeL og(void)

Deletes all entries from the ChangelLog table that correspond to sessions
that no longer exist.

PurgeUnreferencedObjects(void)

Removes objects that are no longer referenced in the Nodes table from the
Objects table.

SetSessionDiscussion(sessioniD:uld, dname:varchar(255))

Updates the Sessions table with a new discussion ID. If there is no current
discussion (the discussion name has a null value), then a NULL value is put
in the Sessions.

Return status of 0 - successful update of Sessions table
Return status of 1 - session does not refer to this discussion

- SetSlotinfo(typelD:uid, slotiD:uid, name:varchar(255), type:tinyint,
minVal:int, maxVal:int, defaultVal:varchar(255),

A-14

Appendix A: Aquanet Database Schema

comment:varchar(255))

Updates the Type_Slots table with new information about a slot, or if the slot
ID is passed in as 0, generates a new uid and creates an entry for the slot.

Return status of 0 - successful update of info in the Type_Slots table
Return status of 1 - new slot has been created with info
Return status of 2 - no slot name exists for this slot ID

SetTypeinfo(typelD:uid, name:varchar(255), isRelation:bit, isVisible:bit,
IsNodeCentric:bit, dWidth:int, dHeight:int, comment:varchar(255))

Updates the Types table with new information about a type (passed as
parameters to this proc).

Return status of 0 - successful update of info in the Types table
Return status of 1 - no slot name exists for this type ID

TableHasCoIumn(table:varchar(zss), coiName:varchar(255))

Checks to see if table already has a column by this name by consuiting the
aquanet database’s tables.

Return status of 0 - no current column by this name
Return status of 1 - already a column by this name

WriteNode(sessionlD:uld, nodelD:uid, x:smallint, y:smallint, w:smallint,
h:smallint)

Updates the size and position information for a particular node giveniits ID.
Also records change in the Change Log.

Return status of 0 - successful update of node’s position and size
Return status of 1 - node was not found in the Nodes table

A-15

Appendix A: Aquanet Database Schema

Graphic Appearance Format o
The graphic appearance for each type is specified by three columns in the Types u
table. The first two, Default_Width and Default_Height, specify the bounding box of
the type (in pixels). The third, Graphic_Appearance, contains detailed
specifications of each element of a type's appearance. These specifications are
stored as text; the description of each element is terminated by a carriage return.

The following is the per-element specification:

element type, X, y, w, h, parameter 6, parameter 7, parameter 8, parameter 9
Element type is a value from 0-9 where

element type = 0: line;

element type = 1: rectangle;

element type = 2: oval,

element type = 3: circle;

element type = 4: text;

element type = 5: slot value (name of p-slot value to display);

element type = 6: icon;

element type = 7: node slot (name of e-siot value to display);

element type = 8: group; \/

element type = 9: stretchy line (a line that connects two nodes).

Parameters x, y specify the corner of the element’s bounding rectangle expressed
as a percentage of the type's Default_Width, Defauit_Height (also in Types table).

Similarly, w and h are the width and height of the element, again expressed as a
percentage of Default_Width, Default_Height. The coordinate system for graphic
elements is taken as starting at 0,0 in the upper left hand corner.

The one exception to this specification is element type = 9 (stretchy line), which
uses the following parameters in place of x,y,w,h:

slot-name-1, attachment-type-1, slot-name-2, attachment-type-2

Parameters slot-name-1 and slot-name-2 define the e-slots that act as endpaints,
~ and attachment types dictate how the lines will be drawn between the two slots of -
the relation. .

attachment type = 0: no preferred attachment point (the program decides);
attachment type = 1: vertical attachments preferred;

attachment type = 2: horizontal attachments preferred;

attachment type = 3: side attachments preferred;

attachment type = 4: corner attachments preferred. u

A-16

Appendix A: Aquanet Database Schema

Parameter 6 is either foreground color (if the element is a line, rectangle, oval,
circle, text, or siot value) or the name of an e-slot (if the element type is 7).
Foreground color may be any named xcolor (to see possible values, type xcolors
at the shell prompt on a color monitor).

Parameter 7 is either the background color of an element (if the element is a
rectangle, oval, or circle), the actual text to be displayed (if the element type is 4),
or the name of the slot to be drawn (for element type 5). Background color may be
any named xcolor or Clear (transparent).

Parameter 8 is line weight (for graphics) or font size for text.

Other parameters may be added for future use; all parameters on a single line
correspond to the single element of the type specified by the first parameter.

For example, if you wanted to specify a two pixel thick black rectangle with a
transparent background that always appears as the lower right hand quarter of a
type, and if the Default_Width = 200 and the Default_Height = 400, the etement
specification would look like:

1,50,50,50,50,black,Clear,2

As a further example, the entire Graphic Appearance specification (as stored in the
Types table) for the type "Argument” used in the User's Manual is:

7,2,1,66,31,Conclusion,0,0,0,0,0
7,2,68,66,31,Grounds,0,0,0,0,0
7,33,34,66,32,Rationale,0,0,0,0,0
0,4,34,24,34 black,0,1,0
0,14,34,14,66,biack,0,1,0
0,14,50,20,50,black,0,1,0
4,20,50,15,0,black,R:,12,1,0,0

A-17

Y

Job Messages

Xerax PostScript version 47.0 revision 17 ‘
Copyright (c) 1987, 1988, 1989, 1990, 1991 Xerox Corparation.

- - handling undefined [/lettertray] at pasition 18498inIvarlspoollmdqs’locklhomefdatah'29648ABE1ef5

Xerox RoadRunner Interim Print Servicé
Copies: 1, Sheets: 46 (1,44,1), Time: 179.42

Job #30
January 3, 1992 8:13:06 am PST

-DRAFT--DO NOT DISTRIBUTE--
Send comments to Aquanet. parc@xerox.com

Aquanet: a hypertext tool to hold your knowledge in place

Catherine C. Marshall
Frank G. Halasz
Russell A. Rogers
William C. Janssen Jr.

