
17-1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

17. READING AND PRINTING

This chapter describes the macros, functions, and methods used to read
LOOPS objects from and print LOOPS objects to file storage, hash array
storage, and the user display.

17.1 Reading Objects

This section describes the functions to read LOOPS objects.

Name Type Description

$ NLambda Returns a pointer to the object; does not evaluate its
Function argument.

$! Function Returns a pointer to the object; evaluates its argument.

$C NLambda Gets the class record.
Function

These functions use the Common Lisp form #, in the return display. This form
signals a read-time evaluation and is briefly described here.

Form Description

#,<form> Reads <form>, evaluates it, and returns that value.

#,($& <form>) Form in which instances appear if they are not prettyprinted.

#,($C className) Similar to #,($ className), except that it creates the class if it does not
already exist.

($ name) [NLambda Function]

Purpose/Behavior: Returns a pointer to the LOOPS object specified by name and does not
evaluate name. If no object exists for name, NIL is returned. If *PRINT-
PRETTY* is set to T, the object will be prettyprinted in the Executive window.

Arguments: name A LOOPS name.

Returns: Pointer to a LOOPS object or NIL; see Behavior.

Example: In line 18, name is an instance. The value is returned and the DEFINST form
is printed.

In line 19, name is a class whose class name is returned and printed.

In line 20, NotAnObject has not been declared as a LOOPS object and
therefore returns NIL.

17-2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

17.1 READING OBJECTS

18←($ Window1)
#,($& Window (NEW0.1Y%:.;h.eN6 . 495))

19←($ Window)
#,($C Window)

20←($ NotAnObject)
NIL

($! name) [Lambda Function]

Purpose/Behavior: Returns a pointer to the LOOPS object specified by name where name is
evaluated. If no object exists for name, NIL is returned. If *PRINT-PRETTY*
is set to T, the object will be prettyprinted in the Executive window.

Arguments: name Evaluates to a valid LOOPS name.

Returns: Pointer to a LOOPS object or NIL; see Behavior.

($C name) [NLambda Function]

Purpose: Allows forward references to classes.

Use ($ name) instead of ($C name).

Behavior: Varies according to the arguments.

• If there is a class record for name, the function returns the class name.

• If there is no class record for name, the function attempts to create the
class. This differs from the behavior of ($ name) which does not attempt
any initialization if no LOOPS object is found.

Arguments: name A LOOPS name.

Returns: Value depends on the arguments; see Behavior.

Example: If name is not a LOOPS object, as shown in line 21, $C defines and returns a
class for name, as shown in line 22. Line 23 shows the default class which is
created in the Common Lisp Executive by $C when no class is found for
name.

21←($ aCompletelyNewClass)
NIL

22←($C aCompletelyNewClass)
#,($C aCompletelyNewClass)

23←(← ($C aCompletelyNewClass) PP)
aCompletelyNewClass

17.2 PRINT FLAGS
17.2 PRINT FLAGS

17.2 Print Flags

17-3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

17.1 READING OBJECTS

This section describes three variables that affect the way that objects are
printed in LOOPS:

• ObjectDontPPFlag

• ObjectAlwaysPPFlag

• *PRINT-PRETTY*

All these variables have a default value of NIL.

The ObjectDontPPFlag and ObjectDontPPFlag variables affect how
contained objects are printed and are used to override the *PRINT-PRETTY*,
which affects how the top-level objects are printed. (See the Interlisp-D
Reference Manual for more information on the *PRINT-PRETTY*.) These
variables interact as follows:

• If ObjectDontPPFlag is NIL and *PRINT-PRETTY* is T, objects are
prettyprinted.

• ObjectDontPPFlag is T overrides *PRINT-PRETTY* is T.

• ObjectAlwaysPPFlag is T overrides *PRINT-PRETTY* is NIL.

ObjectDontPPFlag [Variable]

Purpose/Behavior: Used internally to prevent recursive printing of objects. If ObjectDontPPFlag
is set to a non-NIL value, and ObjectAlwaysPPFlag is set to NIL, only the
object name is printed. If this flag is NIL, all of the information contained within
an instance is printed. The setting of this flag interacts with *PRINT-PRETTY*
as shown in the examples below.

