
18-1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

18. USER INPUT/OUTPUT MODULES

This chapter presents two modules that have been developed for displaying
and allowing you to enter information. The Interlisp-D Inspector module and ?=
handler have been enhanced to support LOOPS data types and message
sending.

18.1 Inspector

The LOOPS interface uses and extends the capabilities of the Medley
Inspector module. Instances and classes can be easily examined and
modified through the interface that the Inspector module provides. This
section describes the operations available with the LOOPS interface. For
information on the Inspector module, see the Interlisp-D Reference Manual.

An inspector is a window opened on a specific piece of data, which for
LOOPS means a class or an instance. Figure 18-1 shows an inspector on an
instance of a window.

Figure 18-1. Sample Inspector

Inspector windows contain two columns of information; the left column is
called the property column, and the right column is called the value column.

You can scroll inspector windows, but these windows are not reshaped by
actions such as switching from instance variables inspection to property
inspection or adding new instance variables. This may cause some confusion,
for example, if you create an inspector to be the correct size and add an
instance variable, and that instance variable fails to appear.

An inspector is primarily an interactive facility. A programmatic interface is
also available, which uses the LOOPS methods to customize the generic
Interlisp-D functionality.

18.1.1 Overview of the User Interface

LOOPS provides two ways to create an inspector:

• Call the Lisp function INSPECT with the object to be inspected as the first
argument.

18-2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

18.1 INSPECTOR

• Use the LOOPS method Inspect, which is described below.

The user interface to the inspector is the same as that for the Medley
environment; that is, you select an option from the left or right column with the
left mouse button, and then trigger an action with the middle mouse button.
The action opens a menu from which you can choose further options, like
assigning a new value or adding an active value for breaking.

Another menu appears when you position the cursor on the title bar of an
inspect window and press the middle mouse button. This menu allows you to
change the inspector’s contents, for instance to show all values or local ones
for instance variables.

Three types of inspectors are available in LOOPS:

• Instance inspector

• Class inspector

• Class instance variable inspector

The following sections describe the user interface for each inspector.

(← self Inspect INSPECTLOC) [Method of Object]

Purpose: This provides a message form of the function to inspect the item self.

Behavior: Calls (INSPECT self NIL INSPECTLOC).

Arguments: INSPECTLOC
A region where the inspector window should appear. If it is NIL,
you are prompted to place a ghost image.

Categories: Object

Example: The following command inspects an instance ($ W1).

17←(← ($ W1) Inspect)

18.1.2 Using Instance Inspectors

Using an inspector window on an instance provides a clear, direct interface to
all of the instance’s variables and values. This interface also provides the
mouse and keyboard options to change the contents of the inspector to show
various aspects of the instance.

18.1.2.1 Titles of Instance Inspector Windows

When you inspect an object, the title of the inspector window reflects the
contents of the inspector. If the object is an instance, the title contains the
name of the class of the instance and the LOOPS name of the instance, if it
has one, or the UID of the instance. Other types of inspectors have different
title bars, as described in Section 18.1.3, "Using Class Inspectors," and
Section 18.1.4, "Using ClassIV Inspectors."

Contrast the title bar of the following two examples.

(INSPECT (← ($ Window) New)) generates

18-3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

18.1 INSPECTOR

(INSPECT (← ($ Window) New ’w1)) generates

18.1.2.2 Menu for the Title Bar

The following menu appears when you position the cursor on the title bar of
the inspector window and press the middle mouse button.

The rest of this section describes the actions that occur as a result of selecting
one of the menu options.

Class Opens a second inspector, a Class Inspector as described in Section 18.1.3,
"Using Class Inspectors," which inspects the class of the instance within this
inspector.

AllValues The default mode for instance inspectors. The values displayed in the right
column of the inspector are determined by the function GetValueOnly, so
active values (except #,NotSetValue) can be seen. The title of the inspector
states that all values are being displayed.