Xerox Palo Alto Research Center
3333 Coyote Hill Rd.

Palo Alto, CA 94304
415-494-4740
marshall.parc@ xerox.com
Fax: 415-494-4777

Keywords: representation, graphical knowledge structures, complex relations, collaboration

Abstract:

Hypertext systems have traditionally focused on information management and presentation. In
contrast, the Aquanet hypertext system described in this paper is designed to support knowledge
structuring tasks. In this paper, we discuss our motivations for developing Aquanet. We then
describe the basic concepts underlying the tool and give a brief guided tour of the tool in opera-
tion. We close with some brief comments about our initial experiences with the tool in use and
some of the directions we see the Aquanet research moving in the near future.

Submitted to Hypertext ‘91, San Antonio, Texas, December 15-18, 1991

Aquanet: a hypertext tool to hold your knowledge in place

1.0 Introduction

The power of hypertext derives from its dual nature: hypertext is simultaneously a tool for manag-
ing and presenting information and a tool for representing the structure inherent in that informa-
tion. Although this essential duality has been duly noted in the hypertext literature, by far the
largest part of the effort in building, using, and researching hypertext remains on the information
management and presentation side of the duality. From Memex [Bush45] and Augment [Engl68]
through KMS [Aksc88] and Intermedia [Garr85], the main focus has been on hypertext as vehicle
for managing large collections of non-linear information and for presenting this information to
readers in a manner that does justice to its non-linear nature. The other side of this duality, infor-
mation (or, if you prefer, knowledge) representation has until very recently been considered more
the province of Artificial Intelligence than of Hypertext. With the exception of a few scattered
projects such as gIBIS [Conk88] and IDE [Jord89], relatively little attention has been focused on
exploring and further developing the underlying representational capabilities of the hypertext data
model.

Aquanet is a collaborative hypertext tool for people trying to interpret information and organize
their ideas, either individually or in groups; we have been calling such activities knowledge struc-
turing tasks. Some knowledge structuring tasks - for example, information analysis - involve
movement from unstructured fragments to coherent, organized structures [Brow85][Hala87).
Other knowledge structuring tasks such as design deliberations may use a known structure and the
methodology it embodies to facilitate group discussions; Yakemovic’s use of IBIS for software
design is an excellent example [Yake90].

Our goal in developing Aquanet was to explore the utility of hypertext facilities in the realm of
knowledge representation and, as a resuit, to broaden our understanding of hypertext’s representa-
tional characteristics. In this paper, we will describe our motivations in developing Aquanet. We
will then describe the basic concepts underlying the tool and give a brief guided tour of the tool in
operation. We will close with some brief comments about our initial experiences with the tool in
use and some of the directions we see the Aquanet research moving in the near future.

Throughout this paper, we will be using the terms “knowledge structure” and “graphical knowl-
edge structure”. We use knowledge structure to refer to an interconnected network of information-
bearing nodes that are used to represent the primitive objects and their interrelationships in some
domain of discourse. Technically, any hypertext network can be considered a knowledge structure
under this definition. But we intend the term to connote hypertext networks (and other informa-
tion structures) whose basic purpose is to represent or model the structure of some real-world
domain. By graphical knowledge structure, we mean a knowledge structure whose primary pre-
sentation to the user is as a graphic display on a computer screen.Figure 1 shows three representa-
tive examples of the kind of graphical knowledge structures that drove our thinking in developing
Aquanet. ‘

2.0 Background: NoteCards meets gIBIS

Aquanet brings together two separate but convergent lines of hypertext research. First, over the
last five years we have been observing people using NoteCards [Hala87] for a variety of knowl-
edge structuring tasks. Of particular interest are our investigations into representing the structure
of argumentation in hypertext [Mars87][Mars89] and our use of the NoteCards-based IDE system
- for analyzing knowledge in instructional design tasks [Russ87][Jord89]. Second, we have been

\/

Aquanet: a hypertext tool to hold your knowledge in place

Datum President
Warrant VP-A VP-B VP-C
1 ' l !
Backing X
Abstract Toulmin micro-argument structure -
[Toul58] _ Abstract organizational chart
Pro
..,“;[Position Argument
Issue ’r{:t: Con
M Bosition Argument
Pro

Abstract IBIS network after [Conk88]

Figure 1: Representative knowledge structures

influenced by the ideas introduced in gIBIS [Conk88] and its subsequent generalization, Germ
[Brun88]. The gIBIS and Germ tools provide a valuable counterpoint to NoteCards since they
were explicitly designed to support the construction and maintenance of constrained knowledge
structures.

These two lines of research have highlighted the discrepancies between the needs of users
engaged in knowledge structuring tasks and the functionality provided by information manage-
ment and presentation hypertext systems like Intermedia and KMS. Two discrepancies stand out.
First, information management hypertext systems focus on nodes and the local connections
between them. But in knowledge structuring tasks it is important to see and manipulate a global
view of the network. Second, information management systems provide only a simple node-link
data model. Knowledge structuring tasks often require a richer language for expressing the inter-
connections among nodes.

2.1 Centering interaction on a network overview

One of the most important consequences of emphasizing the information management and pre-
sentation aspect of hypertext is that interaction tends to be centered on nodes or documents;
authors and readers are expected to focus on the textual or graphic content of nodes, and to move
from node to node in navigating through a network. In fact, systems like NLS/Augment {Engl68],
KMS, and Hypercard [Appl87] provide no structural overview of the network. By contrast, gIBIS
interactions center around a graphic overview of the emerging hypertext network; new nodes and

Aquanet: a hypertext tool to hold your knowledge in place

links are always created in this global context.

