
14-1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

14. FILE MANAGER

LOOPS data structures are fully integrated into Medley. This includes the
definition of new File Manager commands so that any LOOPS object or
method can be saved on files and loaded into the environment in exactly the
same way that normal Medley data types are saved and loaded.

In addition, the LOOPS file browser provides a menu-driven interface to the
File Manager. When using a LOOPS file browser, newly created objects are
associated with files automatically. If you are not familiar with LOOPS file
browsers see Chapter 10, Browsers.

This chapter describes the functions, methods, and variables used to load
and store files containing LOOPS objects. It describes the File Manager
commands related to LOOPS objects. It also describes how to add objects to
files, delete them from files, and move them from file to file. These are
primarily of interest when customizing either the File Manager or LOOPS file
browser.

14.1 Manipulating Files

LOOPS takes advantage of the ability to create user-defined File Manager
commands to fully integrate LOOPS into the Medley environment. As a result,
the same steps used to manipulate files containing Medley data structures are
used to manipulate files containing LOOPS data structures. Furthermore,
both LOOPS and Medley data structures can be saved together in the same
file. This section contains a brief review of the three basic functions used to
manipulate files. For a more detailed description which includes additional
functions, see the Lisp Release Notes and the Interlisp-D Reference Manual.

In addition, there is a LOOPS file browser which provides a convenient way of
loading files and guaranteeing that newly created classes and methods are
associated with files during the development of LOOPS programs. The
LOOPS file browser is different from the Lisp Library Module FILEBROWSER.
Files can be loaded and put into new or existing file browsers by a series of
menu selections.

You can manipulate files with these basic steps:

• Assign data structures to a specific file using FILES?.

• Write data structures to a file using MAKEFILE.

• Enter data structures stored in a file into the environment using LOAD.

The following example shows these steps.

14-2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

14.1 MANIPULATING FILES

30←(FILES?)
PIPEANDTANK,LOOPSPRINT,LOOPSUTILITY...to be dumped.
 plus the instances: FFAV1,Datum1,TestW
 plus the class definitions: Datum
 want to say where the above go ? Yes
(instances)
FFAV1 File name: LOOPSFILE
create new file LOOPSFILE ? Yes
Datum1 File name: LOOPSFILE
TestW File name: LOOPSFILE
(class definitions)
Datum File name: LOOPSFILE
NIL

31←(MAKEFILE ’LOOPSFILE)
Copyright owner for file LOOPSFILE: XEROX
{DSK}<LISPFILES>LOOPSFILE.;1

32←(LOAD ’LOOPSFILE)
{DSK}<LISPFILES>LOOPSFILE.;1
FILE CREATED 7-Jan-87 16:25:24
LOOPSFILECOMS
{DSK}<LISPFILES>LOOPSFILE.;1

See the Lisp Release Notes and the Interlisp-D Reference Manual for more
information on FILES? and MAKEFILE. See the following section for details
on LOAD.

14.2 LOADING FILES
14.2 LOADING FILES

14.2 Loading Files

The following table shows the functions and commands described in this
section.

Name Type Description

LOAD Function Loads Medley symbolic files which includes LOOPS objects and
methods.

LOADFNS Function Allows selective loading from Medley symbolic files.

UNDO Prog. Undoes previous entries into the Medley Executive which are
Asst. stored on a history list, including calls to LOAD.

(LOAD FILE LDFLG) [Function]

Purpose/Behavior: Loads Medley symbolic files which includes all LOOPS objects and methods;
see the Lisp Release Notes and the Interlisp-D Reference Manual.

Arguments: FILE File to be loaded.

LDFLG Alters the effect of loading a file.

• If it is set to PROP, the definitions of functions, including
METHOD functions, are stored on the property EXPR of the
function name. Thus, any existing definitions are not
overwritten.

14-3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

14.1 MANIPULATING FILES

• If it is set to ALLPROP, the values of variables are also saved
on property lists.

Returns: Full file name.

(LOADFNS FNS FILE) [Function]

Purpose/Behavior: Allows selective loading from Medley symbolic files including LOOPS files .
The most likely use for this facility is to load the source code for method
functions when the compiled versions are already loaded. The methods must
be specified by their explicit function names in the form ClassName.Selector,
for example,

(LOADFNS ’(SomeClass.AMethod OtherClass.AMethod) ’{DSK}<LISPFILES>SOMEFILE ’PROP)

It is not recommended that LOOPS objects be selectively loaded by using
VARS (see the Lisp Release Notes and the Interlisp-D Reference Manual),
because it is not possible to guarantee that all necessary related objects, such
as superclasses or methods of a class, are also loaded.

