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 RULES

1.  INTRODUCTION TO RULE-ORIENTED
PROGRAMMING IN LOOPS

The core of decision-making expertise in many kinds of problem solving can be expressed succinctly in 

terms of rules.  The following sections describe facilities in LOOPS for representing rules, and for 

organizing knowledge-based systems with rule-oriented programming.  The LOOPS rule language 

provides an experimental framework for developing knowledge-based systems.  The rule language and 

programming environment are integrated with the object-oriented, data-oriented, and procedure-

oriented parts of LOOPS.

Rules in LOOPS are organized into production systems (called RuleSets) with specified control 

structures for selecting and executing the rules.  The work space for RuleSets is an arbitrary LOOPS 

object.

Decision knowledge can be factored from control knowledge to enhance the perspicuity of rules.  The 

rule language separates decision knowledge from meta-knowledge such as control information, rule 

descriptions, debugging instructions, and audit trail descriptions.  An audit trail records inferential 

support in terms of the rules and data that were used.  Such trails are important for knowledge-based 

systems that must be able to account for their results.  They are also essential for guiding belief 

revision in programs that need to reason with incomplete information.

1.1  Introduction

Production rules have been used in expert systems to represent decision-making knowledge for many 

kinds of problem-solving.  Such rules (also called if-then rules) specify actions to be taken when certain 

conditions are satisfied.  Several rule languages have been developed in the past few years and used 

for building expert systems.  The following sections describe the concepts and facilities for rule-

oriented programming in LOOPS.

LOOPS has the following major features for rule-oriented programming:

(1) Rules in LOOPS are organized into ordered sets of rules (called RuleSets) with specified control 

structures for selecting and executing the rules.  Like subroutines, RuleSets are building blocks 

for organizing programs hierarchically.  

(2) The work space for rules in LOOPS is an arbitrary LOOPS object.  The names of the instance 

variables provide a name space for variables in the rules.

(3) Rule-oriented programming is integrated with object-oriented, data-oriented, and procedure-

oriented programming in LOOPS.  

(4) RuleSets can be invoked in several ways:  In the object-oriented paradigm, they can be invoked 

as methods by sending messages to objects.  In the data-oriented paradigm, they can be invoked 
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as a side-effect of fetching or storing data in active values.  They can also be invoked directly 

from Lisp programs.  This integration makes it convenient to use the other paradigms to organize 

the interactions between RuleSets.

(5) RuleSets can also be invoked from rules either as predicates on the LHS of rules, or as actions 

on the RHS of rules.  This provides a way for RuleSets to control the execution of other RuleSets.    

(6) Rules can automatically leave an audit trail.  An audit trail is a record of inferential support in 

terms of rules and data that were used.  Such trails are important for programs that must be able 

to account for their results.  They can also be used to guide belief revision in programs that must 

reason with incomplete information.     

(7) Decision knowledge can be separated from control knowledge to enhance the perspicuity of 

rules.  The rule language separates decision knowledge from meta-knowledge such as control 

information, rule descriptions, debugging instructions, and audit trail descriptions.

(8) The rule language provides a concise syntax for the most common operations.

(9) There is a fast and efficient compiler for translating RuleSets into Interlisp functions.

(10) LOOPS provides facilities for debugging rule-oriented programs.

The following sections are organized as follows:  Section 1.2, "Basic Concepts," outlines the basic 

concepts of rule-oriented programming in LOOPS.  It contains many examples that illustrate 

techniques of rule-oriented programming.  Section 1.3, "Organizing a Rule-Oriented Program," 

describes the rule syntax, and the remaining sections in this chapter discuss the facilities for creating, 

editing, and debugging RuleSets in LOOPS.  

1.2  Basic Concepts

Rules express the conditional execution of actions.  They are important in programming because they 

can capture the core of decision-making for many kinds of problem-solving.  Rule-oriented 

programming in LOOPS is intended for applications to expert and knowledge-based systems.

The following sections outline some of the main concepts of rule-oriented programming.  LOOPS 

provides a special language for rules because of their central role, and because special facilities can 

be associated with rules that are impractical for procedural programming languages.  For example, 

LOOPS can save specialized audit trails of rule execution.  Audit trails are important in knowledge 

systems that need to explain their conclusions in terms of the knowledge used in solving a problem.  