NoteCards allows us to examine the distinction between node-based and overview-based access
to the hypertext since it provides users with both modes of interaction. Users generally regarded
access using the graph-style overview (referred to as the browser) as clumsy and slow, and did not
use it if they were engaged primarily in information management tasks. On the other hand, users
faced with large structuring tasks frequently chose to work from the browser, in spite of its draw-
backs. They would maintain browsers across sessions, and use them as a context-setting backdrop
for their work. These browsers functioned as accelerators for accessing and referring to existing
structures (see page 839 in [Hala88]). NoteCards users also developed strategies for using brows-
ers to group nodes by means of spatial layout, especially in the very earliest brainstorming stages
of a task (see page 96 in [Trig87]).

Because of the effectiveness of the overview in gIBIS and our experiences with the NoteCards ‘
browser, we decided to center Aquanet interactions around a graphical view of the knowledge
structure.

2.2 Complex relations as a richer linking model

A second important artifact of emphasizing the information management and presentation aspects
of hypertext is that links are designed primarily as navigational aids. Even though in systems like
NoteCards and gIBIS, links are labelled or even typed, it is difficult to build coherent composite
structures using links alone. The legal case cluster card described on page 843 of [Hala88] is a
representative example. In this example, a NoteCards user attempted to represent the structure of
a complex legal case, but failed because he could not adequately represent its overall structure
using a simple collection of nodes and links.

We experienced analogous problems of reference and scope in representing Toulmin structures in
NoteCards. As a result, we were forced to create extra mechanisms (specifically, a Toulmin card)
to capture the semantics of the Toulmin relation [Mars87]. For similar reasons, the IDE develop-
ers were forced to build a structure library [Jord89] to facilitate their representation development.
Even though in both of these cases the extra mechanism aided the task at hand, there were still
significant limitations to its generality. For example, after structures were created through these
mechanisms they were still maintained within the node-link model. Problems like the inability to
ripple structural changes through all instances were endemic to both applications. Thus develop-
ing a richer linking model to express complex relations is an important goal of Aquanet.

3.0 The Aquanet Task: Collaborative knowledge structuring

Looking more closely at knowledge structuring tasks, we can distinguish between two kinds of
activities. First, people use knowledge structures to organize and categorize content. Second, over
the course of a task people develop knowledge structuring schemes; these schemes evolve
through negotiation and use. In practice, the two activities aren’t that easy to pull apart, but they
each suggest a different set of use situations and user requirements.

Our own experiences using Toulmin structures as a descriptive way of organizing the content of
reasoned discourse [Newm91] provide some interesting insight into how knowledge structures
evolve as they are used collaboratively. Originally, we chose a fixed knowledge structuring
scheme, Toulmin’s model of argument [Toul58] (see Figure 1 on page 2), as the primary vehicle
for performing a series of analyses. In the course of the analyses, we discovered that not only was

Aquanet: a hypertext tool to hold your knowledge in place

Toulmin’s model insufficiently prescriptive, but it also failed to cover and highlight all of the phe-
nomena of interest to us. To resolve the aspects of the model that were insufficiently prescriptive,
we found ourselves negotiating what kinds of statements could be used as each of Toulmin’s
micro-argument elements (for example, we had to decide whether a datum could be a very general
statement, or whether very general statements were always warrants) and how Toulmin structures
could be hooked together (for example, we had to decide whether it was possible to use the back-
ing of one argument as the claim in another). To cover the parts of the argument that were difficult
to “Toulminize,” we had to create new kinds of structures. Thus we found it necessary to both
constrain and extend our original knowledge structuring scheme.

As the example above illustrates, knowledge structuring tasks are frequently collaborative; they
can involve more than one person, and they usually take place over an extended period of time.
The kind of knowledge structuring that we’ve observed is semi-synchronous rather than the
tightly-coordinated synchronous collaboration that takes place in meetings. Much of the interac-
tion among collaborators takes place through actions on the knowledge structures as well as
through meta-comments attached to the knowledge structure.

The design and development of Aquanet was driven by these and other experiences using Note-

Cards for knowledge structuring tasks. Out of these experiences, we have derived the following

requirements:

(1) To define a knowledge structuring scheme, a user must be able to specify what its elements are
and how they are interconnected. For example, in an IBIS model, there are Issues, Positions,
and Arguments, and the Arguments can support Positions, but they cannot respond to Issues.

(2) To develop a knowledge structure, a user must be able to modify and extend the knowledge
structuring scheme as her understanding of the task changes. As we have suggested by our
example, the evolution of structuring schemes is an unavoidable side-effect of using them.

(3) To build or use a knowledge structure in the collaborative settings described above, users must
be able to see - with a reasonable delay - what other users have done. We call the kind of
updating required for this style of interaction WYSIWID: What You See Is What I Did.

(4) To display multiple views onto a single knowledge structure, a user must be able to specify
alternate graphic renderings of the same structure. For example, a user might want to see argu-
ments about design options and criteria as a matrix at the same time as the information is
shown as a dependency tree (sec MacLean et al.’s QOC [MacL.91] or Lee’s DRL [Lee90]).

(5) To use combinations of methodologies in a single task (as in Streitz’s activity spaces
[Stre89]), a user must be able to compose knowledge structuring schemes. For example, a task
that requires both issue-structuring and argumentation might combine an IBIS Issue-Position-
Argument model and a Toulmin Data-Claim-Warrant argument model.

(6) To develop a knowledge structure collaboratively, users must be able to negotiate about its
contents; they must be able to talk about the knowledge structure as well as through the
knowledge structure (see also Conklin and Begeman'’s account of “going meta” in [Conk88]).

In designing Aquanet, we tried to address all six of these requirements. While the current imple-
mentation of the tool falls short of fully meeting all of them, it is our long term research goal to
fully support the requirements of knowledge structuring tasks.