ObjectAlwaysPPFlag [Variable]

Purpose/Behavior: Controls printing the long form of all instances. When this variable is set to a
non-NIL value, the long form of all instances are printed. This is the same
form generated by (←obj PP). The ObjectAlwaysPPFlag overrides the effect
of the ObjectDontPPFlag. Printing the long form of instances can lead to
infinite loops or very long printouts. For example, if you have an object
referencing another object which in turn references the first object, printing
causes an infinite loop. If you have references to other LOOPS objects in the
object you are printing, the long form of every object that can be reached from
the top object is printed.

Example: This example shows the interaction of all print flags.

23←(SETQ *PRINT-PRETTY* NIL)
NIL

24←(SETQ ObjectDontPPFlag NIL)
NIL

25←(← ($ Window) New ’Window2)
#,($& Window (NEW0.1Y%:.;h.eN6 . 502))

26←(← ($ Window2) Shape)
(47 145 99 89)

27←($ Window2)
#,($& Window (NEW0.1Y%:.;h.eN6 . 502))

• Change the value of *PRINT-PRETTY* to T.

28←(SETQ *PRINT-PRETTY* T)
T

17-4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

17.1 READING OBJECTS

29←($ Window2)
(DEFINST (Window2 (NEW0.1Y%:.;h.eN6 . 502))
 (left 47)
 (bottom 145)
 (width 99)
 (height 89))

• Change the value of ObjectDontPPFlag to T.

30←(SETQ ObjectDontPPFlag T)
T

31←($ Window2)
#,($& Window (NEW0.1Y%:.;h.eN6 . 502))

• Assume the following commands have been entered:

(DefineClass ’PPTest)
(← ($ PPTest) AddIV ’testIV)
(← ($ PPTest) New ’PPTest1)
(← ($ PPTest) New ’PPTest2)
(←@ ($ PPTest1) testIV ($ PPTest2))
(←@ ($ PPTest2) testIV ($ PPTest1))

(SETQ *PRINT-PRETTY* T)
(SETQ ObjectDontPPFlag T)
(SETQ ObjectAlwaysPPFlag T)

• Print the instances.

53←($ PPTest1)
(DEFINST PPTest (PPTest1 (NEW0.1Y%:.;h.eN6 . 502)))

• Reset the *PRINT-PRETTY* and print the instances again.

54←(SETQ *PRINT-PRETTY* NIL)
NIL

55←($ PPTest1)
#,($& PPTest (NEW0.1Y%:.;h.eN6 . 513))

17.3 PRINTING CLASSES
17.3 PRINTING CLASSES

17.3 Printing Classes

This section describes the methods used to print classes and information
about classes.

Name Type Description

FileOut Method Prints long pretty form of the class to a file or a display stream.

PP Method Prettyprints the class definition to a file or a display stream.

PP! Method Prints the information about the class from all levels of
inheritance.

17-5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

17.1 READING OBJECTS

PPV! Method Prints the variable information about the class from all levels of
inheritance.

(← self FileOut file) [Method of Class]

Purpose: Prints the long pretty form of the class to a file or to display stream.

Behavior: Prints a DEFCLASS form for the class self. The DEFCLASS form, which is
the way classes are defined, always includes the name of the class, the
MetaClass, and the Supers. If there are ClassVariables and
InstanceVariables defined for the class, these along with their values are also
included in the DEFCLASS form. FileOut formats the output with special fonts
and tab positions.

Arguments: self A class.

file The stream on which self is to be printed. If NIL, or not given,
prints to the TTYDisplayStream.

Returns: self

Categories: Classes

Specializations: Class, Method

Example: This example shows the DEFCLASS form for TestClass. If a DEFCLASS
form cannot be generated for self, a Break occurs with the message "var is
not defined as a class. Type OK to ignore this class and go on."

