
3

 LOOPSBACKWARDS

LOOPSBACKWARDS

 By: Bob Bane (Bane.pa@Xerox.com)

 15-Dec-87

INTRODUCTION

LOOPSBACKWARDS allows you to run files which were previously converted from the Buttress
release of LOOPS to the Koto release. Unlike the Koto version of LOOPSBACKWARDS conversion
methods for moving files from Buttress LOOPS to Koto LOOPS are included but not supported. We

strong recommend that you convert LOOPS source code from Buttress to Koto using the Koto release

of LOOPS. Conversion of Koto LOOPS source code to Lyric LOOPS is done using the
CONVERSION-AIDS users’ module.

The changes between the Buttress and Koto releases are described in detail in the LOOPS Release

Notes for the Koto release. Old features that are included in LOOPSBACKWARDS are summarized
here:

• Many functions that were removed from the Buttress release are defined.

• The messages List and List! are available.

• The operation of old style active values, from the Buttress release, are provided.

• Support for reading old style macros, such as #(localState getFn putFn) or #$Mumble, is available.

LOOPSBACKWARDS is an unsupported LOOPS users module. It is strongly recommended that it
only be used as part of an effort to upgrade very old LOOPS code to newer releases. It will allow very
old LOOPS code to run well enough that it can be rewritten for a newer relese.

INSTALLATION

LOOPSVCOPY will be automatically loaded by LOOPSBACKWARDS.

4

 LOOPSBACKWARDS

FUNCTIONS

LOOPSBACKWARDS includes ExplicitFnActiveValue and DefAVP. ExplicitFnActiveValue allows
the user code triggered by Get- or Put- accesses to be stored within functions which are pointed to by
instance variables rather than requiring the redefinition of GetWrappedValue or PutWrappedValue.
These functions must have the form specified in the DefAVP function.

ExplicitFnActiveValue [Class]

Purpose: Mimics the behavior of the Buttress style of active values.

Behavior: Get- accesses to the wrapped variable cause the getFn to be
called, Put- accesses cause putFn to be called. Enables the old
style activeValue to look like the new style without changing any
functionality.

The getFn is called by the ExplicitFnActiveValue
GetWrappedValue method. This method passes to the getFn the
arguments defined by DefAVP as described in the LOOPS Users’
Modules.

The putFn is called by the ExplicitFnActiveValue
PutWrappedValue method. This method passes to the putFn the
arguments defined by DefAVP as described in the LOOPS Users’
Modules.

Instance Variables: localState A place for data storage.

getFn The name of a function applied when the active
variable is read.

putFn The name of a function applied when the active
variable is changed.

Example:

32← (← ($ Bin) New ’bin4)
#,($& Bin (|DAW0.1Y:.H53.]99| . 521))

33← (← ($ ExplicitFnActiveValue) New ’EFAV1)
#,($& ExplicitFnActiveValue (|DAW0.1Y:.H53.]99| . 522))

34←(DEFINEQ (PrintOnGet
(self varName localSt propName activeVal type)
(PRINTOUT T "I am:" , activeVal T) localSt))

(PrintOnGet)

35←(←@ ($ EFAV1) getFn ’PrintOnGet)
PrintOnGet

36←(← ($ EFAV1) AddActiveValue ($ bin4) ’height)
#,($A #,NestedNotSetValue PrintOnGet NIL)

37←(←@ ($ bin4) height 123)
123

38←(@ ($ bin4) height)

5

 LOOPSBACKWARDS

I am: #,($ EFAV1)
123

(DefAVP fnName putFlg) [Function]

Purpose: Creates a template for defining an active value function.

Behavior: Creates a template and leaves you in the Interlisp function display
editor.

Arguments: fnName Name of the function.

putFlg T indicates function is a putFn, NIL indicates a
getFn.

Returns: The function name on exit from the editor .

Example: In each of the following cases the template only is shown. User
code is to be added immediately after the comment by using the
display editor.

66←(DefAVP ’AGetFn)
AGetFn

67←PP* AGetFn
(AGetFn
 [LAMBDA (self varName localSt propName activeVal type)
 (* This is a getFn. The value of this getFn is
returned as the value of the enclosing GetValue.)
 localSt])
(AGetFn)

68←(DefAVP ’APutFn T)
APutFn

69←PP* APutFn
(APutFn
 [LAMBDA (self varName newValue propName activeVal type)
 (* This is a putFn. ***NOTE*** The value of this
function will be returned as the value of any enclosing
PutValue. This usually means that you want to return the value
returned by PutLocalState.)
 (PutLocalState activeVal newValue self varName propName
type])
(APutFn)

6

 LOOPSBACKWARDS

[This page intentionally left blank.]