Aquanet: a hypertext tool to hold your knowledge in place

4.0 Knowledge Structuring Concepts in Aquanet

Aquanet is designed to support users in creating, storing, editing, and browsing large graphical
knowledge structures.

41 The Aquanet data model: basic objects and relations

Knowledge structures in Aquanet are constructed according to a data model that merges the stan-
dard hypertext data model (e.g., see [Hala90]) with a fairly standard frame-based data model (e.g.,
see [Bobr77]). In line with its hypertext roots, Aquanet makes a strong distinction between data-
containing objects, typically called “nodes” in the hypertext model, and relational objects, typi-
cally called “links” in the hypertext model. The ‘nodes’ in Aquanet are called basic objects, the
‘links’ are called relations. In line with its knowledge representation roots, Aquanet objects (both
basic objects and relations) are typed, structured, frame-like entities.

Every Aquanet object is made up of an unordered set of named slots. Every slot has a value (or
several values in the case of multi-valued slots). The value is restricted to be data of a given type
(see discussion of Aquanet types below).

The distinction between basic objects and relations lies in the nature of the allowable slot values.
In basic objects, all slots values are restricted to be primitive datatypes (e.g., text, images, num-
bers, strings, dates, etc.). Thus basic objects are analogous to standard hypertext nodes (e.g., cards
in NoteCards, frames in KMS, documents in Intermedia, etc.) except that instead of having a sin-
gle content they have a set of named contents.

In contrast to basic objects, the slots in relations may be entity-valued, i.e., the value is some other
object (or several objects for multi-valued slots). Thus Aquanet relations are analogous to hyper-
text links in that they are structural elements that serve to connect other entities in the structure. In
hypertext terms, relations are “node-to-node” n-ary links that can be anchored to either nodes
(basic objects) or other links (relations). Unlike links, however, relations have what amounts to
named and typed endpoints.

Every Aquanet object is an instance of some type. The definition of a type specifies the slots that
make up objects of that type, the restrictions on the type(s) of the objects that can fill each of these
slots, and the graphical appearance of the object (see Section 4.3 below). Aquanet type definitions
are organized into a multiple inheritance hierarchy. Objects of a given type include not only the
slots defined in their type but also the slots that they inherit from their supertype(s). The rules of
inheritance in the Aquanet type hierarchy are taken directly from the CommonLisp Object System
specification [Stee90].

4.2 Building knowledge structures

Complex knowledge structures are built in Aquanet using two basic mechanisms for composing
relations: inclusion and chaining. In inclusion, one relation is included as the value of a slot in
some other relation. Figure 2C (page 6) is an example of inclusion composition. In chaining, two
or more relations are connected because some Aquanet object fills a slot - though not necessarily
the same slot - in all of the relations. Figure 2D (page 6) illustrates chaining composition.

4.3 Graphic appearances
Both the hypertext and frame data models focus on structure per se and largely ignore the issue of

Aquanet: a hypertext tool to hold your knowledge in place

Figure 2: Knowledge structures and graphic appearances
A: The graphic appearance (top) and an actual rendering

(bottom) of a Statement basic object.

B: The graphic appearance of an Argument relation.

C: An actual rendering of an Argument relation where two slots are filled by State-
ments and the third is filled by another Argument relation. Thisis an example of
inclusion composition.

D: A rendering of two Argument relations that share a Statement object (“Aquanet is
flashy™). This is an example of chaining composition.

how that structure is to be graphically displayed to the user. In contrast, the appearance of the
knowledge structure is a critical component of the Aquanet data model. Specifically, every type
definition includes information about the type’s graphic appearance.

An Aquanet object’s graphic appearance specifies exactly what the object and its slots should look
like on the display. When rendering a knowledge structure, Aguanet reserves a rectangular region
of the display for each object. The object’s graphic appearance determines what is drawn into this
rectangular region. Figure 2A (top) shows an example of the graphic appearance of a representa-
tive basic object (a Statement). Figure 2B shows a representative relation (an Argument). State-
ments have one important slot called Text. Arguments have three slots - the Claim, the Grounds,
and the Rationale - each of which can be filled by a either a Statement or another Argument.

Graphical appearances can contain two types of items: graphic elements and slot values. The
graphic elements are items such as lines, circles, squares, text labels, background colors, etc. that
are drawn directly onto the display (scaled appropriately to fit into the allotted region). In Figure
2B, the vertical and horizontal black lines and the characters “R:" are examples of graphic ele-
ments.

Slot value items reserve an area on the display into which the value of a named slot will be ren-
dered. For primitive valued slots, the value of the named slot is printed in this area (see the bottom
illustration in Figure 2A). For entity-valued slots, the graphic appearance of the slot’s value is
recursively rendered (after the necessary scaling) into the reserved area. In Figure 2B, the three
dashed boxes containing the bracketed slot names are slot value items. Figure 2C shows the ren-
dering of an instantiated Argument relation. In this instantiation, two of the Argument’s slots are
filled with Statement basic objects and one is filled with another Argument relation.

Aquanet: a hypertext tool to hold your knowledge in place

Figure 3: The rendering of an adjustable relation (black border) containing three basic objects
(gray borders), both before (left side) and after (right side) the user moves the “1” basic

The graphical appearance mechanism Just described is most appropriate for relations in which the
layout of the relation follows a specifiable convention. Many relations have no such convention.
For these cases, Aquanet allows the user to arbitrarily position objects on the display. The region
occupied by the relation that contains these objects is then adjusted to be the bounding box just
big enough to hold all of the contained objects. Figure 3 illustrates the operation of these adjust-
able relations. Such relations are used to construct standard network diagrams such as the brows-
ers found in NoteCards and gIBIS.