Arguments: FNS Selected functions to be loaded.

FILE File from which functions specified in FNS are to be loaded.

Returns: List of functions that have been loaded

UNDO [Program Assistant Command]

Purpose/Behavior: LOOPS saves enough information about objects that are created as a result of
loading a file to allow the call to LOAD to be undone. The objects are
destroyed and any preexisting objects that were deleted by the load are
restored. See the Lisp Release Notes and the Interlisp-D Reference Manual.

14.3 LOOPS FILE PACKAGE COMMANDS
14.3 LOOPS FILE PACKAGE COMMANDS

14.3 LOOPS File Manager Commands

Four File Manager types are defined to allow LOOPS objects to be stored in
Medley files:
• CLASSES
• METHODS
• INSTANCES
• THESE-INSTANCES
These types and the functions and methods used by LOOPS to process these
types are described in this section.

Note: The order of items in the filecoms is important. In particular, class
definitions must appear in the file before any methods on that class or
any instances of that class. Similarly, methods on a class must
appear before any instances of that class.

Name Type Description

CLASSES File Mgr Writes the appropriate DEFCLASSES and DEFCLASS
Command expressions for the named classes.

DEFCLASSES NLambda Creates a series of empty classes in preparation for reading
NoSpread their definitions via DEFCLASS.

14-4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

14.1 MANIPULATING FILES

DEFCLASS NLambda Takes a source specification of a class from a file and causes
NoSpread the appropriate internal representation to be constructed.

METHODS File Mgr Writes the appropriate METH and DEFINEQ expressions for
Command each method object and its associated function.

METH NLambda Creates a method object and attaches it to the appropriate
NoSpread class.

INSTANCES File Mgr Writes the appropriate DEFINST expressions for each instance
Command in the list.

THESE-INSTANCES File Mgr Appears as a sublist in a filecoms.
Command

DEFINSTANCES NLambda Creates empty structures for each instance name in a list.
NoSpread

DEFINST NLambda Creates internal representations for source specifications of
NoSpread an instance.

FileIn Method Creates internal representations for source specifications of an
instance.

(CLASSES ClassName1...ClassNameN) [File Manager Command]

Purpose/Behavior: Appears as a sublist in a filecoms. The keyword CLASSES tells the File
Manager to use the appropriate DEFCLASSES and DEFCLASS expressions
for the named classes when writing to a file.

Arguments: ClassName Accepts any symbol, but only gives meaningful result when you
use DEFCLASS to actually create the class.

Example: (CLASSES Myclass)

(DEFCLASSES CLASSES) [NLambda NoSpread Function]

Purpose/Behavior: Used in a file to create a series of empty classes in preparation for reading in
their definitions via DEFCLASS. This allows the classes to be read in any
order. Otherwise, superclasses would have to be read in before their
subclasses.

Arguments: CLASSES Accepts any symbol, but only gives meaningful result when you
use DEFCLASS to actually create the class.

Returns: NIL

Example: The command

(DEFCLASSES MyClass)

returns NIL.

(DEFCLASS FORM) [NLambda NoSpread Function]

Purpose/Behavior: Takes a source specification of a class, such as produced by the method
MakeFileSource, from a file and causes the appropriate internal
representation to be constructed.

Arguments: FORM The source specification of a class.

Returns: NIL

14-5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

14.1 MANIPULATING FILES

Example: (DEFCLASS MyClass
(MetaClass Class doc (* Something for my project)
 Edited: (* nbm "18-Oct-87 13:20"))
(Supers Object)
(InstanceVariables (Iv1 (22) doc

(* Initial value for my instances)]

(METHODS ClassName.Message1...ClassName.MessageN) [File Manager Command]

Purpose/Behavior: Appears as a sublist in a filecoms. The keyword METHODS tells the File
Manager to use the appropriate METH and DEFINEQ expressions for each
method object and its associated function.

Arguments: ClassName.Message
The source specification of a class.

Example: (METHODS MyClass.Method1)

(METH methDescr) [NLambda NoSpread Function]

Purpose/Behavior: Creates a method object and attaches it to the appropriate class.