24←(← ($ TestClass) FileOut)

(DEFCLASS TestClass
 (MetaClass Class Edited%: (* --))
 (Supers Object)
 (InstanceVariables (testIV 1234 testProp1 1
 testProp2 2 doc
 (* --))))

#,($C TestClass)

(← self PP file) [Method of Class]

Purpose: Prettyprints LOOPS OBJECT.CLASS.PP to a file or to display stream.

Behavior: Prettyprints the class on file, if provided. If file is not given, look first to the
PPDefault, which is by default the Common Lisp Executive Window, and then
to the TTYDisplayStream. The output is printed and formatted by the method
Class.FileOut.

Arguments: self A pointer to a class.

file Stream to prettyprint to.

Returns: Name of class.

Categories: Class

Specializes: Object

Example: This example shows a call to PP on the class SupersBrowser, which uses
the TTYDISPLAYSTREAM as the default output stream.

26←(← ($ SupersBrowser) PP)

(DEFCLASS SupersBrowser
 (MetaClass Class Edited%: **COMMENT**

17-6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

17.1 READING OBJECTS

 doc "Browses upwards from a class
to all of its supter.")
 (Supers ClassBrowser)
 (InstanceVariables (title "Supers browser")))

SupersBrowser

(← self PP! file) [Method of Class]

Purpose: Prints the information about LOOPS OBJECT.CLASS.PP from all levels of
inheritance.

Behavior: Prints a listing of the following items along with any applicable documentation,
values and arguments for each item: MetaClass, Supers, Instance
Variables, Class Variables, Prototypes, and Methods.

Prints the information on file, if provided. If file is not given, look first to the
PPDefault, which is by default the Common Lisp Executive Window, and then
to the TTYDisplayStream.

Arguments: self A pointer to a class.

file Stream to print to.

Returns: self

Categories: Classes

Specializes: Object

Example: This example shows a partial output of the call to PP! on the class
SupersBrowser which uses the TTYDISPLAYSTREAM as the default output
stream. The dots indicate additional information.

27←(← ($ SupersBrowser) PP!)

#,($ SupersBrowser)
MetaClass and its Properties
 Class Edited: (* smL 11-Jun-86 13:18) doc
Browses upwards from a class to all of its
supers.

Supers
 (ClassBrowser IndexedObject LatticeBrowser --)
Instance Variable Descriptions
 left NIL doc left position of window
 bottom NIL doc
bottom position of window

 width 64 doc
outer width of window, including border

 height 32 doc
outer height of window, including border
.
.
.

Class Variables
 RightButtonItems ((Close (Close (Close --)
)) Snap Paint --) doc
Items to be done if Right button is selected
.
.
.

Methods
 AddCategoryMenu ClassBrowser.AddCategoryMenu
doc NIL args NIL

17-7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

17.1 READING OBJECTS

 AddNewCV ClassBrowser.AddNewCV
doc NIL args NIL

 AddNewIV ClassBrowser.AddNewIV
doc NIL args NIL

 AddNewMethod ClassBrowser.AddNewMethod
doc NIL args NIL
.
.
.

#,($C SupersBrowser)

(← self PPV! file) [Method of Class]

Purpose: Prints the variable information about the class from all levels of inheritance.

Behavior: Similar to (← self PP! file), except that only the MetaClass, Supers list and
information about Class Variables and Instance Variables is printed.

Arguments: self A pointer to a class.

file Stream to print to.

Returns: self

Categories: Classes

Specializes: Object

Example: This example shows a partial output of the call to PPV! on the class
SupersBrowser which used the TTYDISPLAYSTREAM as the default output
stream. The dots indicate additional information.

28←(← ($ SupersBrowser) PP!)

#,($ SupersBrowser)
MetaClass and its Properties
 Class Edited: (* smL 11-Jun-86 13:18) doc
Browses upwards from a class to all of its
supers.

Supers
 (ClassBrowser IndexedObject LatticeBrowser --)
Instance Variable Descriptions
 left NIL doc left position of window
 bottom NIL doc
bottom position of window

 width 64 doc
outer width of window, including border

 height 32 doc
outer height of window, including border
.
.
.