Composing a 2-dimensional graphical appearance for a complex knowledge structure out of the
graphical appearances of its component objects raises many challenging design issues. To avoid
some of the very difficult layout mechanisms that would be required for a general solution, we
chose to employ two simplifying mechanisms in our first implementation. First, Aquanet struc-
tures are arranged in a 2!/, dimensional space which is then rendered onto the 2 dimensional space
of the display screen. Where the graphical appearances of objects overlap, one of the objects is
stacked on top of the others, thus partially or fully obscuring them. The user can manipulate the
stacking order of Aquanet objects to ensure that the desired object is displayed unobscured.

The second simplifying mechanism involves the creation of multiple views of a single Aquanet
object (called virtual copies in the Aquanet interface) that can be placed at disparate locations on
the display. Using virtual copies, the layout of a complex structure is simplified because the struc-
ture can be split into pieces that can be arbitrarily placed on the display without the constraint that
logically connected relations (i.e., relations that share a common included object) be spatially co-
located on the display.

44 Aquanet schemas

One of our major goals in designing Aquanet was to provide users with the ability to customize
knowledge structures for their specific task. Aquanet accomplishes this goal through the use of
schemas. Every Aquanet session is controlled by a schema that defines a set of allowable basic
object and relation types. Since the basic object and relation types specify their slots and constrain
the slots’ values, the schema defines the nature and organization of the knowledge structure that
the user can construct. For example, one can easily design an Toulmin schema that allows the user
to create only one type of relation, the Toulmin relation, whose five slots (Datum, Claim, Warrant,
Backing and Rebuttal) can only be filled by a Statement basic object. On the other hand, one
could as easily design an IBIS schema that allows the user to create 3 types of basic objects
(Issues, Positions, and Arguments) and connect them using the 9 types of relations (with appropri-
ate type restrictions) that are described in [Conk88].

Aquanet includes a mechanism for composing schemas. Specifically, a schema can include by ref-

Aquanet: a hypertext tool to hold your knowledge in place

erence any other schema. The types in the included schema are added to the list of types in the
including schema. The design of a more sophisticated composition mechanism that would, for
example, provide for subtyping of schemas is a topic we are currently exploring.

The Aquanet schema language is somewhat limited in expressiveness. In particular, the schema
determines the knowledge structure only on a local level. There is no way in Aquanet to express
multi-object or global restrictions on the organization of the knowledge structure. For example,
one cannot ensure that only one instance of a certain type exists in a knowledge structure, nor can
one state that some object should not be related to itself through a series of connecting relations. A
richer schema language is another area we are actively investigating.

Aquanet includes both a type and a schema editor. With the type editor, the user can easily access
all of the properties of a type including its list of supertypes, its graphic appearance, its slots, and
the slot value restrictions. With the schema editor, the user can add and remove types in a schema.

Allowing the user to edit types and schemas brings up a host of difficult issues about how to rec-
oncile existing objects with schema changes. Although these issues of schema evolution are a crit-
ical focus for our work in the long term, we chose to simplify our initial implementation by
restricting the possible changes that users can make when editing types and schemas. In particu-
lar, users can add and delete types to/from a schema and they can add/delete slots in a type. They
can also arbitrarily change the graphical appearance of a type. Few other type or schema modifi-
cations are currently possible. For example, changing the type restriction on a slot value is not
generally allowed. Since they are clearly at odds with our goal of supporting for schema evolution
during knowledge structuring tasks, such restrictions on schema editing will be removed in future
releases of Aquanet.

4.5 Aquanet discussions

Aquanet stores individual knowledge structures as well as schema information in a central, shared
database. Individual knowledge structures are known as discussions, following the terminology
used in gIBIS. Each discussion uses a single schema (but many discussions may share a single
schema). At any given time, each instance of the Aquanet tool can only have a single open discus-
sion. Objects contained in one discussion cannot “reference” (i.e., use as a slot value) objects in
-another discussion. Discussions are also the level at which most access control is enforced.

5.0 A Guided Tour of Aquanet

Users create and browse a graphical knowledge structure through the multi-paned Aquanet win-
dow shown in Figure 4. The knowledge structure shown uses the Argument schema described in
Figure 2 (page 6). The pane on the left side of the window is a scrollable display onto the full
structure. The top right pane displays a filtered list of objects in the network. This pane will be
used to contain other kinds of user-specifiable views in future implementations. Objects can be
selected using either of these two panes. The lower right pane displays the content - the primitive
slots and their values - of the selected object. Objects displayed in this pane can be checked out
from the database for editing.

Users can extend a structure in two different ways: they can use an existing object in a new role,
thus creating a new relation, or they can create a new relation and fill its slots with new or existing
objects. Figure Sa shows an example of how a structure grows by using an existing object, the
Statement “Use of Xerox’s network should be optimized,” which is already Grounds for one argu-

ment, as the Conclusion for new argument. Figure 5b shows the results of this operation.
8

Aquanet: 2 hypertext tool to hold your knowledge in place

Discussion: email controversy

: make poor uss
bf a kmited

Filter:
Qrder: Objects Name

-| IBM, ATRT DEC, aAmdahl, etc. contral
personal use of their networks.

mportant tompatitors like A Ple, Sun,
Tandem & OEC dant |i|11lf he use of

i email

—{ Inappropriate use of formatted mall
reduces network ef! .

Personal use of email and recréational
dis make poor Usa of a limiad
resource.

Lse of Xerox’s internet should be
optimized (centrolled).

We evaluate our gwn practices by
benchmarking them against

Statement
Name

Inappropriate use of formatted mail
reduces network efficiency.

Additional information

Fermatted content consumes
from § to 100 times the
capacity of & mailnate.

Arqument->Rationale

Argument->Grounds
CounterArg->False-C
CounterArg->Respons

Eoadl

a. Using a Grounds statement as a Conclusion b. The extended network

Figure 5: Using an object in a new role

Aquanet: a hypertext tool to hold your knowledge in piace

Users develop and modify schemas with a schema editor as shown in Figure 6. The types that are
included in the schema may be selected from the list on the left side of the window.

