
11-1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

11. ERRORS AND BREAKS

LOOPS provides an interface to the Medley error system. This allows
appropriate detection and recovery from errors that are LOOPS errors rather
than Lisp errors. The full power of the Medley error system is available to help
you determine and repair the causes of errors. In addition, under certain
circumstances, LOOPS will attempt to repair an error and continue if you
agree.

This chapter describes the functions and methods LOOPS uses to handle
error conditions. It also describes the error messages generated by LOOPS.

11.1 Error Handling Functions and Methods

LOOPS provides several ways to trap and process many common errors. A
default processing is available for most errors, and this processing can be
specialized for actions you may require.

The following table shows the items in this section.

Name Type Description

HELPCHECK Function Provides an interface to the Common Lisp error system.

LoopsHelp NoSpread Generates an error if LoopsDebugFlg=NIL, else calls HELP.
Function

LoopsDebugFlg Variable Controls the behavior of LoopsHelp.

ErrorOnNameConflict Variable Calls HELPCHECK when you attempt to give an object the
same name as an existing object.

CVMissing Method Sent by access functions when you attempt to access a class
variable that does not exist.

CVValueMissing Method Sent by access functions when you attempt to access a class
variable that has no value.

IVMissing Method Sent by access functions when you attempt to access an
instance variable that does not exist.

IVValueMissing Method Sent by access functions when you attempt to access an
instance variable that has no value.

MessageNotUnderstood Method Sent when a message has no corresponding selector.

(HELPCHECK mess1 ... messN) [Function]

Purpose/Behavior: HELPCHECK is the LOOPS interface with the Common Lisp error system.
When LOOPS detects an error, it generally calls this function with up to four
argument messages describing what is wrong and possibly what to do about

11-2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

11.1 ERROR HANDLING FUNCTIONS AND METHODS

it. HELPCHECK calls BREAK1 to put you into a break window and returns
whatever the call to BREAK1 returns. For example, if you type OK, it returns
T. If you type "RETURN ’someValue", it returns that value. In some
instances, LOOPS uses such returned values to repair errors and continue
execution.

Arguments: mess1 ... messN
Messages to print at the break.

Returns: Value depends on what you type in the break window; see Behavior.

Example: The following code causes a break window with the message "Are you
certain?". If you type "OK" in the break window, the message "He said OK"
will print.

(IF (HELPCHECK "Are you certain?")
 THEN (PRINT "He said OK"))

(LoopsHelp mess1 ... messN) [NoSpread Function]

Purpose/Behavior: Generates an error. Calls HELP if LoopsDebugFlg is T, otherwise calls
ERROR. Use LoopsHelp whenever you want to give the user a way to
recover from errors when LoopsDebugFlg is T. For example, have
LoopsHelp print messages like "FOO is not the name of a class. Type
RETURN ’<classname> to continue using <classname>."

Arguments: mess1 ... messN
Messages to print at the break.

Returns: Value depends on what you type in the break window; see HELPCHECK,
above.

LoopsDebugFlg [Variable]

Purpose/Behavior: Controls the behavior of LoopsHelp. If it is T, all calls to LoopsHelp generate
a break. If it is NIL, such calls that occur near the top of the stack or after a
short computation cause a message to be printed and a return to the next
level. The default value is T. See BREAKCHK in the Interlisp-D Reference
Manual for more information.

ErrorOnNameConflict [Variable]

Purpose/Behavior: If T, an attempt to give an object the same name as an existing object causes
a call to HELPCHECK. If you type "OK" in the resulting break window, the
process continues and the original object is unnamed. The default value is
NIL.

(← self CVMissing object varName propName typeFlg newValue) [Method of Class]

Purpose: Sent by access functions when there is an attempt to access a class variable
that does not exist.

Behavior: Calls LoopsHelp with the message

varName not a CV of self

This method can be specialized to take more sophisticated action by using the
other arguments which are provided.

When, in an instance, an attempt is made to access a class variable that does
not exist, the message CVMissing is sent to the instance’s class with the
instance in question as object.

11-3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

11.1 ERROR HANDLING FUNCTIONS AND METHODS

Note: This method can be invoked if an instance variable is missing.

Arguments: object The object upon which the access was attempted.

typeFlg The name of the access function (GetValue, GetValueOnly,
PutValue, PutValueOnly) which caused this message to be
sent. The function name allows the type of access to be
determined.

varName The name of the variable on which access was attempted.

propName The name of the property on which access was attempted. If
NIL, the value of the class variable varName was accessed.

newValue The value to which the class variable was to be set.

Categories: Class

Example: Specialize this method to automatically add the class variable which is missing
to the class described by self. Assuming the class of self is SomeClass, the
method definition is

(Method ((SomeClass CVMissing)
self object varName propName typeFlg
newValue)

(← self AddCV varName newValue))

(← self CVValueMissing object varName propName typeFlg) [Method of Class]

Purpose: Sent by access functions when there is an attempt to access a class variable
that has no value. This method can also be invoked if an instance variable is
missing and you attempt to access it.

Behavior: If propName is NIL it returns the value of NotSetValue, otherwise it returns the
value of NoValueFound.

The default setting for NoValueFound is NIL. The default setting
NotSetValue is an annotatedValue. See Chapter 8, Active Values, for an
explanation of NotSetValue.

This method can be specialized to take more sophisticated action by using the
other arguments which are provided. See the example for CVMissing, above.

 Arguments: object The object on which the access was attempted.

typeFlg The name of the access function (GetValue, GetValueOnly,
PutValue, PutValueOnly) which caused this message to be
sent. The function name allows the type of access to be
determined.

varName The name of the variable on which access was attempted.

propName The name of the property on which access was attempted. If
NIL, the value of the class variable varName was accessed.

Returns: Value depends on the arguments; see Behavior.