Class Variables
 RightButtonItems ((Close (Close (Close --)
)) Snap Paint --) doc
Items to be done if Right button is selected
.
.
.
#,($C SupersBrowser)

17.4 PRINTING OBJECTS
17.4 PRINTING OBJECTS

17-8 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

17.1 READING OBJECTS

17.4 Printing Objects

This section describes the methods for printing LOOPS objects.

Name Type Description

PrintOn Method Provides the default print function for LOOPS objects.

FileOut Method Prettyprints a LOOPS instance.

PP Method Prettyprints an object to a file or display stream.

PP! Method Prints all the information about the instance from all levels of
inheritance.

PPV! Method Prints the variable information about the instance from all levels
of inheritance.

(← self PrintOn file) [Method of Object]

Purpose: Provides the default print function for LOOPS objects.

Behavior: Returns a form suitable for the Lisp function DEFPRINT, which produces the
standard LOOPS object print form #,($ objname). (See the Lisp Release
Notes and the Interlisp-D Reference Manual for more information on
DEFPRINT.)

Arguments: self A LOOPS object.

file A stream to print to.

Returns: ("#," $ ObjectName)

Categories: Object

Example: This example shows the results of calling PrintOn with the instance,
Window1.

28←(← ($ Window1) PrintOn)
("#," $ Window1)

(←self FileOut file) [Method of Object]

Purpose: Prettyprints a LOOPS instance.

Behavior: If an object is found for self, this method prints the DEFINST form for the
object to the file. For a description of FileOut where self is a class, see
Section 17.3 "Printing Classes."

The DEFINST form always includes the name of the class to which the object
belongs and the UID for the object. Names attached to the object and
InstanceVariables bindings for the object are also included in the DEFINST
form. FileOut formats the output with special fonts and tab positions.

Arguments: self A LOOPS object.

file Stream to print to.

Returns: self

Categories: Instances

Example: This example shows the DEFINST forms for the object Window1.

29←(← ($ Window1) FileOut)

17-9LOOPS REFERENCE MANUAL, MEDLEY RELEASE

17.1 READING OBJECTS

(DEFINST Window (Window1 (
NEW0.1Y%:.;h.eN6 . 495))

(left 288)
(bottom 242)
(width 331)
(height 149))

#,($& Window (NEW0.1Y%:.;h.eN6 . 495))

(← self PP file) [Method of Object]

Purpose: Prettyprints an object to a file or display stream.

Behavior: Temporarily sets the ObjectDontPPFlag to prevent infinite loops in the print.
Prettyprints the output with special fonts and tab positions and prints the
DEFINST form of the object. If file is not given, look first to the PPDefault,
which is by default the Common Lisp Executive Window, and then to the
TTYDisplayStream.

Arguments: self A LOOPS object.

file Stream to print to.

Returns: Name of object.

Categories: Object

Specializations: Class

Example: This example shows the results of sending the instance Window1 the
message PP.

30←(← ($ Window1) PP)

(DEFINST Window (Window1 (
NEW0.1Y%:.;h.eN6 . 495))

(left 288)
(bottom 242)
(width 331)
(height 149))

#,($& Window (NEW0.1Y%:.;h.eN6 . 495))

(← self PP! file) [Method of Object]

Purpose: Prints the information about the instance from all levels of inheritance.

Behavior: Prints a listing of the following items along with any applicable documentation,
values and arguments for the each item: Instance Variables, Class
Variables, and Methods.

If file is not given, look first to the PPDefault, which is by default the Common
Lisp Executive Window, and then to the TTYDisplayStream

Arguments: self A LOOPS object.

file Stream to print to.

Returns: self

Categories: Object

Specializations: Class

Example: This example shows a partial output of a call to PP! on the instance Window1.
Dots indicate additional information.

17-10 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

17.1 READING OBJECTS

31←(← ($ Window1) PP!)