Schema “Simple Arg™

Edit Selected T

Types In this schema

e Statement_(BasicObject) any staiement abowt | [Remove Selected T!Pe)

the topic

Arpuament (Pelation) to together
ass-ﬂll(n) taghe - Add New Type)

o|CounterArg (Relation) for attacking an
f an Argument ar another assertion
[,UE:&: Database)
Done)

Nui% (BasicObject)
(" Exit without Updating)

Figure 6: The schema editor. The Argument relation has been selected for editing.

Users edit types with a separate type editor. The type editor allows users to name a type, list its
supertypes, define its slots, and specify its graphic appearance. Figure 7 shows the type editor
invoked on the Argument relation. It has no supertypes. It contains three entity-valued slots,
Grounds, Conclusion, and Rationale. Its graphic appearance is shown in the editing pane on the
right hand side of the window. In Figure 7, one of the lines has been selected; a user is changing
its color to red and its width to 2.

6.0 Implementation Notes

Agquanet runs on Unix workstations and can be used from any workstation or personal computer

that supports X Windows. A color monitor is useful but not required. Aquanet is written in single
inheritance object extension to “C” and built on the Andrew Toolkit[Pala88]. A Sybase database
server is used to store the knowledge structures and the user-defined schemas. Sybase also man-

ages the concurrency control necessary to support multi-user collaboration.

The Aquanet object-oriented model is mapped onto the Sybase relational database. Each type is
stored as a separate database table. Another set of tables stores the schema information.

To support semi-synchronous collaboration, the central database server mediates access and
changes to each discussion. Before an object is changed, it is locked in the database and its latest
state is recached locally. When the object is unlocked, the edit is noted in a change log. Each ses-
sion periodically polls this log to see which elements have been changed. Any new or changed
elements are recached, resulting in an up-to-date view of the discussion.The default polling inter-
val is 30 seconds.

The implementation uses a data / view architecture; the discussion is stored in a data object and
multiple views are created to display the knowledge structure. A user, by interacting with one of
the views, edits the knowledge structure which broadcasts the change to all of its views. Each
view responds, updating its appearance to match the new state of the discussion. This facilitates
viewing and interacting with different representations of the discussion while preserving consis-
tency across these views. '

10

Aquanet: a hypertext tool to hold your knowledge in place

Editar for type “Argument” in schema ‘Skmple Ary”_ (R -

Type Name: IArgument —[Graphic Appearance
Deseription: |E giue together

ONodecentrIc alnstantlable gneiatlon

! Supertypes

—

New Supertype: ! | i Ty,
(Add Before){ Add After }(Remove)

Slots

. {Grounds (Entity , the basis for

(™1 the argument) [no default
valug

Canclusion (Entity . the claim
aof the argument) [no def ault
value

Rationale (Entity rationale fo : >
reacnm(g ct;nyéleaén) [no | Type: G Fixed Line Linewidth: C’ 2
default vaiue|
i Name (d‘51rr|n ! nalo description)
i [no default valug| '
“leat Date (Date o Foreground Color: (Red
(Edit)(Add)(Delete)

{ Front)(Back)(Delete } ((Update)(Done))

Done Update

Figure 7: Editing a type

7.0 Early Experiences with Aquanet

We have just released the aerosol (alpha) version of Aquanet. Our early use experiences are drawn
both from our own collaborations and from the experiences of some tolerant pre-alpha users.
Already we have accumulated a diverse collection of schemas that reflect the varying representa-
tional needs of the initial set of tasks. We have also noticed some important patterns in these early
experiences and have noted some additional requirements central to using the tool for its intended
purposes.
To date, Aquanet discussions have been initiated in service of analytic tasks (one is a competitive
analysis of current machine translation efforts), group design efforts (for example, designing a
new drawing editor), organizing an existing collection of structured information (usage notes for a
dictionary), and more general collaborative work (we use it to keep track of Aquanet bugs and
feature requests and we've used it to organize this paper). While many of these discussions are
still in early phases of organization, they have already caused us to reflect on some general issues.
First, we have noted that people invent ways of creating lightweight structure to lessen the prob-
lems of premature organization. Second, we have looked at the kinds of schemas people have
come up with, how they differ, and how they share certain characteristics. Finally, we have recog-

11

Aquanet: a hypertext tool to hold your knowledge in place

nized the difficulties with bringing information into the tool and defining output when structuring
must result in a linear document.

7.1 Using spatial organization

As noted in [Stef87], [Trig87), and elsewhere, spatial organization of nodes is an important light-
weight way of creating structure. In Aquanet, users have created representational types like labels
that help them partition and differentiate a large space. Furthermore, when simple grouping rela-
tions like the one shown in Figure 3 (page 7) have been available in addition to labels, users have
shown a preference for labels; they just manipulate layout to indicate relationships among objects.

Some discussions use the spatial characteristics of a layout to partition a task among members of
a work group. For example, in writing this paper, after initial brainstorming about topics, we each
chose lists of nodes under a given topic, and created our own “work areas.” Similarly, in our dis-
cussion about the system itself (a discussion of the current bugs and desired features), certain
areas of the main view became the “property” of a particular author, while others tended to be

- group efforts.

Spatial layout also provides some useful cues for readers navigating a large discussion, especially
since the current implementation of Aquanet provides no birds-eye view of the entire structure.
For example, the usage notes discussion uses spatial/alphabetic organization of its entries to aid -
the author and any potential readers in scrolling through the large space.

Given the prevalence of these spatial organization and layout strategies, it is clear that future ver-
sions of Aquanet should provide explicit support for them.

