
15-1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

15. PERFORMANCE ISSUES

Three main areas in LOOPS can affect performance:

• Garbage collection

• Instance variable access

• Method lookup

This chapter describes the impact of these areas on LOOPS. Also included is
a section on cache clearing.

15.1 Garbage Collection

The Interlisp-D garbage collector maintains reference counts of each piece of
data in the system. (Refer to the Lisp Release Notes and the Interlisp-D
Reference Manual for information on reference counts.) There is potential for
noticeable performance degradation if many items have reference counts
greater than one. Object-oriented systems in general, and LOOPS in
particular, can easily create objects that have multiple references.

The LOOPS system uses a number of methods to avoid creating items with
large reference counts. Classes, for example, can easily have large reference
counts since each instance of the class points to the class. Because of this,
LOOPS does not maintain reference counts of classes. Performance is
enhanced, but classes in LOOPS are not garbage collected. This should not
present a problem as classes are not often destroyed.

Unique Identifiers (UIDs) also have multiple references: from the instance
they name and from the table used by the LOOPS system to associate UIDs
with instances. LOOPS avoids this problem by storing copies of the instance
UID in the instance. This complicates testing for equality of UIDs, which is a
rare event, but removes a potential garbage collection problem.

These and other implementation details substantially reduce the impact of
LOOPS on the Interlisp-D garbage collector. In a typical running system,
LOOPS objects accounted for less than 16% of the data items with reference
count greater than one.

15.2 INSTANCE VARIABLE ACCESS
15.2 INSTANCE VARIABLE ACCESS

15.2 Instance Variable Access

LOOPS uses macros to speed the instance variable access from compiled
code. Instance variable property access is compiled differently from instance
variable value access, and various caching schemes are used to speed up
repeated access to a given slot.

15-2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

15.1 GARBAGE COLLECTION

LOOPS uses two layers of caching to speed up instance variable access:

• Local cache.

Instance variable access from compiled code uses a local cache. This
cache remembers the class of self and the instance variable index the last
time this piece of code was executed. If the class of self on the next pass
through the code matches the stored value, then the stored instance
variable index is used. In this case, instance variable access is very fast.

• Global cache.

A global cache is used by the instance variable access functions when the
local cache fails. This global cache is a fixed size table of instance variable
pairs. Looking in this cache for a given class is typically faster than
computing the instance variable index.

You should be aware that instance variable access is optimized to be faster
than accessing the properties of instance variables. Also, be aware that when
instances are first created, the data for an instance variable may need to be
found by performing a lookup through the class hierarchy. If the lookup goes
through several classes, this can be slow. By guaranteeing that the instance
variable data is stored in the instance, this lookup delay can be avoided.

The following macros are used to access instance variables. They are
mentioned here to point out that calls to GetValue and PutValue could result
in the compilation of any one of several different functions.

(GetValue self varName &OPTIONAL propName) [Macro]

Purpose/Behavior: Compiles to a call to one of the functions Cached-GetIVValue, Cached-
GetIVProp, GetIVValue, or GetIVProp. The particular function depends on
details of the arguments to GetValue.

Arguments: self A class or an instance.

varName Instance or class variable name.

propName Property name.

Returns: Used for side effect only.

(PutValue self varName value &OPTIONAL propName) [Macro]

Purpose/Behavior: Compiles to a call to one of the functions Cached-PutIVValue, Cached-
PutIVProp, PutIVValue, or PutIVProp. The particular function depends on
details of the arguments to PutValue.

Arguments: self A class or an instance.

varName Instance or class variable name.

value The new value for varName or propName.

propName Property name.

Returns: Used for side effect only.
15.3 METHOD LOOKUP

15.3 METHOD LOOKUP

15-3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

15.1 GARBAGE COLLECTION

15.3 Method Lookup

LOOPS uses two layers of caching to speed the method lookup:

• Local cache

Method lookup from compiled code uses a local cache when the selector
can be determined at compile time. This cache remembers the class of self
and the computed method the last time this message was sent. If the class
of self on the next pass through the code matches the stored value, then
the method is used. In this case, method lookup is very fast.

• Global cache

A global cache is used by the method lookup functions when the local
cache fails. This global cache is a fixed size table of class / selector /
method triples. Looking in this cache for a given class and selector is
typically faster than searching the class hierarchy for the appropriate
method.

15.4 CACHE CLEARING
15.4 CACHE CLEARING

15.4 Cache Clearing

Code that directly manipulates the structure of LOOPS objects sometimes
needs to invalidate the caches used for instance variable access and message
sending.

The following functions can be used to clear these caches if you suspect that
they might be invalid.

(ClearAllCaches) [Function]

Purpose/Behavior: Clears all LOOPS and Interlisp-D runtime caches. This includes local and
global instance variable access caches, local and global method lookup
caches, and the system CLISP translations hash array.

Returns: NIL

15-4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

15.1 GARBAGE COLLECTION

[This page intentionally left blank]