This capability is essential in the development of large knowledge-intensive systems, where a long and 

sustained effort is required to create and validate knowledge bases.  Audit trails are also important for 

programs that do non-monotonic reasoning.  Such programs must work with incomplete information, 

and must be able to revise their conclusions in response to new information.  
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1.3  Organizing a Rule-Oriented Program

In any programming paradigm, it is important to have an organizational scheme for composing large 

systems from smaller ones.  Stated differently, it is important to have a method for partitioning large 

programs into nearly-independent and manageably-sized pieces.  In the procedure-oriented paradigm, 

programs are decomposed into procedures.  In the object-oriented paradigm, programs are 

decomposed into objects.  In the rule-oriented paradigm, programs are decomposed into RuleSets.  A 

LOOPS program that uses more than one programming paradigm is factored across several of these 

dimensions.

There are three approaches to organizing the invocation of RuleSets in LOOPS:

Procedure-oriented Approach.  This approach is analogous to the use of subroutines in procedure-

oriented programming.  Programs are decomposed into RuleSets that call each other and return 

values when they are finished.  SubRuleSets can be invoked from multiple places.  They are used to 

simplify the expression in rules of complex predicates, generators, and actions. 

Object-oriented Approach.  In this approach, RuleSets are installed as methods for objects.  They are 

invoked as methods when messages are sent to the objects.  The method RuleSets are viewed 

analogously to other procedures that implement object message protocols.  The value computed by 

the RuleSet is returned as the value of the message sending operation.  

Data-oriented Approach.  In this approach, RuleSets are installed as access functions in active values.  

A RuleSet in an active value is invoked when a program gets or puts a value in the LOOPS object.  As 

with active values with Lisp functions for the getFn or putFn, these RuleSet active values can be 

triggered by any LOOPS program, whether rule-oriented or not.  

These approaches for organizing RuleSets can be combined to control the interactions between bodies 

of decision-making knowledge expressed in rules.  For example, Figure 1 shows the RuleSet of 

consumer instructions for testing a washing machine.  The work space for the ruleSet is a LOOPS 

object of the class WashingMachine.  The control structure While1 loops through the rules trying an 

escalating sequence of actions, starting again at the beginning of some rule is applied.  Some rules, 

called one-shot rules, are executed at most once.  These rules are indicated by preceding them with a 

one in braces ({1}).
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RuleSet Name: CheckWashingMachine;
WorkSpace Class:  WashingMachine;
Control Structure:  while1 ;
While Condition:  ruleApplied;

(* What a consumer should do when a washing machine failes.)

  IF .Operational THEN (STOP T);

  IF load>1.0 THEN .ReduceLoad;

  If ~pluggedInTo THEN .PlugIn;

{1}  IF pluggedInTo:voltage=0 THEN breaker.Reset;

{1}  IF pluggedInTo:voltage<110 THEN SPGE.Call;

{1}  THEN dealer.RequestService;

{1}  THEN manufacturer.Complain;

{1}  THEN $ConsumerBoard.Complain;

{1}  THEN (STOP T);

  Figure 1.  Basic RuleSet

1.4  Control Structures for Selecting Rules

RuleSets in LOOPS consist of an ordered list of rules and a control structure.  Together with the 

contents of the rules and the data, a RuleSet control structure determines which rules are executed.  

Execution is determined by the contents of rules in that the conditions of a rule must be satisfied for it 

to be executed.  Execution is also controlled by data in that different values in the data allow different 

rules to be satisfied.  Criteria for iteration and rule selection are specified by a RuleSet control 

structure.  There are two primitive control structures for RuleSets in LOOPS which operate as follows:  

Do1  [RuleSet Control Structure]

The first rule in the RuleSet whose conditions are satisfied is 

executed.  The value of the RuleSet is the value of the rule.  If no 

rule is executed, the RuleSet returns NIL.

The Do1 control structure is useful for specifying a set of mutually 

exclusive actions, since at most one rule in the RuleSet will be 

executed for a given invocation.  When a RuleSet contains rules for 

specific and general situations, the specific rules should be placed 

before the general rules.
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DoAll  [RuleSet Control Structure]

Starting at the beginning of the RuleSet, every rule is executed 

whose conditions are satisfied.  The value of the RuleSet is the 

value of the last rule executed.  If no rule is executed, the RuleSet 

returns NIL.