18-4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

18.1 INSPECTOR

LocalValues The values displayed in the right column of the inspector are determined by
the function GetIVHere. The title of the inspector states that only local values
are being displayed. As with AllValues, active values are seen, and values
that are not yet stored locally in the instance show a value of #,NotSetValue.

Add/Delete Allows you to add or delete instance variables. Selecting this option pops up a
new menu with two options:

• Add

If you select Add, you are prompted to enter a name for the new instance
variable. That instance variable is added locally to the instance and given
the value of the variable NotSetValue. If you enter a name for an instance
variable that currently exists, its value is reset to the value defined in the
class.

• Delete

If you select Delete, a menu appears with options that are the instance
variables of the instance. If you select one that is not defined within the
class, it is deleted. If the selected instance variable is defined by the class,
a break occurs.

If the inspector is viewing the properties of an instance variable as opposed to
all of the instance variables (see IVs below), the name entered under Add will
be added as a property to that instance variable and given the value of the
variable NotSetValue. If you try to delete an existing property, the menu that
appears is a menu of property names.

IVs Changes the view to be one that shows all of the instance variables and their
values, not the properties. It is possible to change the view an inspector has
on an instance to show only the properties of a given instance variable. This
is described in Section 18.1.2.3, "Using Commands in the Left Column," in the
description of the Properties option.

 Save Value Calls PutSavedValue with its value argument bound to the instance being
inspected.

Refetch Refreshes the inspector. Inspectors do not automatically update when a
change is made to an instance, unless made with the Edit command.

Edit Opens a display editor window in which you can modify the value of instance
variables and properties, and add or delete instance variables local to the
instance.

18.1.2.3 Menu for the Left Column

The following menu appears when the view of the inspector is all of the
instance variables of the instance, and you select an item in the left column
and press the middle mouse button.

18-5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

18.1 INSPECTOR

If the view of the inspector is only of properties, this menu contains only one
option: PutValue.

The rest of this section describes the actions that occur as a result of selecting
one of the menu options.

PutValue Allows you to assign a new value to the variable selected. Selecting this option
and dragging the mouse to the right causes a submenu with the following
options to appear:

• PutValue

Prompts you to enter a new value for this instance variable. The new value
is stored using PutValue.

• PutValueOnly

Prompts you to enter a new value for this instance variable. The new value
is stored using PutValueOnly.

• Use saved value

The new value to be stored using PutValueOnly is the value of
(SavedValue).

Properties Changes the view of the inspector to include only the value and properties of
the selected instance variable as shown here:

The title bar changes to indicate that the properties of an instance variable are
being displayed, which instance is being displayed, and which instance
variable of that instance is being displayed.

The Value item is provided purely as a convenience in this view and its menu
options will only allow Putting a new value in it.

The following menu appears when the view of the inspector is an instance
variable’s properties, and you select an item in the left column and press the
middle mouse button.

When the inspector’s view is limited to IV properties the menu options act in a
manner similar to that of IVs. This allows Putting, Breaking, Tracing and
unBreaking of the properties instead of the IVs themselves.

18-6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

18.1 INSPECTOR

If you now select the option LocalValues from the title bar menu, the title of
the inspector changes to indicate that fact, and only properties that are stored
locally in the instance appear, as shown here:

To return to a view that shows all instance variables, choose the IVs option
from the title bar menu.

BreakIt Wraps a BreakOnPutOrGet active value around the value of an instance
variable. Any read or write accesses to this instance variable will cause a
break (see Chapter 12, Breaking and Tracing).

Note: Breaking a variable effectively breaks any IndirectVariable that points
to it.

Selecting this option and dragging the mouse to the right causes a submenu
with the following options to appear:

• Break on Access

Performs the same action as BreakIt.

• Break on Put

Installs a BreakOnPut active value. Trying to store a new value into this
instance variable will cause a break, but reading the variable will not.

