
45

 RULES

3. USING RULES IN LOOPS

The LOOPS rules language is supported by an integrated programming environment for creating,
editing, compiling, and debugging RuleSets. This section describes how to use that environment.

3.1 Creating RuleSets

RuleSets are named LOOPS objects and are created by sending the class RuleSet a New message
as follows:

(_ ($ RuleSet) New)

After entering this form, the user will be prompted for a LOOPS name as

RuleSet name: RuleSetName

Afterwards, the RuleSet can be referenced using LOOPS dollar sign notation as usual. It is also
possible to include the RuleSet name in the New message as follows:

(_ ($ RuleSet) New NIL RuleSetName)

3.2 Editing RuleSets

A RuleSet is created empty of rules. The RuleSet editor is used to enter and modify rules. The editor
can be invoked with an EditRules message (or ER shorthand message) as follows:

(_ RuleSet EditRules)
(_ RuleSet ER)

If a RuleSet is installed as a method of a class, it can be edited conveniently by selecting the
EditMethod option from a browser containing the class. Alternatively, the EditMethod message can
be used:

(_ ClassName EditMethod selector) [Message]

Both approaches to editing retrieve the source of the RuleSet and put the user into the TTYIN or TEdit
editor, treating the rule source as text.

Initially, the source is a template for RuleSets as shown in Figure 7. The rules are entered after the
comment at the bottom. The declarations at the beginning are filled in as needed and superfluous
declarations can be discarded.

46

 RULES

RuleSet Name: RuleSetName;
WorkSpace Class: ClassName;
Control Structure: doAll;
While Condition: ;
Audit Class: StandardAuditRecord;
Rule Class: Rule;
Task Class: ;
Meta Assignments: ;
Temporary Vars: ;
Lisp Vars: ;
Debug Vars: ;
Compiler Options: ;

 (* Rules for whatever. Comment goes here.)

Figure 7. Initial Template for a RuleSet

You can then edit this template to enter rules and set the declarations at the beginning. In the current
version of the rule editor, most of these declarations are left out. If you choose the EditAllDecls option
in the RuleSet editor menu, the declarations and default values will be printed in full.

The template is only a guide. Declarations that are not needed can be deleted. For example, if there
are no temporary variables for this RuleSet, the Temporary Vars declaration can be deleted. If the
control structure is not one of the while control structures, then the While Condition declaration can
be deleted. If the compiler option A is not chosen, then the Audit Class declaration can be deleted.

When you leave the editor, the RuleSet is compiled automatically into a Lisp function.

If a syntax error is detected during compilation, an error message is printed and you are given another
opportunity to edit the RuleSet.

3.3 Copying RuleSets

Sometimes it is convenient to create new RuleSets by editing a copy of an existing RuleSet. For this
purpose, the method CopyRules is provided as follows:

(_ oldRuleSet CopyRules newRuleSetName) [Message]

This creates a new RuleSet by some of the information from the pespectives of the old RuleSet. It
also updates the source text of the new RuleSet to contain the new name.

47

 RULES

3.4 Saving RuleSets on Lisp Files

RuleSets can be saved on Lisp files just like other LOOPS objects. In addition, it is usually useful to
save the Lisp functions that result from RuleSet compilation. In the current implementation, these
functions have the same names as the RuleSets themselves. To save RuleSets on a file, it is
necessary to add two statements to the file commands for the file as follows:

(FNS * MyRuleSetNames)
(INSTANCES * MyRuleSetNames)

where MyRuleSetNames is a Lisp variable whose value is a list of the names of the RuleSets to be
saved.

If RuleSets are methods associated with a class, and they are saved by using (FILES?), then the file
package saves the appropriate entries. The user does not have to be concerned with editing the
filecoms of the file being made.

3.5 Printing RuleSets

To print a RuleSet without editing it, one can send a PPRules or PPR message as follows:

(_ RuleSet PPRules) [Message]

(_ RuleSet PPR) [Message]

A convenient way to make hardcopy listings of RuleSets is to use the function ListRuleSets. The files
will be printed on the DEFAULTPRINTINGHOST as is standard in Interlisp-D. ListRuleSets can be
given four kinds of arguments as follows:

(ListRuleSets RuleSetName)
(ListRuleSets ListOfRuleSetNames)
(ListRuleSets ClassName)
(ListRuleSets FileName)

In the ClassName case, all of the RuleSets that have been installed as methods of the class will be
printed. In the last case, all of the RuleSets stored in the file will be printed.