The DoAll control structure is useful when a variable number of 

additive actions are to be carried out, depending on which 

conditions are satisfied.  In a single invocation of the RuleSet, all of 

the applicable rules are invoked.

Figure 2 illustrates the use of a Do1 control structure to select one of three mutually exclusive actions.  

RuleSet Name: SimulateWashingMachine;
WorkSpace Class:  WashingMachine;
Control Structure:  Do1 ;

(* Rules for controlling the wash cycle of a washing machine.)

  IF controlSetting = ’RegularFabric
  THEN .Fill .Wash .Pause .SpinAndDrain
    .SprayAndRinse .SpinAndDrain
    .Fill. DeepRinse .Pause .DampDry;

  IF controlSetting = ’PermanentPress
  THEN .Fill .Wash .Pause .SpinAndPartialDrain
    .FillCold .SpinAndPartialDrain
    .FillCold .Pause .SpinAndDrain
    .FillCold. DeepRinse .Pause .DampDry;

  IF controlSetting = ’DelicateFabric
  THEN .FillSoak1 .Agitate .Soak4 .Agitate 
    .Soak1 .SpinAndDrain .SprayAndRinse
    .SpinAndDrain .Fill .DeepRinse .Pause .DampDry;

Figure 2.  RuleSet showing Do1

There are two control structures in LOOPS that specify iteration in the execution of a RuleSet.  These 

control structures use an explicit while-condition associated with the RuleSet.  They are direct 

extensions of the two primitive control structures above.  

While1  [RuleSet Control Structure]

This is a cyclic version of Do1.  If the while-condition is satisfied, 

the first rule is executed whose conditions are satisfied.  This is 

repeated as long as the while condition is satisfied or until a Stop 

statement or transfer call is executed (see Section 2.14, "Stop 

Statements").  The value of the RuleSet is the value of the last rule 

that was executed, or NIL if no rule was executed.
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WhileAll  [RuleSet Control Structure]

This is a cyclic version of DoAll.  If the while-condition is satisfied, 

every rule is executed whose conditions are satisfied.  This is 

repeated as long as the while condition is satisfied or until a Stop 

statement is executed.  The value of the RuleSet is the value of the 

last rule that was executed, or NIL if no rule was executed. 

The "while-condition" is specified in terms of the variables and constants accessible from the RuleSet.  

The constant T can be used to specify a RuleSet that iterates forever (or until a Stop statement or 

transfer is executed).  The special variable ruleApplied is used to specify a RuleSet that continues as 

long as some rule was executed in the last iteration.  Figure 3 illustrates a simple use of the WhileAll 
control structure to specify a sensing/acting feedback loop for controlling the filling of a washing 

machine tub with water.

RuleSet Name: FillTub;
WorkSpace Class:  WashingMachine;
Control Structure:  WhileAll ;
Temp Vars:  waterLimit;
WhileCond:  T;

(* Rules for controlling the filling of a washing tub with 
water.)

{1!} IF loadSetting = ’Small THEN waterLimit_10;
{1!} IF loadSetting = ’Meduim THEN waterLimit_13.5;
{1!} IF loadSetting = ’Large THEN waterLimit_17;
{1!} IF loadSetting = ’ExtraLarge THEN waterLimit_20;

(* Respond to a change of temperature setting at any time.)

  IF termperatureSetting = ’Hot
  THEN HotWaterValve.Open ColdWaterValve.Close;

  IF termperatureSetting = ’Warm
  THEN HotWaterValve.Open ColdWaterValve.Open;

  IF termperatureSetting = ’Cold
  THEN HotWaterValve.Close ColdWaterValve.Open;

(* Stop when the water reaches its limit.)

  IF waterLevelSensor.Test >= waterLimit
  THEN HotWaterValve.Close ColdWaterValve.Close
    (Stop T);

Figure 3.  RuleSet  with WhileAll

There are two control structures in LOOPS that specify iteration over a set of elements in the execution 

of a RuleSet.  These control structures use an explicit while-condition associated with the RuleSet.  