Arguments: methDescr Method object to create.

Returns: NIL

Example: (METH MyClass MyClass.Method1 NIL
(category (Datum)))

(INSTANCES InstName1...InstNameN) [File Manager Command]

Purpose/Behavior: Appears as a sublist in a filecoms. The keyword INSTANCES tells the File
Manager to use the appropriate DEFINST expressions for each instance in the
list and also for any other instances that are referenced inside any instances in
the list. This assures that there are no references to nonexistent instances
when read back in. The method SaveInstance? can be specialized to prevent
instances from being saved in more than one file when they are referred to by
instances in different files.

Example: (INSTANCES TestW)

(THESE-INSTANCES InstName1...InstNameN) [File Manager Command]

Purpose/Behavior: Appears as a sublist in a filecoms. The keyword THESE-INSTANCES tells
the File Manager to use the appropriate DEFINST expressions for each
instance in the list. Unlike the INSTANCES File Manager command, THESE-
INSTANCES does not recursively dump instances that are pointed by
InstName1...InstNameN.

14-6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

14.1 MANIPULATING FILES

(DEFINSTANCES Instances) [NLambda NoSpread Function]

Purpose/Behavior: Takes a list of instance names and creates empty structures for them in
preparation for reading in their structures from a file.

Arguments: Instances Accepts any symbol but result is useless unless you use
DEFINST to actually create the Instance.

Returns: NIL

Example: (DEFINSTANCES TestW)

(DEFINST DEFINST% FORM) [NLambda NoSpread Function]

Purpose/Behavior: Takes a source specification of an instance and causes the appropriate
internal representation to be created. It does this by sending the message
FileIn to the instance’s class. It creates the class if it does not exist.

Arguments: DEFINST% FORM
The source specification of an instance.

Returns: NIL

Example: [DEFINST Window
(TestW (JEW0.0X:.H<4.NZ9 . 532))
(left 179)
(bottom 446)
(width 12)
(height 12)]

(← self FileIn fileSource) [Method of Class]

Purpose/Behavior: Takes a source specification for an instance as it appears in a file and causes
the appropriate internal representation to be constructed.

Arguments: self Class of the instance to be created.

fileSource Loadable form of an instance as stored in a file.

Returns: self

Categories: Class
14.4 SAVING LOOPS OBJECTS ON FILES

14.4 SAVING LOOPS OBJECTS ON FILES

14.4 Saving LOOPS Objects on Files

Adding LOOPS classes, methods and instances to files can be done in the
same way that functions and variables are saved in Medley. In addition, the
LOOPS browser allows newly created objects to be automatically associated
with files. LOOPS also provides the means for moving objects from file to file.

Whenever a class, method, or named instance is created or edited, it is
marked as changed. This allows the File Manager to prompt for a file in which
to store new objects and see to it that changed objects are written out when
MAKEFILE is called.

14-7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

14.1 MANIPULATING FILES

The following table shows the items in this section.

Name Type Description

FILES? Function LOOPS adds a prompt for classes, methods and instances along
with the normal Medley types.

ObjectModified Method Notifies the File Manager that an object has been changed or
created.

OnFile Method Determines if a class is in FILELST.

SaveInstance Method Causes newly created instances to be noticed by the File
Manager.

SaveInstance? Method Determines if an instance needs to be added to the list of
instances to be saved.

DelFromFile Method Deletes an object from any file in FILELST in which it appears.

MoveToFile Method Class.MoveToFile moves a class and its methods from one file
to another. Object.MoveToFile moves an instance from one file
to another.

MoveToFile! Method Moves a class, all of its methods, and all of its subclasses and
their methods from one file to another.

DontSave IVProperty Controls what parts of an instance are saved in a file.

OldInstance Method Sends a message to an object after it is loaded from a file.

(FILES?) [Function]

Purpose/Behavior: The File Manager types have been extended so that, when a call is made to
FILES?, you are prompted to add classes, methods and instances to files
along with the normal Medley. For an example of FILES?, see Section 14.1,
"Manipulating Files."