3.6 Running RuleSets from LOOPS

RuleSets can be invoked from LOOPS using any of the usual protocols.

Procedure-oriented Protocol: The way to invoke a RuleSet from LOOPS is to use the RunRS function:

48

 RULES

(RunRS RuleSet workSpace arg2 ... argN) [Function]

workSpace is the LOOPS object to be used as the work space.
This is "procedural" in the sense that the RuleSet is invoked by its
name. RuleSet can be either a RuleSet object or its name.

Object-oriented Protocol: When RuleSets are installed as methods in LOOPS classes, they can be
invoked in the usual way by sending a message to an instance of the class. For example, if
WashingMachine is a class with a RuleSet installed for its Simulate method, the RuleSet is invoked
as follows:

(_ washingMachineInstance Simulate)

Data-oriented Protocol: When RuleSets are installed in active values, they are invoked by side-effect
as a result of accessing the variable on which they are installed.

3.7 Installing RuleSets as Methods

RuleSets can also be used as methods for classes. This is done by installing automatically-generated
invocation functions that invoke the RuleSets. For example:

[DEFCLASS WashingMachine
 (MetaClass Class doc (* comment) ...)
 ...
 (InstanceVariables (owner ...))
 (Methods
 (Simulate RunSimulateWMRules)
 (Check RunCheckWMRules
 doc (* Rules to Check a washing machine.))
...]

When an instance of the class WashingMachine receives a Simulate message, the RuleSet
SimulateWMRules will be invoked with the instance as its work space.

To simplify the definition of RuleSets intended to be used as Methods, the function DefRSM (for
"Define Rule Set as a Method") is provided:

(DefRSM ClassName Selector RuleSetName) [Function]

If the optional argument RuleSetName is given, DefRSM installs
that RuleSet as a method using the ClassName and Selector. It
does this by automatically generating an installation function as a
method to invoke the RuleSet. DefRSM automatically documents
the installation function and the method.
If the argument RuleSetName is NIL, then DefRSM creates the
RuleSet object, puts the user into an Editor to enter the rules,

49

 RULES

compiles the rules into a Lisp function, and installs the RuleSet as
before.

DefRSM can be invoked with the browser as follows:

• Position the cursor over a class in a browser.

• Press the middle mouse button. A menu pops up.

• Select the Add option in this menu, and drag the mouse to the right to display the submenu that
includes the "DefRSM" option. You are prompted to enter a selector name.

 After a RuleSet has been installed as a method by using DefRSM, you can then edit that RuleSet by
selecting the "EditMethod" option from the browser editing menu.

3.8 Installing RuleSets in Active Values

Note: The following section and any other references to active values within the rule documentation
refer to active values as they were implemented in the Buttress release. The functionality of
triggering rules from active values has not been tested using the current implementation of
active values. It should work to use the ExplicitFnActiveValue class to implement this
behavior.

RuleSets can also be used in data-oriented programming so that they are invoked when data is
accessed. To use a RuleSet as a getFn, the function RSGetFn is used with the property RSGet as
follows:

...
(InstanceVariables
 (myVar #(myVal RSGetFn NIL) RSGet RuleSetName))
...

RSGetFn is a LOOPS system function that can be used in an active value to invoke a RuleSet in
response to a LOOPS get operation (e.g., GetValue) is performed. It requires that the name of the
RuleSet be found on the RSGet property of the item. RSGetFn activates the RuleSet using the local
state as the work space. The value returned by the RuleSet is returned as the value of the get
operation.

To use a RuleSet as a putFn, the function RSPutFn is used with the property RSPut as follows:

...
(InstanceVariables
 (myVar #(myVal NIL RSPutFn) RSPut RuleSetName))
...

RSPutFn is a function that can be used in an active value to invoke a RuleSet in response to a
LOOPS put operation (e.g., PutValue). It requires that the name of the RuleSet be found on the
RSPut property of the item. RSGetFn activates the RuleSet using the newValue from the put

50

 RULES

operation as the work space. The value returned by the RuleSet is put into the local state of the active
value.

3.9 Tracing and Breaking RuleSets

LOOPS provides breaking and tracing facilities to aid in debugging RuleSets. These can be used in
conjunction with the auditing facilities and the rule executive for debugging RuleSets. The following
summarizes the compiler options for breaking and tracing:

T Trace if rule is satisfied. Useful for creating a running display of
executed rules.

TT Trace if rule is tested.

B Break if rule is satisfied.

BT Break if rule is tested. Useful for stepping through the execution
of a RuleSet.