They are direct extensions of the two primitive control structures above.  



21

 RULES

FOR1  [RuleSet Control Structure]

This is a cyclic version of Do1.  If the iteration-condition (or while-

condition) is satisfied, the first rule is executed whose conditions 

are satisfied or until a Stop statement is executed.  This is repeated 

as long as the iteration condition is satisfied.  The value of the 

RuleSet is the value of the last rule that was executed, or NIL if no 

rule was executed.

FORALL  [RuleSet Control Structure]

This is a cyclic version of DoAll.  If the iteration-condition is 

satisfied, every rule is executed whose conditions are satisfied.  

This is repeated as long as the iteration condition is satisfied or until 

a Stop statement is executed.  The value of the RuleSet is the 

value of the last rule that was executed, or NIL if no rule was 

executed. 

The "iteration-condition" is specified in terms of the variables and constants accessible from the 

RuleSet.  The simplest condition is

(FOR <iterVar> IN <setExpr> DO ruleSet) ;

The setExpr will be parsed with the RuleSet parser. The symbol ruleSet is a reserved word, and must 

be spelled as shown (no changes in capitalization).

Here is an example of iteration: 

Control Structure:  FORALL;
Iteration Condition: (FOR buyer IN (RoadStops ($ Consumer)) DO ruleSet) ;

For each buyer in the list produced by RoadStops, the ruleSet will be run.  In a FOR1, the iteration will 

go on to the next buyer as soon as one rule executes.  In a FORALL, all rules in the RuleSet will be 

tried.

For nested iteration one can use a slightly more complicated form, as illustrated by the following 

example:

Iteration Condition: (FOR buyer IN (RoadStops ($ Consumer)) DO
(FOR seller in (RoadStops ($ Producer)) DO ruleSet)) ;

An experienced Lisp user can see that this resembles the CLISP iteration construct.  In fact, except 

that you can (must) use the RuleSet syntax in the construct, it is the CLISP construct, and any such 

construct can be used.  A DO1 or DOALL ruleSet will be substituted for the occurrence of the atom 

ruleSet, depending on whether the Control Structure is a FOR1 or FORALL.
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As an abbreviation, if the construct does not contain the atom ruleSet, then (DO ruleSet) is appended 

to the Iteration Condition for a FOR1 or FORALL.  Thus one could write the first example as:

Iteration Condition: (FOR buyer IN (RoadStops ($ Consumer)))

1.5  One-Shot Rules

One of the design objectives of LOOPS is to clarify the rules by factoring out control information 

whenever possible.  This objective is met in part by the declaration of a control structure for RuleSets.

Another important case arises in cyclic control structures in which some of the rules should be 

executed only once.  This was illustrated in the Washing Machine example in Figure 1 where we 

wanted to prevent the RuleSet from going into an infinite loop of resetting the breaker, when there was 

a short circuit in the Washing Machine.  Such rules are also useful for initializing data for RuleSets as 

in the example in Figure 3.

In the absence of special syntax, it would be possible to encode the information that a rule is to be 

executed only once as follows:

Control Structure: While1
Temporary Vars:  triedRule3;

...

IF ~triedRule3 condition1 condition2 THEN triedRule3_T action1;

In this example, the variable triedRule3 is used to control the rule so that it will be executed at most 

once in an invocation of a RuleSet.  However, the prolific use of rules with such control clauses in large 

systems has led to the common complaint that control clauses in rule languages defeat the 

expressiveness and conciseness of the rules.  For the case above, LOOPS provides a shorthand 

notation as follows:

{1} IF condition1 condition2 THEN action1;

The brace notation means exactly the same thing in the example above, but it more concisely and 

clearly indicates that the rule executes only once.  These rules are called "one shot" or "execute-once" 

rules.

In some cases, it is desired not only that a rule be executed at most once, but that it be tested at most 

once.  This corresponds to the following:

Control Structure: While1
Temporary Vars:  triedRule3;

...

IF ~triedRule3 triedRule3_T condition1 condition2 THEN action1;



23

 RULES

In this case, the rule will not be tried more than once even if some of the conditions fail the first time 

that it is tested.  The LOOPS shorthand for these rules (pronounced "one shot bang") is

{1!} IF condition1 condition2 THEN action1;

These rules are called "try-once" rules.