After a class is associated with a file, any methods that are added to it are
automatically added to that file as well. Thus, it makes sense to put classes in
files as soon as possible. This could be done by repeated calls to FILES?, but
the LOOPS file browser allows classes to be automatically added to files as
they are created. Any class that is created by adding a root to a file browser
or by specializing a class in a file browser is added to that brower’s file. If
more than one file is associated with the browser, a menu appears to prompt
you to specify a file for the new class. The LOOPS browser also can be used
to create a new file and associate it with a file browser. Thus, there is never
any need to wait until the end of a session to put classes and methods in files.

You can also save instances on files. Of course, only those instances which
should be present after a file is first loaded should be saved. Instances which
are constructed "on the fly" as a consequence of running a LOOPS program
should not be saved. Only named instances are marked as changed so many
such temporary instances may never be noticed. However, if named instances
which should not be saved are created, then you are prompted to put them
into files after a call to FILES? and must respond by typing a right square
bracket (]) to each one. Alternatively, it is possible to specialize the method
ObjectModified so that it does not call MARKASCHANGED. Then any
instances of classes which have or inherit the specialized method are not
noticed by the File Manager regardless of whether or not they are named.

(← self ObjectModified name) [Method of Object]

Purpose: Notifies the File Manager that an object has been changed or newly created.

14-8 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

14.1 MANIPULATING FILES

Behavior: Uses the File Manager command MARKASCHANGED. It does nothing if
name is not given, thus unnamed objects are never marked.

Arguments: self A LOOPS object.

name Name of object specified in self.

reason Reason is MARKEDASCHANGED (see the Interlisp Reference
Manual for information on MARKEDASCHANGED).

Returns: self

Categories: Object

Specializations: Method

(← self OnFile file) [Method of Class]

Purpose: Determines if an object is in a file in FILELST.

Behavior: Calls WHEREIS (see the Lisp Release Notes and the Interlisp-D Reference
Manual).

• If file is not given, it returns the name of the file in FILELST that the object
is contained in or NIL if self is not in a file.

• If file is given, it must still be a member of FILELST, and T or NIL is
returned.

Arguments: self A LOOPS object.

file The file to be searched.

Returns: Value depends on the arguments; see Behavior.

Categories: Class

(← self SaveInstance name reason) [Method of Object]

Purpose: Causes newly created instances to be noticed by the File Manager.

Behavior: Sends self the message ObjectModified.

Arguments: self A LOOPS object.

name Name of object specified in self.

reason Reason is MARKEDASCHANGED (see the Interlisp Reference
Manual for information on MARKEDASCHANGED).

Returns: self

Categories: Object

(← self SaveInstance? file outInstances) [Method of Object]

Purpose: Determines whether an instance needs to be added to the list of instances to
be saved in file.

Behavior: Checks to see if the current instance is a member of outInstances. It is used
by the LOOPS File Manager command INSTANCES to guarantee that the
same instance does not appear more than once in a given file.

This method must be specialized to be used; it cannot be used directly by the
user.

14-9LOOPS REFERENCE MANUAL, MEDLEY RELEASE

14.1 MANIPULATING FILES

Arguments: self A LOOPS object.

file The file to be searched.

outInstances
A list of LOOPS names. See Behavior.

Returns: T if the instance should be saved on the file; NIL if it should not be saved.

Categories: Object

(← self DelFromFile) [Method of Object]

Purpose: Deletes an object from any file in FILELST in which it appears.

Behavior: Searches through the filecoms of all files in FILELST and deletes the object
everywhere it appears.

Arguments: self A LOOPS object.

Returns: Used for side effect only.

Categories: Object

Specializations: Class, Method

(← self MoveToFile file) [Method of Class]

Purpose: Moves an object from one file to another. If an object is a class, it, and all its
methods, move.

Behavior: Adds the object to the filecoms of file so that the object will be saved on that
file. If file is NIL, it prompts for a file form FILELST via a menu.

Arguments: self A class or method.

file File to which object is moving.

Returns: NIL

Categories: Object

Specializes: Object

(← self MoveToFile! file fromFiles) [Method of Class]

Purpose: Moves a class, all of its methods, and all of its subclasses and their methods
from one file to another.

Behavior: Similar to MoveToFile.

Arguments: self A LOOPS class.
file File to which object is moving.
fromFiles A list of files from which classes may be moved.

Returns: NIL

Categories: Class

DontSave [IV Property Name]

Purpose/Behavior: Controls what parts of an instance are saved in a file. Its value is a list of
property names of the instance variable which should not be written out when

14-10 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

14.1 MANIPULATING FILES

the instance is dumped. If Value is in the list, the instance variable’s value is
not saved. If the property is Any, nothing is saved except the instance
variable name. (Must be added by the user.)