TraceIt Wraps a TraceOnPutOrGet active value around the value of this field. Any
read or write accesses to this instance variable will be traced (see Chapter
12, Breaking and Tracing).

Note: Tracing a variable effectively traces any IndirectVariable that points to
it.

Selecting this option and dragging the mouse to the right causes a submenu
with the following options to appear:

• Trace on Access

Performs the same action as TraceIt.

• Trace on Put

Installs a TraceOnPut active value. All writes into this instance variable will
be traced, but reads will not.

UnBreakIt Removes any of the breaks or traces that have been installed on an instance
variable. If there are multiple traces or breaks, this will remove the outermost
one.

18.1.2.4 Menu for the Right Column

The following menu appears when the view of the inspector is all of the
instance variables of the instance, and you select an item in the right column
and press the middle mouse button.

18-7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

18.1 INSPECTOR

If the view of the inspector is only of properties of an instance variable, this
menu contains only three options: PutValue, Save Value, and Inspect.

The only differences between these menus and the ones associated with the
left column is the addition of two more options: Save Value and Inspect. The
remaining options trigger identical behaviors as those of the menu associated
with the left column.

Save Value Calls PutSavedValue with the selected value as its argument.

Inspect Calls the Lisp function INSPECT with the selected value as its argument,
opening an additional inspector window.

In an inspector viewing the properties of an IV the right hand column middle
button menu allows only the Put Value, SaveValue and Inspect options.

18.1.3 Using Class Inspectors

Classes can be inspected by using the Lisp INSPECT function or the LOOPS
Inspect method (see Section 18.1.1, "Overview of the User Interface"). For
example, to inspect the class Window, enter either of the following
commands:

(INSPECT ($ Window))
(← ($ Window) Inspect)

The contents of a class cannot be changed from within an inspector window,
so it is generally used for display as opposed to editing. However, the menu
interface does provide ways to edit the contents of a class.

18.1.3.1 Titles of Class Inspector Windows

When you inspect a class, the title states that you are inspecting only local
properties, and contains the name of the class.

The title contains the name of the class. The following example shows an
inspector on the class Window. Since the value column is quite long, it has
been truncated here.

18.1.3.2 Menu for the Title Bar

The title bar menu is associated with each inspector of a class. This menu
appears when you position the cursor inside the title bar of the class inspector
window and press the middle mouse button.

18-8 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

18.1 INSPECTOR

The rest of this section describes the actions that occur as a result of selecting
one of the menu options.

Browse Provides a quick way to open a class browser on the class being inspected.
Selecting this option and dragging the mouse to the right pops up a submenu
with the following options:

• Browse

Opens a class browser with the class being inspected as the root class.

• BrowseSupers

 Open a supers browser on the inspected class.

Edit Opens an editing window on the class.

All Causes the values shown in the right column to contain inherited as well as
locally defined information. The title bar of the inspector changes to indicate
this, as shown here:

Local The default mode for class inspectors. This causes the values shown in the
right column to contain only locally defined information, which is indicated in
the title bar of the inspector.

Refetch Refreshes the inspector. Inspectors do not automatically update when a
change is made to an instance, unless made with the Edit command.

18.1.3.3 Menu for the Left Column

No actions occur when you select an item in the left column of a class
inspector and press the middle mouse button.

18.1.3.4 Menu for the Right Column

Only one option, Inspect, is in the menu that appears when you select an
item in the right column of a class inspector and press the middle mouse
button.

For the fields MetaClass, Supers, CVs, and Methods, selecting Inspect from
the menu allows a choice of Interlisp-D inspectors. If the selected item in the
class inspector is the values of the IVs field, then a ClassIVs inspector,
described below, is created.

18-9LOOPS REFERENCE MANUAL, MEDLEY RELEASE

18.1 INSPECTOR

18.1.4 Using ClassIVs Inspectors

ClassIV inspectors provide an interface to the default values for all of the
instance variables defined in a class. To create a ClassIV inspector,

• Open a class inspector.