Specifying the declaration Compiler Options: T; in a RuleSet indicates that tracing information should
be displayed when a rule is satisfied. To specify the tracing of just an individual rule in the RuleSet, the
T meta-descriptions should be used as follows:

{T} IF cond THEN action;

This tracing specification causes LOOPS to print a message whenever the LHS of the rule is tested, or
the RHS of the rule is executed. It is also possible to specify that the values of some variables (and
compound literals) are to be printed when a rule is traced. This is done by listing the variables in the
Debug Vars declaration in the RuleSet:

Debug Vars: a a:b a:b.c;

This will print the values of a, a:b, and a:b.c when any rule is traced or broken.

Analogous specifications are provided for breaking rules. For example, the declaration Compiler
Options: B; indicates that LOOPS is to enter the rule executive (see Section 3.10, "The Rule Exec")
after the LHS is satisfied and before the RHS is executed. The rule-specific form:

{B} IF cond THEN action;

indicates that LOOPS is to break before the execution of a particular rule.

Sometimes it is convenient in debugging to display the source code of a rule when it is traced or
broken. This can be effected by using the PR compiler option as in

Compiler Options: T PR;

which prints out the source of a rule when the LHS of the rule is tested and

51

 RULES

Compiler Options: B PR;

which prints out the source of a rule when the LHS of a rule is satisfied, and before entering the break.

3.10 The Rule Exec

A Read-Compile-Evaluate-Print loop, called the rule Executive, is provided for the rule language. The
rule Executive can be entered during a break by invoking the Lisp function RE. During RuleSet
execution, the rule executive can be entered by typing ^f (<control>-f) on the keyboard.

On the first invocation, RE prompts the user for a window. It then displays a stack of RuleSet
invocations in a menu to the left of this window in a manner similar to the Interlisp-D Break Package.
Using the left mouse button in this window creates an Inspector window for the work space for the
RuleSet. Using the middle mouse button pretty prints the RuleSet in the default prettyprint window.

In the main rule Executive window, RE prompts the user with "re:". Anything in the rule language
(other than declarations) that is typed to this Executive will be compiled and executed immediately and
its value printed out. For example, you may type rules to see whether they execute or variable names
to determine their values. For example:

re: trafficLight:color
Red
re:

this example shows how to get the value of the color variable of the trafficLight object. If the value of
a variable was set by a RuleSet running with auditing, then a why question can be typed to the rule
executive as follows:

re: why trafficLight:color

IF highLight:color = ’Green farmRoadSensor:cars timer.TL
THEN highLight:color _ ’Yellow timer.Start;

Rule 3 of RuleSet LightRules
Edited: Conway "13-Oct-82"

re:

The rule executive may be exited by typing OK.

3.11 Auditing RuleSets

Two declarations at the beginning of a RuleSet affect the auditing. Auditing is turned on by the
compiler option A. The simplest form of this is

52

 RULES

Compiler Options: A;

The Audit Class declaration indicates the class of the audit record to be used with this RuleSet if it is
compiled in audit mode.

Audit Class: StandardAuditRecord;

A Meta Assignments declaration can be used to indicate the audit description to be used for the rules
unless overridden by a rule-specific meta-assignment statement in a meta-descriptor.

Meta Assignments: cf_.5 support_’GroundWff;

3.12 Loading Rules

Set the variable LOOPSUSERSDIRECTORIES to include the directory where the Rules files are
stored.

Load the file LOOPSRULES-ROOT.LCOM, which will load the following files from
LOOPSUSERSDIRECTORIES:

• LOOPSBACKWARDS.LCOM

• LOOPSMIXIN

• LOOPSRULES.LCOM

• LOOPSRULESP.LCOM

• LOOPSRULESC.LCOM

• LOOPSRULESD.LCOM, which will load the file TTY.LCOM from LISPUSERSDIRECTORIES.

Editing rules will be easier if TEdit is loaded. Loading the Rules does not automatically load TEdit.

3.13 Known Problems

In a rule, the expression $pipe.ri..$p compiles to (RunRS (QUOTE ($ pipe)) ($ p)), which fails.

Meta-assignment statements cannot handle expressions. This means that statements like {cf _ .5}
work fine, but {validity _ ’fact} fails.

A value of 1 in a meta-descriptor statement is always taken to be a one-shot designator. You cannot
have a meta-descriptor statement like {cf_1}. However, the number 1.0 can be used; the meta-
descriptor statement, {cf_1.0}, works.

53

 RULES

Rules have not been tested without loading TEdit in order to edit RuleSets.

54

 RULES

[This page intentionally left blank.]

