
filed on: {indigo} <kbvlsi> loopscoursc>Lruckinmanual.bravo
Last Edited: SlVI: JLily 11, 1983

Truckin MA UAL

by the Loops Design Team

Daniel Bobrow, Sanjay Mittal, and Mark Stefik

Copyright (c) 1983 Xerox Corp

This document gives the basic instructions for creating game boards, starting, stopping, and
continuing a game, interrupting a game in the middle, and attaching gauges to monitor the internal
state of Truckin players.

[NB: Truckin now has versions which run on both single machines as well as multiple-machine
configurations. The following instructions are written for the single machine version. Any
differences for the multi-machine version are indicated in smaller print. Otherwise the instructions
apply to both versions.]

A. Creating a new game

Send the message New to $True kin as follows:

(.- $Truck in New)

this creates a new game board and the lisp variable Player! nterface is set to the instance of
TruckinPlayerlnterface. All commands sent by your player or you go to Playerfoterface. You can
play any number of times on this basic game board as follows.

[On a RemoteMasterMachine:
(+- $MastcrTruckin New) creates a new game.

On a RemoteSlaveMaclzine:
(+- $SlaveTruckin New) sets up the Truckin world and links your machine to the MasterMachine. You will be asked

for a unique name Lo identify your machine and the address of the Post!vlaster. Please ask Lhe game coordinator for Lhis
address. A new game cannot be created from a slave machine - the slave machine will iun the game created by the
master machine.
Playerlnterface is set as above in both U1ese cases as well].

[[[[In all these cases. uplo 4 arguments can be given Lo the New message to select the game configuration you want. The
description above is for the default case.
Arg 1: Type or Game··
This specifics what kind of DecisionMaker and P/ayerlnterface you want. Currently the only value is TimcTruckinDM
(the appropriate player interface is automatically selected). Later, we may put in other versions of the game.
Arg 2: Type or Game lloard··
"ll1is specifies what kind of game board you want: BWTruckin or ColorTruckin. The former is the default. In order to
use ColorTruckin option. you need a color monitor attached to your machine.
Arg 3: Type or Simulator··
This specifics whether you want the game board to be displayed or not: DisplayTruckinS or NoOisplayTruckinS. The
former is the default. The NoDisplay version of the simulator maintains an uplo dale version of the game but does not
display Lhc game board.
Arg 4: Brondcnst List··
·11,is is a list of objecL~ who wanl to receive a copy of ~II g~me 111css~ge~ which change the world. These objects must be
capable of responding to the messages described in Lhe Multi!vlachine'f'rucki11 document. These objects will get the
messages after the world has already been updated.]]]]

B. Starting a game

Send the message Begin Game to Player/ nterface to start a game as follows:

(+- Pl::iycrlnterface BcginGame)

This message refreshes the game board created earlier and prompts you for the players you want in
this game. You can either create new players from among the existing player classes (via an
interactive menu) or use any players created earlier. [The menu appears next to the prompt window
at the left top of the screen]. The menu for the players offers you a choice of both player classes
and existing player names. You can opt for all existing players by choosing the ALL-EXISTTNG
menu option. Select NO when you are done selecting players.

You can pass one optional arguments in the I3cginGame message.

Arg: IFT then all existing players will be used for the game and you will not be asked for players. This
might be convenient during debugging when you want to use the same game board and same set of
players for debugging your player.

[[If you arc running S!aveTruckin, ncginGarne will let you select your local players, but the game will only start when the Master
Machine decides - which it docs when a BeginGame is done on Lhc Master Machine.]]

C. Interrupting a game in the middle.

In addition to the rule exec and the break/trace facility of the rule language (see Rule Language
manual), there is another way to temporarily stop a game in the middle and bring up the lisp user
exec. Hold the CTRL and LEFT SHIFT keys simultaneously when one of the trucks is moving.
This will put you into the Lisp User Exec, where you can examine things and/or edit your rule sets
and functions. Type OK in the Exec to resume the game. On a dorado, the trucks move pretty fast,
so if the above does not work the first time, try again.

C.2 Interrupting a player any time

Left of the Status Window, you will notice -a menu which lists the players running on your machine.
Selecting any player in the menu, allows you to interrupt that player and bring up the Rule Exec.
Remember that the game time continues to click while you arc in the Rule Exec.

D. Suspension/Premature Termination of the Game

You can suspend, resume, or kill the game by using the Game Control Menu, which normally appears
left of the Status Window. Selecting Suspend will suspend the game (but remember that the time
allocated for the game continues to tick, so when you resume, the intervening time will be deducted
from the game time). Selecting Awake will resume the game and Kill Game will kill the game.

E. Attaching gauges to your player's truck

You can attach gauges to Instance Variables (]Vs) of objects under your control such as your player
or truck in order to monitor important internal state during the game. When you first create a
player, the game mnster will offer to put gauges on your truck, i.e., to the IVs cash!Jox, Juel, weight,
and volume. You have several options. NO will not put any gauges. YES response will lead to the
system asking you whether you want gauges on each of the four IVs listed above. For each IV for
which you respond with YES the system will offer a choice of gauges. DEFAULT response will put
default gauges on fuel.