(←self OldInstance name arg1 arg2 arg3 arg4 arg5) [Method of Object]

Purpose: Sends a message to an object after it is loaded from a file. This method can
be specialized by applications that need to perform some operation on every
object when it is created.

Behavior: If name is non-NIL, the message SetName is sent to self.

Instance variables with an :initForm property are filled. See the discussion of
:initForm in Chapter 2, Instances.

Sends the message SaveInstance to self with the arguments name, arg1, and
arg2.

Arguments: self Evaluates to a class.
name LOOPS name of the class or instance.
arg1...arg5 Optional arguments referenced by user-written specialization

code.

Categories: Object

Specializations: IndexedObject
14.5 STORING FILES

14.5 STORING FILES

14.5 Storing Files

This section describes the functions and methods used by LOOPS and
Medley to store files.

Name Type Description

MAKEFILE Function Writes files that contain Medley data types which include LOOPS
objects and methods.

PrettyPrintClass Function Prints classes in a file in a form that can be read back in.

PrettyPrintInstance Function Prints instances in a file in a form that can be read back in.

MakeFileSource Method Constructs the representation of an object that is appropriate for
printing in a file.

FileOut Method Controls the printing of a LOOPS object in a file.

(MAKEFILE FILE) [Function]

 Purpose/Behavior: When all LOOPS objects are associated with their files, the files are written by
a call to MAKEFILE or MAKEFILES. This is identical to the standard use of
MAKEFILE in Medley. See the Lisp Release Notes and the Interlisp-D
Reference Manual.

Arguments: FILE Name of file to be written out.

14-11LOOPS REFERENCE MANUAL, MEDLEY RELEASE

14.1 MANIPULATING FILES

Returns: Full file name

(PrettyPrintClass className file) [Function]

Purpose/Behavior: Used by the File Manager command CLASSES to print out classes in a file in
a form that can be read back in. It checks to make sure the class exists and
then sends it the message FileOut. It is also used by the method PP to print
classes to a display stream.

Arguments: className The name of the class to be printed on the file file.

file The file on which the class className is to be printed.

Returns: Pointer to class in the form #,($ className)

(PrettyPrintInstance instanceName file) [Function]

Purpose: Used by the File Manager command INSTANCES to print instances in a file in
a form which can be read back in. Sends the message FileOut to instance.

Arguments: instanceName
Name of a LOOPS instance.

file The file on which the instance instancename is to be printed.

Returns: NIL

(← self MakeFileSource file) [Method of Object]

Purpose: Constructs the representation of an object that is appropriate for printing in a
file.

Behavior: Uses the relevant access functions to obtain the parts of the object and then
stores them into a list structure.

Arguments: self A LOOPS object.

file The file on which self is to be printed.

Returns: Loadable form of a LOOPS object.

Categories: Object

Specializations: Class, Method

Example: 63←(← ($ TestW) MakeFileSource)
(DEFINST Window
(TestW (NEW0.1Y%:.;h.eN6 . 501)))

(← self FileOut file) [Method of Object]

Purpose: Controls the printing of a LOOPS object in a file.

Behavior: Gets the appropriate source representation by sending the object the message
MakeFileSource and prettyprints the result.

Arguments: self A LOOPS object.

file The file on which self is to be printed on if T prints to the Lisp
Executive window.

Returns: self

Categories: Object

14-12 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

14.1 MANIPULATING FILES

Specializations: Class, Method

Example:

62_(_ ($ TestW) FileOut T)
(DEFINST Window (TestW (NEW0.1Y%:.;h.eN6 . 501)))
#,($& TestW (NEW0.1Y%:.;h.eN6 . 501))

14.6 COMPILING FILES
14.6 COMPILING FILES

14.6 Compiling Files

LOOPS uses the new XAIE compiler and its macrolet facilities. When doing
CLEANUP on LOOPS files your *DEFAULT-CLEANUP-COMPILER* should
be set to ’CL:COMPILE-FILE. More information on this cleanup flag and the
new compiler are available in the Lisp Release Notes.

14-13LOOPS REFERENCE MANUAL, MEDLEY RELEASE

14.1 MANIPULATING FILES

[This page intentionally left blank]