The two kinds of one-shot rules are our first examples of the use of meta-descriptions preceding the 

rule body in braces.  See Section 1.7, "Saving an Audit Trail of Rule Invocation," for information on 

using meta-descriptions for describing the creation of audit trails.

1.6  First/Last Rules

It is sometimes useful to have rules which fire before or after the ordinary part of the RuleSet is 

invoked, independent of the form of the control structure.  For example, in a DO1, such "FIRST " rules 

could be used for initialization.  These now exist, and are notated by putting a {F} for a first rule in the 

MetaDescription field, and a {L} for a last rule.  If a RuleSet has L rules which execute, the value of the 

RuleSet is the value of the last rule which executed.

1.7  Saving an Audit Trail of Rule Invocation

A basic property of knowledge-based systems is that they use knowledge to infer new facts from older 

ones.  (Here we use the word "facts" as a neutral term, meaning any information derived or given, that 

is used by a reasoning system.)  Over the past few years, it has become evident that reasoning 

systems need to keep track not only of their conclusions, but also of their reasoning steps.  

Consequently, the design of such systems has become an active research area in AI.  The audit trail 

facilities of LOOPS support experimentation with systems that can not only use rules to make 

inferences, but also keep records of the inferential process itself.

1.7.1  Motivations and Applications

Debugging.  In most expert systems, knowledge bases are developed over time and are the major 

investment.  This places a premium on the use of tools and methods for identifying and correcting bugs 

in knowledge bases.  By connecting a system’s conclusions with the knowledge that it uses to derive 

them, audit trails can provide a substantial debugging aid.  Audit trails provide a focused means of 

identifying potentially errorful knowledge in a problem solving context.    

Explanation Facilities.  Expert systems are often intended for use by people other than their creators, 

or by a group of people pooling their knowledge.  An important consideration in validating expert 

systems is that reasoning should be transparent, that is, that a system should be able to give an 

account of its reasoning process.  Facilities for doing this are sometimes called explanation systems 
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and the creation of powerful explanation systems is an active research area in AI and cognitive 

science.  The audit trail mechanism provides an essential computational prerequisite for building such 

systems.   

Belief Revision.  Another active research area is the development of systems that can "change their 

minds".  This characteristic is critical for systems that must reason from incomplete or errorful 

information.  Such systems get leverage from their ability to make assumptions, and then to recover 

from bad assumptions by efficiently reorganizing their beliefs as new information is obtained.  

Research in this area ranges from work on non-monotonic logics, to a variety of approaches to belief 

revision.  The facilities in the rule language make it convenient to use a user-defined calculus of belief 

revision, at whatever level of abstraction is appropriate for an application. 

1.7.2  Overview of Audit Trail Implementation

When audit mode is specified for a RuleSet, the compilation of assignment statements on the right-

hand sides of rules is altered so that audit records are created as a side-effect of the assignment of 

values to instance variables.  Audit records are LOOPS objects, whose class is specified in RuleSet 

declarations.  The audit records are connected with associated instance variables through the value of 

the reason properties of the variables.  

Audit descriptions can be associated with a RuleSet as a whole, or with specific rules.  Rule-specific 

audit information is specified in a property-list format in the meta-description associated with a rule.  

For example, this can include certainty factor information, categories of inference, or categories of 

support.  Rule-specific information overrides RuleSet information. 

During rule execution in audit mode, the audit information is evaluated after the rule’s LHS has been 

satisfied and before the rule’s RHS is applied.  For each rule applied, a single audit record is created 

and then the audit information from the property list in the rule’s meta-description is put into the 

corresponding instance variables of the audit record.  The audit record is then linked to each of the 

instance variables that have been set on the RHS of the rule by way of the reason property of the 

instance variable.

Additional computations can be triggered by associating active values with either the audit record class 

or with the instance variables. For example, active values can be specified in the audit record classes 

in order to define a uniform set of side-effects for rules of the same category.  In the following example, 

such an active value is used to carry out a "certainty factor" calculation.