• Select the values of the IVs field.

• Press the middle mouse button. This pops up and selects and Inspect
menu, and automatically opens a ClassIVs inspector.

18.1.4.1 Titles of ClassIVs Inspector Windows

The title for a ClassIVs inspector indicates that the instance variables of a
particular class are being inspected. This example shows how a ClassIVs
inspector looks for the class ClassBrowser.

18.1.4.2 Menu for the Title Bar

The following title bar menu is associated with each inspector of an instance.
This menu appears when you position the cursor inside the title bar of the
inspector window and press the middle mouse button.

The rest of this section describes the actions that occur as a result of selecting
one of the menu options.

AllValues The default mode for ClassIV inspectors. Causes the inspector to show all
instance variables, whether inherited or locally defined for the class, and
states "AllIVs" in the title.

18-10 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

18.1 INSPECTOR

LocalValues Causes the inspector to show only locally defined instance variables. The
following window shows how the title changes to indicate this:

Add/Delete Allows you to add or delete a ClassIV.

Selecting this option and dragging the mouse to the right causes a submenu
with the following options to appear:

• Add

If you select Add, you are prompted to enter a name for the new instance
variable. That instance variable is added to the class and given the default
value NIL and a doc property with the value (* IV added by (USERNAME)). If
you enter a name for an instance variable that currently exists, its default value
is reset to NIL.

• Delete

If you select Delete, a menu appears with the locally defined instance
variables of the class. Selecting one deletes it from the class.

If the inspector is viewing the properties of an instance variable as opposed to
all of the instance variables (see IVs below), the name entered under Add is
added as a property to that instance variable and given the value NIL. If you
try to delete an existing property, the menu that appears is a menu of property
names.

IVs Returns the view to show the instance variables and their values, not the
properties.

It is possible to change the view a ClassIVs inspector has on the instance
variables of a class to show only the properties of a given instance variable.
This is described in Section 18.1.4.4, "Menu for the Right Column."

Refetch Refreshes the inspector.

18.1.4.3 Menu for the Left Column

No actions occur if you select an item in the left column of a ClassIVs
inspector with the middle mouse button.

18.1.4.4 Menu for the Right Column

The following menu appears when you select an item in the right column and
press the middle mouse button:

The rest of this section describes the actions that occur as a result of selecting
one of the menu options.

Inspect Calls the Lisp function INSPECT with the selected value as its argument.

Save Value Calls PutSavedValue with the selected value as its argument.

Properties Changes the view of the inspector to display the value and properties of the
selected instance variable, as shown in this example:

18-11LOOPS REFERENCE MANUAL, MEDLEY RELEASE

18.1 INSPECTOR

The title changes to include the following information:

• The properties of an instance variable.

• The name of the instance variable.

• The name of the class.

If you now select either AllValues or LocalValues from the title menu, the title
of the inspector changes to indicate that fact, and the appropriate information
is displayed.

18.1.5 Functional Interface for Instance Inspectors

The methods described in this section belong mostly to the classes Class or
Object. Inspectors are not LOOPS objects, so these methods are invoked
indirectly within the system functionality of the inspector as a customization of
the Interlisp-D inspectors. These methods are meant to be called only from
within the context that you create interactively by pressing a mouse button
when the cursor is on some portion of an inspector window; you do not invoke
them directly. Many of the parameters are simply passed along in case the
method creates a menu, and the option selected from the menu needs
additional arguments.

In these methods, the arguments self and datum may the same; that is, the
item being inspected. The message is sent to the item being inspected, so its
position in the inheritance lattice determines which method from the classes
Class or Object is invoked.

The following table shows the items in this section.

Name Type Description

InspectFetch Method Returns the value of a left column inspector property that is
displayed in the right column of an inspector window.

InspectStore Method Stores the value for an instance variable or its property.

InspectPropCommand Method After an item is selected in the left column of an inspector
window, this triggers an action when the middle mouse button is
pressed.

