
File created: 15-Aug-90 14:23:08 {DSK}<usr>local>lde>SOURCES>loops>SYSTEM>SEDIT-PATCH.;2

changes to: (VARS SEDIT-PATCHCOMS)

previous date: 6-Jun-88 14:55:52 {DSK}<usr>local>lde>SOURCES>loops>SYSTEM>SEDIT-PATCH.;1

Read Table: XCL

Package: INTERLISP

Format: XCCS

; Copyright (c) 1988, 1990 by Venue & Xerox Corporation. All rights reserved.

(RPAQQ SEDIT-PATCHCOMS ((DECLARE\: EVAL@COMPILE DONTCOPY (FILES (SOURCE)
SEDIT-DECLS))

(FNS |\\\\closefn| |\\\\setup.context| |\\\\complete| |\\\\sedit|
|\\\\handle.completion|)))

(DECLARE\: EVAL@COMPILE DONTCOPY

(FILESLOAD (SOURCE)
SEDIT-DECLS)

)

(DEFINEQ

(|\\\\closefn|
 (LAMBDA (|window|) ; Edited 6-Jun-88 14:47 by raf

;;; to be called by the window system when SEdit windows are closed. if there’s a process behind them, wake it up (it should notice that the window is
;;; gone and do the right stuff) otherwise just trash the context. grab the lock here, because it wasn’t yet grabbed by the buttoneventfn.

(LET* ((|context| (WINDOWPROP |window| ’|EditContext|))
(|lock| (|fetch| |ContextLock| |of| |context|)))
(|if| |context|

|then| ; this is a live SEdit
(|if| (OR (EQ :REFETCH |lock|)

(AND (OBTAIN.MONITORLOCK |lock| T)
(TRUE (RELEASE.MONITORLOCK |lock|))))

|then| ; release lock before waking sedit
(|if| (WINDOWPROP |window| ’PROCESS)

|then| (|\\\\awake.command.process| |context| NIL)
|else|

;; this should never happen, now, because completion is unwind protected in \\sedit, and so
;; disintegration will have happened under completion. if by chance we screwed up, then the context
;; will still be there, so go ahead and waste it. IT CAN HAPPEN IF SOMEBODY RETFROMs \\sedit.

(|\\\\disintegrate.context| |context|))
|else| (|printout| (|\\\\get.prompt.window| |context|)

T "Can’t close. SEdit is busy")
’DON\’T)))))

(|\\\\setup.context|
 (LAMBDA (|context|) ; Edited 6-Apr-88 14:20 by bane

;;; confirm that this context is setup. that means either setting up a new context or verifying the structure in an old one.

(|if| (NULL (|fetch| |ContextLock| |of| |context|))
|then|

;; this is a new sedit. setup its profile, and then the context itself

(|\\\\setup.profile| (|fetch| |Profile| |of| |context|)
|context|)

(|\\\\setup.new.context| |context|)
|elseif| (EQ (|fetch| |ContextLock| |of| |context|)

:REFETCH)
|then|

;; this is a context that was shrunk, and thus we need to refetch when we verify the structure to see if there were any changes made
;; while we were asleep. Also must replace the ContextLock

(|replace| |ContextLock| |of| |context| |with| (CREATE.MONITORLOCK (CONCAT |\\\\name|
(|fetch| |IconTitle|

|of| |context|))))
(|\\\\verify.structure| |context|)

|else|
;; This must be an SEdit getting restarted (eg HardReset). Do a verify without refetching

(|\\\\verify.structure| |context| |nil| T))))

(|\\\\complete|
 (LAMBDA (|context| |charcode| |active?|) ; Edited 6-Apr-88 14:20 by bane

;;; entry point into completing an sedit. called when window is closed or process otherwise dies. active? is T when sedit is to remain active after
;;; completion, like from the ’complete’ command. must grab lock because can be called outside of the command loop (perhaps even as programmer
;;; interface?).

(WITH.MONITOR (|fetch| |ContextLock| |of| |context|)
(|\\\\close.open.node| |context|)
(|if| (AND |active?| (EQMEMB :CLOSE-ON-COMPLETION (|fetch| |EditOptions| |of| |context|)))

{MEDLEY}<loops>obsolete>SEDIT-PATCH.;1 (|\\\\complete| cont.) Page 2

|then|
;; if we’re supposed to close on completion, but his complete command says we’re trying to stay active, then just close the
;; window and return. sedit will notice the window has closed and it will complete normally on the way out.

(CLOSEW (|fetch| |DisplayWindow| |of| |context|))
|else| (|\\\\handle.completion| |context|)

(|if| |active?|
|then|

;; if still open then verify structure to get edit date fix. this is a hack. the markaschangedfn doesn’t succeed in verifying
;; because sedit isn’t under \\getkey since this command is running, and thus cannot be woken up. if edit dates were
;; external this could be removed.

(|\\\\verify.structure| |context| NIL T)

;; if we’re remaining active, eg ^X, give the tty away. no point in doing this if we’re closing, because the process dying
;; will give it away, and may not have the tty when closing either.

(TTY.PROCESS T)
|else| (LET ((|window| (|fetch| |DisplayWindow| |of| |context|)))

(WINDOWPROP |window| ’PROCESS NIL)
(|if| (OPENWP (WINDOWPROP |window| ’ICONWINDOW))

|then|
;; window was shrunk. just let the region manager know, and mark the context so we know to refetch
;; when we get restarted

(SEDIT.SAVE.WINDOW.REGION |context| :SHRINK)
(|replace| |ContextLock| |of| |context| |with| :REFETCH)

|else|
;; window wasn’t shrunk, so context is now dead.