1.7.3  An Example of Using Audit Trails

The following example illustrates one way to use the audit trail facilities.  Figure 4 illustrates a RuleSet 

which is intended to capture the decisions for evaluating the potential purchase of a washing machine.  

As with any purchasing situation, this one includes the difficulty of incomplete information about the 

product.  For example in this RuleSet, the reliability of the washing machine is estimated to be 0.5 in 

the absence of specific information from Consumer Reports.  The meta-descriptions for the rules, 

which appear in braces, categorize them in terms of the basis of belief (the category basis is either a 

fact or estimate) and a certainty factor (cf) that is supposed to measure the "implication power" of the 



25

 RULES

rule.  Within the braces, the variable on the left of the assignment statement is always interpreted as 

meaning a variable in the audit record, and the variables on the right are always interpreted as 

variables accessible within the RuleSet.  This makes it straightforward to experiment with user-defined 

audit trails and experimental methods of belief revision.  (Realistic belief revision systems are usually 

more sophisticated than this example.)

The result of running the RuleSet is an evaluation report for each candidate machine.  Since the 

RuleSet was run in audit mode, each entry in the evaluation report is tagged with a reason that points 

to an audit record.  Figure 5 illustrates the evaluation report for one machine and one of its audit 

records.  In this example, each of the entries in the report has a reason and a cumulative certainty (cc) 

property in addition to the value.  The value of the reason properties are audit records created as a 

side effect of running the RuleSet.  The auditing process records the meta-description information of 

each rule in its audit record.  This information can be used later for generating explanations or as a 

basis for belief revision.  The auditing process can have side effects.  For example, the active in the cf 
variable or the audit record performs a computation to maintain a calculated cumulative certainty in the 

reliability variable of the evaluation report.

The meta-descriptions for basis and cf are saved directly in the audit record.  The certainty factor 

calculation in this combines information from the audit description with other information already 

associated with the object.  To do this, the cf description triggers an active value inherited by the audit 

record from its class.  This active value computes a cumulative certainty in the evaluation report.  

(Other variations on this idea would include certainty information descriptive of the premises of the 

rule.)

RuleSet Name: EvaluateWashingMachine;
WorkSpace Class:  EvaluationReport;
Control Structure:  doAll ;
Audit Class:  CFAuditRecord ;
Compiler Options:  A;

(* Rules for evaluating a potential washing machine for a 
purchase.)

  .
  .
  .
  {(basics_Fact cf_1)}
  IF buyer:familySize>2 machine:capacity<20
  THEN suitability_’Poor;

  {(basics_Fact cf_.8)}
  reliability_(_($ ConsumerReports) GetFacts machine);

  {(basics_Estimate cf_.4)}
  IF ’reliability THEN reliability_.5;
  .
  .
  .

Figure 4.  RuleSet Showing Evaluation

EvaluationReport "uid1"
expense:  510
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suitability:  Poor cc 1 reason ...
reliability:  .5 cc .6 reason "uid2"
.
.
.
AuditRec "uid2"
rule:  "uid3"
basis:  Estimate;
cf:  #(.4 NIL PutCumulativeCertainity)

Figure 5.  Example of an Audit Trail

1.8  Comparison with Other Rule Languages

This section considers the rationale behind the design of the LOOPS rule language, focusing on ways 

that it diverges from other rule languages.  In general, this divergence was driven by the following 

observation:  

When a rule is heavy with control information, it obscures the domain knowledge that the rule is 

intended to convey.

Rules are harder to create, understand, and modify when they contain too much control information.  

This observation led us to find ways to factor control information out of the rules. 

1.8.1  The Rationale for Factoring Meta-Level Syntax

One of the most striking features of the syntax of the LOOPS rule language is the factored syntax for 

meta-descriptions, which provides information about the rules themselves.  Traditional rule languages 

only factor rules into conditions on the left hand side (LHS) and actions on the right hand side (RHS), 

without general provisions for meta-descriptions.