InspectProperties Method Determines what is displayed in the left column of an inspector
window.

InspectTitle Method Creates a string to be used for an inspector window’s title.

InspectValueCommand Method After an item is selected in the right column of an inspector
window, this triggers an action when the middle button is
pressed.

TitleCommand Method Triggers an action when the cursor is inside the title bar of the
inspector window and the middle mouse button is held down.

(← self InspectFetch datum property window) [Method of Object]

18-12 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

18.1 INSPECTOR

Purpose/Behavior: Message sent by inspector to get the value of a left column inspector property
that is displayed in the right column of an inspector window. Either
GetValueOnly or GetIVHere is used to determine the value.

Arguments: self The object being inspected.

datum This may or may not be a list. If it is not a list, it is bound to the
object being inspected; that is, self. It is set to a list within
various methods associated with the inspectors. The contents of
this list are interpreted by a number of the methods to control
what data is displayed within the inspector window.

• The first element of the list is the object being inspected.

• The second element of the list, if not NIL, is typically the name
of an instance variable. In the terminology of the inspector, it
is an inspector property. For inspectors of instances, the
inspector properties (the items in the left column) are the
instance variables of the object being inspected. (There can
be some confusion here caused by using the word properties
either when referring to the left column data of an inspector or
when referring to the properties associated with an instance
variable).

• The third element of the list, if NIL, indicates that inherited
values are to be displayed in the inspector window; if its value
is LocalValues, then only locally stored information is
displayed.

The value of datum is stored on the inspector window property
DATUM.

property Used if datum is not a list. Refers to an element (instance
variable or property name) contained within the left column of an
inspector. For an instance inspector, this could be either the
name of an instance variable or the name of a property,
depending upon the state of the inspector; that is, whether you
are viewing instances variable or the properties of a particular
variable.

window Lisp window of the inspector.

Returns: The value of a left column property that is displayed in the right column.

Categories: Object

Specializations: Class, InspectorClassIVs

Example: The following command fetches the value of instance W1’s instance variable
bottom:

15←(← ($ W1) InspectFetch (LIST ($ W1) ’window))
#,($AV LispWindowAV ((YIV0.C=N5.W←7 . 10)))

The following command fetches the value of class Window’s supers:

16←(← ($ Window) InspectFetch ($ Window) ’Supers)
(Object)

18-13LOOPS REFERENCE MANUAL, MEDLEY RELEASE

18.1 INSPECTOR

(← self InspectStore datum property newValue window) [Method of Object]

Purpose/Behavior: Stores newValue as the value for an instance variable or its property using
PutValueOnly. Where the value is stored, whether in the instance variable or
one of its properties, depends upon the values for datum and property.

Arguments: datum Instance or class being inspected. See InspectFetch, above,
for details.

property Instance variable or property where value is to be stored. See
InspectFetch, above, for details.

newValue New value for property.

window Lisp window of the inspector.

Categories: Object

Specializations: Class, InspectorClassIVs

Example: The following command changes the value of instance W1’s instance variable
height:

17←(← ($ W1) InspectStore ($ W1) ’height 400)
400

or

18←(← ($ W1) InspectStore ’W1 ’height 400)
400

(← self InspectPropCommand datum property window) [Method of Object]

Purpose: This method is an interface between LOOPS and the mouse functions of the
inspector, and should only be called through the inspector. It is invoked when
an item is selected in the left column of an inspector window and the middle
mouse button is pressed.

Behavior: Opens a menu with a number of options. See Section 18.1.2.3, "Menu for the
Left Column."

Arguments: datum Instance or class being inspected. See InspectFetch, above,
for details.

property Instance variable or property where value is to be stored. See
InspectFetch, above, for details.

window Lisp window of the inspector. A prompt window will be attached
to this window if you ask to PutValue, and the window’s
INSPECTW.FETCH function will be called, so the window must
be an inspector window.