(SEDIT.SAVE.WINDOW.REGION |context| :CLOSE)
(|\\\\disintegrate.context| |context|)))))

;; can be called as a command, so must return T

T)))

(|\\\\sedit|
 (LAMBDA (|context|) ; Edited 6-Apr-88 15:04 by bane

;;; this is the driver loop. read and process characters until the window is closed, and then exit. The commonlisp printer flgs for atomic printing are
;;; rebound specially here, so global changes won’t affect existing contexts. First check to see if the system is trying to restart SEdit on a dead context,
;;; and punt if so.

(|if| (NEQ (|fetch| |ContextLock| |of| |context|)
’|Dead|)

|then|

;; this SEdit is okay, or new

(XCL:WITH-PROFILE
(|fetch| |Profile| |of| |context|)
(|\\\\setup.context| |context|)
(|\\\\setup.window.and.process| |context|)
(LET*
((|lock| (|fetch| |ContextLock| |of| |context|))
(|default.char.handler| (|fetch| |DefaultCharHandler| |of| (|fetch| |Environment| |of| |context|)))
(|command.table| (|fetch| |CommandTable| |of| (|fetch| |Environment| |of| |context|)))
(|window| (|fetch| |DisplayWindow| |of| |context|))
(|promptwindow| (GETPROMPTWINDOW |window|))
|charcode| |command| |this.char.escaped|)

(DECLARE (SPECVARS |this.char.escaped|))
(|while| (OPENWP |window|)

|do|

;; if something funny happens (e.g. the window is closed) \\awake.command.process will cause \\getkey to return NIL. If a menu item
;; is selected, \\getkey will return the command form as a list.

(|if| (NULL (ERSETQ ; catch errors at top of loop
(SETQ |charcode| (|\\\\getkey| |context|))
(WITH.MONITOR |lock|

(|if| |charcode|
|then| (\\CARET.DOWN |window|)

(|\\\\selection.down| |context|)
(|if| (LISTP |charcode|)

|then|
;; a command generated externally. the variable command gets used later, so it
;; must be set here

(SETQ |command| |charcode|)
(SETQ |this.char.escaped| NIL)
(|printout| |promptwindow| T)
(APPLY (CAR |command|)

(LIST* |context| NIL (CDR |command|)))
|elseif| |this.char.escaped|

|then| ; an escaped char
(APPLY* |default.char.handler| |context| |charcode|)
(SETQ |this.char.escaped| NIL)

|elseif| (AND (OR (SETQ |command| (|\\\\lookup.command| |charcode|
|command.table|))

(SETQ |command| (|\\\\lookup.command| (GETSYNTAX
|charcode|)

|command.table|)))
(APPLY (CAR |command|)

(LIST* |context| |charcode| (CDR |command|))))

{MEDLEY}<loops>obsolete>SEDIT-PATCH.;1 (|\\\\sedit| cont.) Page 3

|then|
;; this is a valid command or syntax char, and it has already been handled

|else|
;; none of the above, or else the command didn’t want to run. treat as normal input

(APPLY* |default.char.handler| |context| |charcode|))
(|if| (OR (NOT |command|)

(NOT (FMEMB (CAR |command|)
’(|\\\\undo| |\\\\redo|))))

|then| (|replace| |UndoUndoList| |of| |context| |with| NIL)))

;; unless the user is typing too fast to keep up, fix up the window

(|if| (AND (OPENWP |window|)
(NOT (\\SYSBUFP)))

|then| (|\\\\update| |context|)))))
|then|

;; on catching of errors, re-update to capture what was undone to run the command, like the current selection

(|\\\\update| |context| T)))

;; exit the loop after the window is closed (or shrunk), and thus it’s complete time.

(|\\\\complete| |context|))))))

(|\\\\handle.completion|
 (LAMBDA (|context|) ; Edited 5-Apr-88 16:15 by bane

(NOTIFY.EVENT (|fetch| |CompletionEvent| |of| |context|))
(|replace| |AtomStarted| |of| |context| |with| NIL)
(|replace| |AtomStartedUndoPointer| |of| |context| |with| NIL)
(|if| (|fetch| |ChangedStructure?| |of| |context|)

|then| (LET ((|fn| (|fetch| |CompletionFn| |of| |context|)))
(|if| |fn|

|then| (APPLY (|if| (LISTP |fn|)
|then| (CAR |fn|)

|else| |fn|)
(LIST* |context| (|fetch| |Structure| |of| (|\\\\subnode| 1 (|fetch| |Root|

|of| |context|)))
(CDR (LISTP |fn|))))))

(|replace| |ChangedStructure?| |of| |context| |with| NIL))
(|replace| |UndoList| |of| |context| |with| NIL)
(|replace| |UndoUndoList| |of| |context| |with| NIL)))

)

(PUTPROPS SEDIT-PATCH COPYRIGHT ("Venue & Xerox Corporation" 1988 1990))

{MEDLEY}<loops>obsolete>SEDIT-PATCH.;1 9-Oct-2024 02:37:50
-- Listed on 9-Oct-2024 02:46:49 --

FUNCTION INDEX

|\\\\closefn|1 |\\\\handle.completion|3 |\\\\setup.context|1
|\\\\complete|1 |\\\\sedit|2