Decision knowledge expressed in rules is most perspicuous when it is not mixed with other kinds 

knowledge, such as control knowledge.  For example, the following rule:

IF ~triedRule4 pluggedInTo:voltage=0
THEN triedRule4_T breaker.Reset;

is more obscure than the corresponding one-shot rule from Figure 1:

{1}   IF pluggedInTo:voltage=0 THEN breaker.Reset;

which factors the control information (that the rule is to be applied at most once) from the domain 

knowledge (about voltages and breakers).  In the LOOPS rule language, a meta-description (MD) is 

specified in braces in front of the LHS of a rule.  For another example, the following rule from Figure 4:

{(basis_Fact cf_.8)}
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IF buyer:familySize>2  machine:capacity<20
THEN suitability_’Poor;

uses an MD to indicate that the rule has a particular cf ("certainty factor") and basis category for belief 

support.  The MD in this example factors the description of the inference category of the rule from the 

action knowledge in the rule.  

In a large knowledge-based system, a substantial amount of control information must be specified in 

order to preclude combinatorial explosions.  Since earlier rule languages fail to provide a means for 

factoring meta-information, they must either mix it with the domain knowledge or express it outside the 

rule language.  In the first option, intelligibility is degraded.  In the second option, the transparency of 

the system is degraded because the knowledge is hidden. 

1.8.2  The Rationale for RuleSet Hierarchy

Some advocates of production systems have praised the flatness of traditional production systems, 

and have resisted the imposition of any organization to the rules.  The flat organization is sometimes 

touted as making it easy to add rules.  The argument is that other organizations diminish the power of 

pattern-directed invocation and make it more complicated to add a rule.  

In designing LOOPS, we have tended to discount these arguments.  We observe that there is no 

inherent property of production systems that can make rules additive.  Rather, additivity is a 

consequence of the independence of particular sets of rules.  Such independence is seldom achieved 

in large sets of rules.  When rules are dependent, rule invocation needs to be carefully ordered.  

Advocates of a flat organization tend to organize large programs as a single very large production 

system.  In practice, most builders of production systems have found it essential to create groups of 

rules.

Grouping of rules in flat systems can be achieved in part by using context clauses in the rules.  Context 

clauses are clauses inserted into the rules which are used to alter the flow of control by naming the 

context explicitly.  Rules in the same "context" all contain an extra clause in their conditions that 

compares the context of the rules with a current context.  Other rules redirect control by switching the 

current context.  Unfortunately, this approach does not conveniently lend itself to the reuse of groups of 

rules by different parts of a program.  Although context clauses admit the creation of "subroutine 

contexts", they require you to explicitly program a stack of return locations in cases where contexts are 

invoked from more than one place.  The decision to use an implicit calling stack for RuleSet invocation 

in LOOPS is another example of the our desire to simplify the rules by factoring out control information.  

1.8.3  The Rationale for RuleSet Control Structures

Production languages are sometimes described as having a recognize-act cycle, which specifies how 

rules are selected for execution.  An important part of this cycle is the conflict resolution strategy, which 

specifies how to choose a production rule when several rules have conditions that are satisfied.  For 

example, the OPS5 production language has a conflict resolution strategy (MEA) which prevents rules 



28

 RULES

from being invoked more than once, prioritizes rules according to the recency of a change to the data, 

and gives preference to production rules with the most specific conditions.

In designing the rule language for LOOPS, we have favored the use of a small number of specialized 

control structures to the use of a single complex conflict resolution strategy.  In so doing, we have 

drawn on some control structures in common use in familiar programming languages.  For example, 

Do1 is like Lisp’s COND, DoAll is like Lisp’s PROG, WhileAll is similar to WHILE statements in many 

programming languages.  

The specialized control structures are intended for concisely representing programs with different 

control relationships among the rules.  For example, the DoAll control structure is useful for rules 

whose effects are intended to be additive and the Do1 control structure is appropriate for specifying 

mutually exclusive actions.  Without some kind of iterative control structure that allows rules to be 

executed more than once, it would be impossible to write a simulation program such as the washing 

machine simulation in Figure 1.  

We have resisted a reductionist argument for having only one control structure for all programming.  