#,($ Window1)
Instance Variables
 left NIL doc left position of window
 bottom NIL doc
bottom position of window

 width 12 doc
outer width of window, including border

 height 12 doc
outer height of window, including border
.
.
.

Class Variables
 RightButtonItems ((Close (Close (Close --)
)) Snap Paint --) doc
Items to be done if Right button is selected
.
.
.

Methods
 AfterMove Window.AfterMove doc NIL
args NIL
.
.
.
#,($& Window (NEW0.1Y%:.;h.eN6 . 495))

(← self PPV! file) [Method of Object]

Purpose: Prints the variable information about the instance from all levels of inheritance.

Behavior: Similar to (← self PP! file) except that only the information about the Class
Variables and Instance Variables is printed.

Arguments: self A LOOPS object.

file Stream to print to.

Returns: self

Categories: Object

Specializations: Class

Example: This example shows a partial output of a call to PPV! on the instance
LCDInstance. Dots indicate additional information.

31←(← ($ Window1) PPV!)

#,($ Window1)
Instance Variables
 left NIL doc left position of window
 bottom NIL doc
bottom position of window

 width 12 doc
outer width of window, including border

 height 12 doc
outer height of window, including border
.
.

17-11LOOPS REFERENCE MANUAL, MEDLEY RELEASE

17.1 READING OBJECTS

.

Class Variables
 RightButtonItems ((Close (Close (Close --)
)) Snap Paint --) doc
Items to be done if Right button is selected
.
.
.
#,($& Window (NEW0.1Y%:.;h.eN6 . 495))

17.5 PRINTING ACTIVE VALUES
17.5 PRINTING ACTIVE VALUES

17.5 Printing Active Values

This section describes methods and variables used for printing active values.
For more information on active values, see Chapter 8, Active Values.

(← self AVPrintSource) [Method of ActiveValue]

Purpose: Constructs a form used by DEFPRINT to write active values to files.

Behavior: An annotatedValue determines how it prints out by sending the
AVPrintSource message to its wrapped ActiveValue.

The default method in ActiveValue returns a list of the form:

("#,"$AV className avNames(ivName value propName value ...)(ivName ...) ...)

which causes the annotatedValue to print out as

#,($AV className avNames(ivName value propName value ...)(ivName ...) ...)

Arguments: self An ActiveValue

Returns: A form suitable for use by the Interlisp-D function DEFPRINT. Result should
be a pair of the form (item1 . item2); item1 will be printed using PRIN1, and
item2 will be printed using PRIN2 (see the Lisp Release Notes and the
Interlisp-D Reference Manual description of DEFPRINT).

In the return list,

className Name of the class of the ActiveValue.

avNames List of names of self; the last element being the unique identifier
(UID) of self

(ivName value propName value ...)
List that describes the state of the instance variables of the
ActiveValue.

Categories: Instances of the ActiveValue class

Example: The following command gets a pointer to an active value:

32←(GetValueOnly ($ Window1) ’window)
#,($AV LispWindowAV ((N^W0.1Y%:.;h.Lh9 . 503)) (localState
{WINDOW}#374,55554))

17-12 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

17.1 READING OBJECTS

The following shows the result of an AVPrintSource message. (This is
typically passed on to DEFPRINT within the internals of the system.)

33←(←(GetValueOnly ($ Window1) ’window) AVPrintSource)
("#," $AV LispWindowAV ((N^W0.1Y%:.;h.Lh9 . 503))
(localState {WINDOW}#374,55554))

DefaultActiveValueClassName (Variable)

Purpose: The class ExplicitFnActiveValue is the default class for active values. This
class mimics the previous style of LOOPS active values (see Appendix A,
Previous Active Values). For specialized applications, you may want a
different class of active value to use for this purpose.

17.6 PRINTING METHODS
17.6 PRINTING METHODS

17.6 Printing Methods

This section describes the following methods used to print methods:

Name Type Description

PPDefault Variable Identifies where the output for prettyprinting is sent.

PPMethod Method Prettyprints the method for a class.

MethodDoc Method Prints the documentation for the method for a class.