Categories: Object

Specializations: Class

(← self InspectProperties datum) [Method of Object]

Purpose: Determines what should be displayed in the left column of an inspector.

Behavior: Depending on the value of datum as described above, this will return either the
instance variables of the object being inspected, or the properties of a
particular instance variable.

18-14 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

18.1 INSPECTOR

Arguments: datum Instance or class being inspected. See InspectFetch, above, for
details.

Returns: Value depends on the arguments; see Behavior.

Categories: Object

Specializations: Class, InspectorClassIVs

Example: The following command first shows the instance variables of instance W1,
then the properties of the instance variable height:

27←(← ($ W1) InspectProperties ’W1)
(left bottom width height window title menus)

28←(← ($ W1) InspectProperties (LIST ’W1 ’height))
(Value doc)

(← self InspectTitle datum) [Method of Object]

Purpose: Creates a string to be used as a title for an inspector window.

Behavior: If datum is not a list, this sets datum to (datum NIL NIL).

Depending on the values within the list datum, this creates a title showing
whether all values or local values are shown and whether all instance
variables or the properties of an instance variable are shown. The title also
contains the LOOPS name or UID of self.

Arguments: datum Instance or class being inspected. See InspectFetch, above,
for details.

Categories: Object

Specializations: Class, InspectorClassIVs

Example: Some examples of the behavior of InspectTitle:

35←(← ($ Window) InspectTitle)
"Local properties of Class Window"

36←(← ($ W1) InspectTitle)
"All Values of Window ($ W1)."

37←(← ($ Window) InspectTitle (LIST ’Window T))
"All properties of Class Window"

38←(← ($ W1) InspectTitle (LIST ’W1 ’height))
"All IVProps of Window ($ W1).height"

(← self InspectValueCommand datum property value window) [Method of Object]

Purpose: This method is an interface between LOOPS and the mouse functions of the
inspector, and should only be called through the Inspector. It is invoked when
an item is selected in the right column of an inspector window and the middle
mouse button is pressed.

Behavior: Opens a menu with several options. See Section 18.1.2.4, "Menu for the Right
Column."

Arguments: datum Instance or class being inspected. See InspectFetch, above,
for details.

property Instance variable or property being inspected. See
InspectFetch, above, for details.

18-15LOOPS REFERENCE MANUAL, MEDLEY RELEASE

18.1 INSPECTOR

value This is inspected only if you select Inspect from menu.

window Lisp window of the inspector.

Categories: Object

Specializations: Class, InspectorClassIVs

Example: When the value of the instance variable height in instance W1 is selected in
an inspector window, and the middle mouse button is pressed, a message like
the following is sent:

(← ($ W1) InspectValueCommand ($ W1) ’height 200 (WHICHW))

(← self TitleCommand datum window) [Method of Object]

Purpose: This method is an interface between LOOPS and the mouse functions of the
inspector, and should only be called through the Inspector. It is invoked when
the cursor is in the title bar of an inspector window and the middle mouse
button is pressed.

Behavior: Brings up a menu with several options. See Section 18.1.2.2, "Menu for the
Title Bar."

Arguments: datum Instance or class being inspected. See InspectFetch, above,
for details.

window Lisp window of the inspector.

Categories: Object

Specializations: Class, InspectorClassIVs

Example: If you position the cursor inside the title bar of the inspector window for
instance W1 and press the middle mouse button, you send a message like the
following:

(← ($ W1) TitleCommand NIL (WHICHW))

18.1.6 Customizing the Inspector

The methods in Section 18.1.5, "Functional Interface for Instance Inspectors,"
have been specialized in the classes Class and InspectorClassIVs to create
the behavior of the inspectors described in Section 18.1.1, "Overview of the
User Interface."

If you want to create a specialized inspector, you need to create a subclass of
Object or perhaps Class and specialize the methods within that new class.
The class InspectorClassIVs has an instance variable named class that
contains the name of the class being inspected within a particular instance of
InspectorClassIVs. Similarly, the user-created inspector class may need an
instance variable which contains the object being inspected so that the
methods of this class can easily access it.