7.2 Supporting common representational underpinnings

Our early experiences with Aquanet have shown us that schemas will differ radically given differ-
ent tasks and different people involved in a discussion. Most of the schemas to date are highly
specific to the content of the discussion. For example, for our discussion of Aquanet bugs and fea-
tures, we have developed a schema that includes types like “Bugs,” “Features,” and “Architec-
tural Changes,” and relations like “Fixes” and “Clumps.” Other schemas are more general, like
the one expressing the Toulmin relation that we’ve used in our earlier examples; the types that it
provides do not necessarily correspond to specific characteristics of the task at hand. Our intuition
is that the more general schemas are either more difficuit to use - it is harder to get people to agree
on a content-representation mapping - or that they aren’t as powerful in structuring content since
useful distinctions aren’t brought out.

Although we’ve discovered that schemas may differ radically, we’ve also found that some repre-
sentational needs don’t vary that much across applications. One of the first types that we created
was modeled after a post-it note. This type is displayed as a bright yellow rectangular background
with the contents of a note shown in the foreground in a large font. It proved to be so useful, espe-
cially for talking about the schema and for quick annotations, that we included it in many other
schemas. We also noted several useful representational primitives like groups, ordered lists, and
binary links; these types recur in variant forms in many schemas.

One way we have considered providing users with sets of standard types like lists, groups, out-
lines, labels, and post-its is as a schema library. Schema developers could then specialize these
generally useful constracts for their applications, or include meta-discussion objects like post-its

12

Aquanet: a hypertext tool to hold your knowledge in place

and labels in any discussion.

7.3 Information import and export

Users often come to knowledge structuring tasks with a collection of existing material and some
preliminary ideas about how this material should be structured. For example, in the machine
translation analysis, we have some on-line sources pulled from USENET and COMLINE; these
on-line sources have well-defined internal structure and could easily be automatically integrated
into the task’s knowledge structure. Automatic import of external information would not only
relieve the tedium of entering such information by hand, it would also promote consistent encod-
ing of the information. We are currently designing general mechanisms for importing information
into Aquanet.

The converse of the import issue is the externalization of knowledge structures from Aquanet into
forms usable by other tools. Because many early Aquanet users requested such a facility, we have
implemented a simple report generation program. A more sophisticated externalization capability
is also being developed.

8.0 Dangling Links

Since Aquanet is just now ready for general use, our major focus in the near future will be on
building a user community. The feedback we receive from people using the tool in real tasks will
help direct its future evolution. Based on early observations, we intend to pursue the following
research themes:

(1) Extend methods of viewing and interacting with knowledge structures. Specifically, we intend
to allow users to define schema-specific viewers. We also will design a generalized network
description language.

(2) Provide better support for the schema evolution process and the exploration of alternative
structures. This includes a versioning mechanism for both schemas and discussions.

(3) Provide mechanisms for integrating Aquanet with the computing environment. This includes
a programmer’s interface.

(4) Provide a mechanism for knowledge structure computations, including associating behaviors
with types, schemas, and objects. This mechanism would support for dynamic objects, com-
puted role values, and intelligent discussion “agents” for example.

13

\/

Aquanet: 3 hypertext tool to hold your knowledge in place

Acknowledgements

We would like to thank Tom Moran, Susan Newman, Jintae Lee, and Norbert Streitz for their
helpful comments during the development of Aquanet.

References
[Appl87] Apple Computer, Inc. Hypercard User’s Guide

[Aksc88] Akscyn, R., McCraken, D., & Yoder, E. KMS: A Distributed Hypermedia System
for Managing Knowledge in Organizations. CACM 31, 7 (July 1988), 820-835

[Bobr771 Bobrow, D.G. & Winograd, T. An Overview of KRL,A Knowledge Representation
~ Language. Cognitive Science, 1(1), 1977, 346.

[Brow85] Brown, J.S., & Newman, S.E. Issues in Cognitive and Social Ergonomics: From
Our House to Bauhaus. Human-Computer Interaction, 1985, 1(4), 359-391.

[Brow87] Brown, P.J., Turning Ideas into Products: The Guide System. Hypertext ‘87
Papers, Chapel Hill, North Carolina, November 13-15, 1987

[Brun88] Bruns, G. Germ: A Metasystem for Browsing and Editing. MCC Technical Report
STP-122-88

[Bush45} Bush, V. As We May Think. Atlantic Monthly, August 1945, 101-108

[Conk88] Conklin, J. and Begeman, M.L., "gIBIS: A Hypertext Tool for Exploratory Policy
Discussion,” MCC Technical Report Number STP-082-88, Austin, Texas, 1988.

[Engl68] Engelbart, D.C., English, WK. A Research Center for Augmenting Human Intel-
lect. Proceedings of the 1968 Fall Joint Computer Conference, 33 Part 1,
Montvale, N.J.: AFIPS Press, 1968, 395410

[Garr85] Garrett, L.N., Smith, K.E., & Meyrowitz, N. Intermedia:Issues, Strategies, and
Tactics in the Design of a Hypermedia Document System. CSCW ‘86 Proceedings,
Austin, Texas, December 3-5, 1986

[Hala87] Halasz, F.G., Moran, TP, & Trigg, R.H. NoteCards in a Nutshell. Proceedings of
the ACM CHI_+ GI Conference, pp45-52, Toronto, 1987

[Hala88] Halasz, F.G., Reflections on NoteCards: Seven Issues for the Next Generation of
Hypermedia Systems.CACM, 31, 7, (July 1988), 836-852.

[Hala90] Halasz, FG. & Schwartz, M. The Dexter Hypertext Reference Model. Proceedings
of the Hypertext Standardization Workshop, National Institute of Standards and
Technology, January 16-18, 1990. Availabie as NIST Special Publication 500-178,
March 1990. '

[Jord89] Jordan, D.S., Russell, D.M., Jensen,A.M., & Rogers,R.A. Facilitating the Devel-
opment of Represenations in Hypertext with IDE. Hypertext ‘89 Proceedings,
Pittsburg, Pennsylvania, November 5-8, 1989

[Lee90] Lee, J. "SIBYL: A Qualitative Decision Management System," to appear in Win-
ston, P. and S. Shellard (Eds.) Artificial Intelligence at MIT: Expanding Frontiers,
Chapter 5, The MIT Press: Cambridge, MA, 1990.