2

Once you put gauges on a player, they can be reused when you use Lhc same game board for a new
game or create new game boards. Thus, if you expect to use a player many times, it pays to attach
the desired gauges once and continue to use the player.

F. Attaching gauges to other IVs of your plnycr

When you create a player, the instance object is given the same name as the driver name you enter.
Thus, if you name some player Joe you can access the object as $Joe.

You will often find it useful to attach gauges to IVs of your player. For example, if your player is
an instance of Peddler, you might want to monitor IVs such as destination, sloppingP/ace, and goal.
The way to attach gauges on your player is to send it the AddGaugcs message. For example,

$Joe AddGaugcs '(destination goal)

will attach gauges to destination and goal IVs of $Joe if $Joe is an instance of Peddler. The
AddGauges method will prompt you for the type of gauge. The most suitable gauge for arbitrary
values ls LCD.

The /\ddGaugcs message can be used to select default gauges on the instance variables indicated,
instead of having to select gauges yourself each time. In order to do this, you have to specify
additional information in the object class as shown in the following simplified description of the
class Truck.

(DEFCLASS Truck
(MctaClass ..)
(Supers ..)
(ClassVariables ..)
(lnstanceVariables (cashBox 10000

(fuel 80
DcfaultGauge LCD GaugcLimit (0 10000))
DefaultGauge Dial GaugeLimit (0 80))))

Thus, suppose, you wanted an LCD gauge to be the default gauge on destination, you can specify
this for use by the /\ddGauges method by adding the property Defau/tGauge to the instance
variable destination with LCD as the value. Then pass T as the second argument in the above
AddGauges message. This will result in a LCD gauge being installed on destination and you will be
prompted only for goal. [You can do the same for goal or any other IVs also]. If the default gauge
you have specified is being used for numbers. you also should specify the default limits. For this,
put under the GaugeLimil property a list containing the two numbers which indicate the lower and
upper limits.

G. Adding gauges under program control

You can also attach gauges under full program control by specializing the method SetU11Gauges in
the class Player. The description given above is carried out by this method. You could write your
own SctUpGaugcs method in your player class and make it attach gauges by using the method
AddGauges described earlier. noth Truck and Player respond to the message AddGauges. This way
you could build into your SctUpGauges method, your choice of gauges, which then will be carried
out by the system each time you create a player of that class.

H. Selecting trucks under program control

3

You can also select the truck you want for your player automatically, instead of being prompted for
it. In order to do this specialize the method SclcctTruck for your player class. This method will be
called when your player class is instantiated. This method should return the name of one of the
truck classes currently allowed in the game. Currently, the allowed trucks are: MacTruck,
GMCTruck, FordTruck, and PctcrBiltTruck. •

I. Summarizing the truck data at a glance

You can get a summary report of your players truc.k by sending your player (say Joe) the Show
message as follows:

(+- $Joe Show)

This will print out the cashBox, fuel, weight, and volume, as well show you the cargo your truck is
carrying. This summary may be useful during debugging.

J. Clearing up the SI.Teen

If your screen gets messed up for some reason, you can restore it to the initial state by buttoning
the LoopsLogo in the middle top of your screen and selecting the command SetUJ)Screen. You can
also do this in the middle of the game when you arc in any of the rule exec, user exec or break
exec. Even though the game board and gauges will disappear temporarily, they will come back as
those windows arc written to.

K. When players get control

A player gets control when his/her turn comes and the game master sends a TakcTurn message to
the instance of your player object. Your top-level rule-set must be written to respond to this
message.

You can also write your player in such a way that the top-level rule set never returns. i.e .. the TakeTurn rule-set uses
whileA{{ control structure. The Playerlnte,face will suspend you when you make a Buy, Move, or Se{{ request and
reschedule you when your turn comes again.

L. Legal requests by players during game

A player can make three kinds of requests during the game: Move, Buy, Sell. After each request,
the player is suspended until the request is completed and your turn comes again (i.e., all other
players have used up the same amount of time).

1. (+- Playerlntcrfacc Move player numOrLoc)
This is a request to move player from the current location to a location determined by numOrLoc. If
numOrLoc is a number, then it is the relative offset from the current location. It can be positive or
negative. It can also be the actual instance object representing the particular roadStop in the game.

4

2. (+- Playcrlntcrface Ruy player qty)
This is request to buy qty of the commodity at the location at which player is currently parked.

3. (+- Playcrlntcrface Sell player commodity Instance qty)
This is a request to sell sell qty of the commodity commoditylnslance owned by the player in their
truck's cargo, at their current location. If qty is not specified, then the qty in the commodity Instance
will be used.

The standard value of player in all the three above messages is seif which is bound to the player
executing the rule-set.

s