MethodSummary Method Prints a summary of the methods attached to a class.

PPDefault [Variable]

Purpose: Bound to a window used as the default output stream for the methods
PPMethod, MethodDoc, and MethodSummary. Initially set to the Common
Lisp Executive Window.

(← self PPMethod selector) [Method of Class]

Purpose: Prettyprints the method specified by selector for the class self.

Behavior: If selector is not specified, this opens a menu of the methods attached to the
class self. The method, as chosen either from the menu or passed to the
method in selector, is prettyprinted to the primary output stream. If self is not a
class, a break occurs with the error,"(← ($ self) PPMethod selector) not
understood."

The output is sent to the value of the variable PPDefault, which is by default
the Common Lisp Executive Window.

Arguments: self A LOOPS object.

selector Method to print.

Returns: Class.Selector

Categories: Classes

17-13LOOPS REFERENCE MANUAL, MEDLEY RELEASE

17.1 READING OBJECTS

Example: This example shows the results of prettyprinting the method Shape on the
class Window using PPMethod.

35←(← ($ Window) PPMethod ’Shape)

(Method ((Window Shape) self newRegion noUpdateFlg) (* ...)
 "Shapes outside of region to specified shape."
 (_ self Shape1 [OR newRegion (GETREGION NIL NIL
(WINDOWPROP (@ window) ’REGION]
 noUpdateFlg))

with (Window Shape) bold.

(← self MethodDoc selector) [Method of Class]

Purpose: Prints the documentation for the method specified by selector for the class
self.

Behavior: If selector is not specified, this opens a menu of all methods attached to the
class from all levels of inheritance. When you choose an item, the
documentation for that method, the arguments needed, and the class defining
the method are prettyprinted to the PPDefault window, which is by default the
Common Lisp Executive Window. You can continue to make selections from
the menu or press a mouse button outside the menu to stop.

Arguments: self A pointer to a class.

selector Method to be printed.

Returns: NIL

Categories: Class

Example: This example shows the output from calling MethodDoc for the class
LoopsIcon. Three methods were chosen from the menu in succession:
AfterMove, BrowseObject, and Clear. BrowseObject is attached to
Window so the class where it is defined is not explicitly listed. AfterMove and
Clear are defined, respectively, on the classes NonRectangularWindow and
Window.

36←(← ($ LoopsIcon) MethodDoc)

class: LoopsIcon (from NonRectangularWindow)
 selector: AfterMove
args: NIL
doc: The window has been moved. Update the
left and bottom.

class: LoopsIcon selector:
BrowseObject
args: NIL
doc: Put up a browser starting on selected
object.

class: LoopsIcon (from Window) selector:
Clear
args: NIL
doc: Calls CLEARW on window.

(← self MethodSummary dontPrintFlg printFile) [Method of Class]

Purpose: Prints a summary of the methods attached to the class self.

17-14 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

17.1 READING OBJECTS

Behavior: Prettyprints the documentation from the classes directly attached to the class
self. Printing is done to the file printFile. If printFile is not specified,
MethodSummary prints to the PPDefault window, which is by default the
Common Lisp Executive Window. If the ObjectDontPPFlg is T, the output is
not displayed in pretty format.

Arguments: self A pointer to a class.

dontPrintFlg
If non-NIL, does not prettyprint.

printFile File to print to.

Returns: NIL

Categories: Class

Example: This example shows the results of sending the message MethodSummary to
the class IconWindow. Only information about the methods defined at the
class IconWindow are printed.

37←(← ($ IconWindow) MethodSummary)
((GetMenuItems IconWindow.GetMenuItems args
 (itemType)
 doc
 NIL))

17.7 UNIQUE IDENTIFIERS (UIDS)
17.7 UNIQUE IDENTIFIERS (UIDS)

17.7 Unique Identifiers (UIDs)

Unique Identifiers (UIDs) are used to store and retrieve objects. In general,
objects do not have UIDs, with the following exceptions:

• When an object is named.

• When an instance of an indexed obect is created, it gets a UID.