14

[Mars87]

[Mars89]

[MacL91]

[Pala88]

[Newm91]

[Russ87]

[Stee90]

[Stef87]

[Stre89]

[Toul58]
[Trig87]

[Yake90]

Aquanet; a hypertext tool to hold your knowledge in place

Marshall, C.C., Exploring Representation Problems using Hypertext. Hypertext
‘87 Papers, Chapel Hill, North Carolina, November 13-15, 1987

Marshall, C.C. “Representing the Structure of a Legal Argument,” Proceedings of
the Second International Conerfence on Al and Law, Vancouver, British Columbia,
June 14-16, 1989

MacLean, A., Bellotti, VM.E., & Moran, T.P. Questions,Options, and Criteria:
Elements of Design Space Analysis. Journal of Human-Computer Interaction. Vol
6.

Palay, A., et al. The Andrew Toolkit: An Overview. Proceedings of the USENIX
Technical Conference, February 1988

Newman, S.E., Marshall, C.C., Pushing Toulmin Too Far: Learning From an Argu-
ment Representation Scheme. Xerox PARC Technical Report, 1991.

Russell, D.M., Moran, T.P., & Jordan, D.S. The Instructional Design Environment.
In Intelligent Tutoring Systems: Lessons Learned. JPsotka, L.D. Massey, & S.A.
Mutter (Eds). Lawerence Erlbaum Associates, Inc. Hillsdale, N.J. 1987

Steele, G.L. Common Lisp: The Language (Second Edition) Digital Press, Bed-
ford, MA, 1990.

Stefik, M., Foster, G., Bobrow, D., Kahn, K., Lanning, S., and Suchman, L.,
“Beyond the Chalkboard: Computer Support for Collaboration and Problem Solv-
ing in Meetings," Communications of the ACM, Vol. 30, No. 1., January, 1987,
pp. 32-47.

Streitz, N.A., Hannemann, J., and Thuring, M., "From Ideas and Arguments to
Hyperdocuments: Travelling through Activity Spaces,” Hypertext '89 Proceed-
ings, Pittsburgh, PA November, 1989.

Toulmin, S., The Uses of Argument, Cambridge University Press, Cambridge,
1958.

Trigg, R.H., Irish, PM. Hypertext Habitats: Experiences of Writers in NoteCards.
Hypertext ‘87 Papers, Chapel Hill, North Carolina, November 13-15, 1987

Yakemovic,K.C.B., Conklin, E.J. Report on a Development Project Use of an
Issue-based Information System. Proceedings of the Conference on Computer-
Supported Cooperative Work, Los Angeles, California,, October 7-10, 1990

15

Updated Bugs and Caveats: 5/1/91

6. Known bugs and caveats

This document lists bugs and some caveats about features not yet implemented, network-
related "effects,” and other problems; it is the latest version of Section 6 of the User’s
Manual.

6.1 Features not yet implemented.

Aquanet has no undo. Aquanet has no undo for any of its operations. This is
clearly a desirable feature for some operations like delete, but it has not been
implemented yet.

Aquanet has no "abort session." Aquanet has no way of removing all your
changes from a discussion. ‘So if you enter a discussion, make some contributions,
and then want to exit, nullifying whatever you’ve done during the session, you
must delete all nodes you've created. Otherwise your contribution will remain in
the Aquanet database.

The z dimension (node depth) does not get saved. Aquanet currently does not
save the depth of nodes. Thus, if you've arranged a group of overlapping nodes
by an artful series of Tops and Bottoms, your arrangement will not be preserved
after you've exited the discussion.

Moving nodes does not initiate a lock. Because moving a node may initiate a
ripple effect through a large interconnected network of other nodes, it is possible
for several users to get into a tug-of-war. If this happens, let the other user move
first, since the last move is the one that will be stored in the database. Performance
considerations make node-locking on move a prohibitively expensive solution.

Zoom and Pan Out are not implemented. The Zoom and Pan Out options on the
Discussion menu are not fully implemented yet. If either is used, you will find that
scaling is erratic. However, it’s easy to recover if you accidentally either Zoom in
or Pan Out since each of the operations exactly reverses the other.

Relayout is not implemented. Relayout is not implemented. _
6.2 Side effects.

Loss of database connection. Occasionally you will lose your connection with
Sybase, either because the network is flaky or there are too many people trying to
access Sybase at the same time, and Aquanet will temporarily freeze. '

6.3 Bugs.

Menus are occasionally incomplete. If the menu that appears when you middle
click in a window does not correspond to the documentation, just try it again.
Sometimes you may have to click left to change the window focus. This is
particularly true for the discussion menu.

-

Updated Bugs and Caveats: 5/1/91

Drag updates are slow. Sometimes dragging nodes around in the main view can -
be annoyingly slow. We expect to fix this problem in the bouffant release of the u
tool.

Relations sometimes don't display their slots in the proper position. Dragging
relations a minor distance sometimes will cause slot contents to be "left behind."
This is a display bug - the slot contents are intact and will often display properly if
you move them again.

If you try to delete a relation you don’t own, you will clear its slots. Although
you can't delete a relation you don’t own, if you try, the nodes filling its slots will
be cleared (ie. freed) from the relation.

The schema editor’s toggles, choosers, and buttons look strange. If the schema
editor’s toggles, choosers, and buttons don't look like they do in the figures in this
user’s guide, you may have a missing font. To get this font, change your font path
by typing the following command into your shell window:

xset +fp /import/local/andrew /X11fonts

Bugs not on this list can be reported to AquanetSupport.parc@xerox.com.