For example, it could be argued that the control structure Do1 is not strictly necessary because any 

RuleSet that uses Do1 could be rewritten using DoAll.  For example, the rules

Control Structure: Do1;

IF a1 b1 c1 THEN d1 e1;

IF a2 b2 c2 THEN d2 e2;

IF a3 b3 c3 THEN d3 e3;

could be written alternatively as

Control Structure: DoAll;
Task Vars: firedSomeRule;

IF a1 b1 c1 THEN firedSomeRule_T d1 e1;

IF ~firedSomeRule a2 b2 c2 THEN firedSomeRule_T d2 e2;

IF ~firedSomeRule a3 b3 c3 THEN firedSomeRule_T d3 e3;

However, the Do1 control structure admits a much more concise expression of mutually exclusive 

actions.  In the example above, the Do1 control structure makes it possible to abbreviate the rule 

conditions to reflect the assumption that earlier rules in the RuleSet were not satisfied.  

For some particular sets of rules the conditions are naturally mutually exclusive.  Even for these rules 

Do1 can yield additional conciseness.  For example, the rules:

Control Structure: Do1;

IF  a1  b1 c1 THEN d1 e1;

IF ~a1  b1 c1 THEN d2 e2;

IF ~a1 ~b1 c1 THEN d3 e3;

can be written as
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Control Structure: Do1;

IF a1 b1 c1 THEN d1 e1;

IF    b1 c1 THEN d2 e2;

IF       c1 THEN d3 e3;

Similarly it could be argued that the Do1 and DoAll control structures are not strictly necessary 

because such RuleSets can always be written in terms of While1 and WhileAll.  Following this 

reductionism to its end, we can observe that every RuleSet could be re-written in terms of WhileAll.  

1.8.4  The Rationale for an Integrated Programming Environment

RuleSets in LOOPS are integrated with procedure-oriented, object-oriented, and data-oriented 

programming paradigms.  In contrast to single-paradigm rule systems, this integration has two major 

benefits.  It facilitates the construction of programs which don’t entirely fit the rule-oriented paradigm.  

Rule-oriented programming can be used selectively for representing just the appropriate decision-

making knowledge in a large program.  Integration also makes it convenient to use the other 

paradigms to help organize the interactions between RuleSets.  

Using the object-oriented paradigm, RuleSets can be invoked as methods for LOOPS objects.  Figure 

6 illustrates the installation of the RuleSet SimulateWashingMachineRules to carry out the Simulate 

method for instances of the class WashingMachine.  This definition of the class WashingMachine 

specifies that Lisp functions are to be invoked for Fill and Wash messages.  For example, the Lisp 

function WashingMachine.Fill is to be applied when a Fill message is received.  When a Simulate 

message is received, the RuleSet SimulateWashingMachineRules is to be invoked with the washing 

machine as its work space.  Simulate message to invoke the RuleSet may be sent by any LOOPS 

program, including other RuleSets.

The use of object-oriented paradigm is facilitated by special RuleSet syntax for sending messages to 

objects, and for manipulating the data in LOOPS objects.  In addition, RuleSets, work spaces, and 

tasks are implemented as LOOPS objects.
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[DEFCLASS WashingMachine
  (MetaClass Class Edited (* "rtk: 12-Jun-87 07:57")
    doc (* Home appliance for wachine cloothes.))
  (Supers ElectricalDevice PlumbedDevice CleaningDevice)
  (ClassVariables)
  (InstanceVariables
    (controlSetting Meduim
      doc (* One of Small, Medium, Large, ExtraLarge))...)
  (Methods
    (Fill WashingMachine.Fill doc (* Fill the tub with water.))
    (Wash WashingMachine.Wash doc (* Perofrm the wash cycle.))
    (Simulate UseRuleSet RuleSet SimulateWashingMachineRules)
    .
    .
    .
]

Figure 6.  RuleSet Invoked as a Method

Using the data-oriented paradigm, RuleSets can be installed in active values so that they are triggered 

by side-effect when LOOPS programs get or put data in objects.  For example:

[DEFINST WashingMachine (StefiksMaytagWasher "uid2") 
   (controlSetting RegularFabric)
   (loadSetting #(Medium NIL RSPut) RSPutFn CheckOverLoadRules)
   (waterLevelSensor "uid3")
]

The above code illustrates a RuleSet named CheckOverLoadRules which is triggered whenever a 

program changes the loadSetting variable in the WashingMachine instance in the figure.  This data-

oriented triggering can be caused by any LOOPS program when it changes the variable, whether or 

not that program is written in the rules language.