The methods that you need to specialize will depend upon how the behavior of
the newly created inspector class should differ from those of an instance or
class inspector.

As an example, assume that you want an inspector to show a subset of the
instance variables of an instance. You could specialize the method
InspectProperties to return that subset. To make Window show only the
dimensions of a window, define the following method:

18-16 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

18.1 INSPECTOR

(←New ($ Window) Inspect) creates the following:

18.2 EXTENSIONS TO ?=
18.2 EXTENSIONS TO ?=

18.2 Extensions to ?=

The Interlisp-D environment allows you to begin typing a function to be
evaluated in the Executive and pause in the midst of typing the arguments. At
this point, if you type a "?=" followed by a carriage return, Interlisp-D prints the
arguments to the pending function call and shows the bindings. LOOPS has
extended this facility to include similar functionality for message sending and
for record creation.

18.2.1 Message Sending

The ?= interface works with the following message-sending forms:

• ←

• ←Super

• ←New

• ←Proto

• ←Process

• SEND

LOOPS first tries to determine the class of the object receiving the message
by examining the form following one of the above. If the message form begins
with one of ←New or ←Proto, the object receiving the message is the class
desired.

• If the system cannot determine the class of the object, you are prompted in
the Prompt Window to enter in the name of the class or to type a right
square bracket (]) to evaluate the form and determine that class from that.
This handles cases such as

(← (← ($ Window) New) ?=<CR>

• If the class can be determined and if you have not typed in a selector, a
menu appears containing the options *generics* and *inherited* and any
selectors local to the class. A submenu is associated with *generics* that
contains selectors from the classes Tofu, Object, or Class, depending

18-17LOOPS REFERENCE MANUAL, MEDLEY RELEASE

18.1 INSPECTOR

upon the class previously determined. The submenu associated with
inherited are those selectors that are neither generic nor local to the
class.

This is the menu that appears when you type

(←New ($ NonRectangularWindow) ?= <CR>

If you choose one of these options, it is placed into the input buffer and the
system prints the binding for self, what method will be executed, and the
arguments expected. In the prompt window, the system prints the
documentation of the method to be executed.

As an example, if you create an instance of a class browser cb1, type

22←(← ($ cb1) ?= <CR>

and then choose Shape from the *inherited* drag-through menu, the
Executive changes as shown here.

22←(←($ cb1) Shape
(←
self = ($ cb1)
Method = Window.Shape
 newRegion noUpdateFlg)

A similar output occurs if you type in a selector and "?=" instead of choosing a
selector from the menu.

If you type "?=" after entering one or more of the arguments, the arguments
are printed with the bindings, as shown here.

23← (←($ cb1) Shape ’(100 150 200 250) ?= <CR>
(←
self = ($ cb1)
Method = Window.Shape
newRegion (QUOTE (100 150 ...))
noUpdateFlg)

This interface also works when you are typing to the edit buffer window when
using the display editor. It does not work to pick a selector within a display
editor window and choose the ?= item from the EditCom submenu.

18.2.2 Record Creation

The same mechanism the LOOPS uses to handle ?= for LOOPS objects is
also used to extend it for the Interlisp Record module.

If you begin an input to the Executive with one of CREATE, Create, or create,
type the record name or data type to be created next, and then type

?=<CR>

the system prints the names but not the bindings of the fields within the record
being created.

18-18 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

18.1 INSPECTOR

For example, when you type

48←(CREATE POSITION XCOORD ← 123 ?=<CR>

the response is

(XCOORD YCOORD)

on the next line. The caret moves to the position of the ?= in the original line,
and waits for you to enter a value.

18-19LOOPS REFERENCE MANUAL, MEDLEY RELEASE

18.1 INSPECTOR

[This page intentionally left blank]