• When an object is printed.

The following table shows the functions in this section.

Name Type Description

HasUID? Function Returns the UID for a specified object.

UID Function Returns the UID for a specified object and creates a UID for the
object if one does not already exist.

GetObjFromUID Function Retrieves the LOOPS object records.

MapObjectUID Function Applies a function to every LOOPS object that has a UID.

(HasUID? obj) [Function]

Purpose: Returns the UID for obj.

Behavior: If the obj has a UID, the function returns the UID. If obj is an object but has no
UID, it returns NIL. If obj is not an object, it generates an error with the
message, "ARG NOT OBJECT."

17-15LOOPS REFERENCE MANUAL, MEDLEY RELEASE

17.1 READING OBJECTS

Arguments: obj A LOOPS object.

Returns: The UID for obj.

Example: Line 39 shows the results of calling HasUID? for an instance Window1, line
40 for a class Window, and line 41 for a new instance of Window.

39←(HasUID? ($ Window1))
(NEW0.1Y%:.;h.eN6 . 495)

40←(HasUID? ($ Window))
(NEW0.1Y%:.;h.eN6 . 255)

41←(HasUID? (← ($ Window) New))
NIL

(UID obj) [Function]

Purpose: Returns UID for obj. If object does not have UID, this function creates a UID
for the obj.

Behavior: If the object has a UID, this function returns the UID; otherwise it creates a
UID for the object.

Arguments: obj A LOOPS object.

Returns: The UID for obj.

Example: Line 45 shows the results of calling UID with the class Object. Line 46 shows
the results of calling UID with an instance which does not have a UID.

45←(UID ($ Object))
(NEW0.1Y%:.;h.eN6 . 7)

46←(UID (← ($ Window) New))
(NEW0.1Y%:.;h.eN6 . 519)

(GetObjFromUID uid) [Function]

Purpose: Retrieves the LOOPS object records of object whose UID is uid.

Behavior: Returns the object associated with a UID, or returns NIL if uid is not a valid
UID.

Arguments: uid The internal identifier.

Returns: Pointer to the object.

Example: In this example, Window1UID was previously set to the UID for the instance
Window1. GetObjFromUID retrieves the record for Window1 using
Window1UID and prettyprints the DEFINST form for Window1 to the
TTYDisplayStream.

42←(SETQ Window1UID (UID ($ Window1]
(NEW0.1Y%:.;h.eN6 . 495)

43←GetObjFromUID Window1UID)
#,($& Window (NEW0.1Y%:.;h.eN6 . 495)

(MapObjectUID fn) [Function]

Purpose: Applies the function fn to every LOOPS object.

Behavior: Maps the function fn to every UID object that has a UID.

17-16 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

17.1 READING OBJECTS

Arguments: fn Function to be applied.

Returns: Used as a side effect only.

Example: This example shows a partial listing of the results of applying the user-defined
function PPUID (see line 47) to every LOOPS object using MapObjectUID.
PPUID prints the UID of obj to the TTY display stream. A complete output of
this call to MapObjectUID lists the UID for every LOOPS object currently
defined in the system.

45←(DEFINEQ (PPUID (LAMBDA (OBJ) (PRIN2
(UID OBJ)))))
(PPUID)

46←PP PPUID
FNS definition for PPUID:

(PPUID
 [LAMBDA (OBJ) **COMMENT**
 (PRIN2 (UID OBJ])

47←(MapObjectUID ’PPUID)
(NEW0.1Y%:.;h.Lh9 . 526)(NEW0.1Y%:.;h.Lh9 . 527)
(NEW0.1Y%:.;h.Lh9 . 524)(NEW0.1Y%:.;h.Lh9 . 525)
(NEW0.1Y%:.;h.Lh9 . 522)(NEW0.1Y%:.;h.Lh9 . 523)
.
.
.
#<Hash-Table @ 66,72106>

17-17LOOPS REFERENCE MANUAL, MEDLEY RELEASE

17.1 READING OBJECTS

[This page intentionally left blank]