Categories: Class

(← self IVMissing varName propName typeFlg newValue) [Method of Object]

Purpose: Sent by access functions when there is an attempt to access an instance
variable that cannot be found in self.

Behavior: Tries to remedy the situation, but if it fails, it calls LoopsHelp with the
message

11-4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

11.1 ERROR HANDLING FUNCTIONS AND METHODS

varName not an IV of self

If the instance variable is present in the object’s class, the instance variable
will be copied to self. This can happen when a class is changed after an
instance has been created.

If the instance variable is not present in the class, it attempts to find a class
variable of the same name in the class. If one is found, it is used according to
its :allocation property.

• If the property is dynamicCached, the instance variable is added by
copying the class variable regardless of the type of access.

• If the property is dynamic, the type of access is determined from typeFlg,
which is the name of the access function. The value of the class variable is
returned for a get and the instance variable is created only on a put.

 • If the property is class, the class variable’s value is returned or set and no
instance variable is created.

If all else fails, an attempt is made to fix the spelling of varName and, if a
possible fixed spelling is found, the process starts over.

If an instance variable is not found, the arguments are not used, but could be
in a specialization of this method. See the example in CVMissing above.

Arguments: typeFlg The name of the access function (GetValue, GetValueOnly,
PutValue, PutValueOnly) which caused this message to be
sent. The function name allows the type of access to be
determined.

varName The name of the variable on which access was attempted.

propName The name of the property on which access was attempted. If
NIL, the value of the instance variable varName was accessed.

newValue The value to which the instance variable was to be set.

Returns: Value depends on the arguments; see Behavior.

Categories: Object

(← self IVValueMissing varName propName typeFlg newValue) [Method of Object]

Purpose: Sent by access functions when there is an attempt to access an instance
variable which has no value in self.

Behavior: Looks up the class hierarchy to find a value. If none is found, SHOULDNT
(see the Interlisp-D Reference Manual) is called with the message

 Error in Put or GetValue.

The arguments are not used, but could be in a specialization of this method.
See the example in CVMissing, above.

This method is used internally to handle inheritance of instance variable
values. If this error occurs, the LOOPS system has probably been corrupted.

Arguments: typeFlg The name of the access function (GetValue, GetValueOnly,
PutValue, PutValueOnly) and allows the type of access to be
determined.

The other arguments are passed from the access function.

Categories: Object

11-5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

11.1 ERROR HANDLING FUNCTIONS AND METHODS

(← self MessageNotUnderstood selector messageArguments superFlg) [Method of Object]

Purpose: Sent when a message has no corresponding selector in self.

Behavior: Attempts to fix the spelling of selector. If this fails, it generates an error.

Arguments: selector The name of the message that was not understood.

messageArguments
The arguments of the message selector.

superFlg If T, an attempt was made to locate the method selector in the
supers of self.

Categories: Object

Example: Define a class that acts as the class of Lisp numbers, and use the
MessageNotUnderstood message to translate messages into function calls.

37←(DefineClass ’Number)
#.($ Number)

38←(← ($ Number) SpecializeMethod ’MessageNotUnderstood)

The MessageNotUnderstood method is defined in the editor, making the
body of the method as follows:

(if (GETD selector)
 then (APPLY selector messageArguments))
 else (←Super))
Number.MessageNotUnderstood

Use the class Number as the LOOPS class for Lisp numbers.

39←(PUTHASH ’SMALLP ($ Number) LispClassTable)
#.($ Number)

40←(PUTHASH ’FIXP ($ Number) LispClassTable)
#.($ Number)

41←(PUTHASH ’FLOATP ($ Number) LispClassTable)
#.($ Number)

Test it out.

42←(← 4 PLUS 5)
9

11.2 ERROR MESSAGES
11.2 ERROR MESSAGES

11.2 Error Messages

This section contains the LOOPS error messages along with their
explanations. Atoms which are in italics are replaced with specific values
when the messages are generated. Messages generated by calls to
SHOULDNT indicate problems in LOOPS system code. Messages generated
by direct calls to ERROR, that is not via calls to the LOOPS function
LoopsHelp, may indicate problems with the system or with user code.

Errors appear in their respective categories:

• Errors that occur when accessing classes and instances in LOOPS.

11-6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

11.1 ERROR HANDLING FUNCTIONS AND METHODS

• Errors that occur when sending messages to LOOPS objects.

• Errors dealing with naming objects.

• Errors encountered when using annotated values and active values.

• Other error messages that may be encountered when using LOOPS.

11.2.1 Classes and Instances

This section describes errors that occur when accessing classes and
instances.

type not recognized part of class

Explanation: The type argument to the method ListAttribute does not correspond to one of
the parts of a class.

name not a CV of self

Explanation: A reference has been made to a class value that does not exist.

Error in Put or GetValue

Explanation: An attempt has been made to access an instance variable that has no value in

an object or in any of its supers.

varName not an IV of self

Explanation: An attempt has been made to access an instance variable and it does not
exist in the object or its supers, and a class variable of the same name does
not exist either.

varName is not a local instance variable of class name. Type OK to ignore error and go on.

Explanation: An attempt has been made to delete an instance variable which is not in the
class.

newValue is not a class. Type OK to replace metaclass of classRec with $Class

Explanation: A call has been made to PutClass or PutClassOnly with either propName
erroneously set to NIL or left out, or the new metaclass set to something that is
not a valid class.

varName is not a CV of Class so cannot be moved from there

Explanation: An attempt has been made to move a class variable from a class where it
does not exist. Possible causes include wrong source class or misspelled
class variable name.

class has subclasses. You cannot Destroy classes that have subclasses.
Type OK to use Destroy! if that is what you want.

Explanation: Sending the message Destroy to a class with subclasses will leave the
subclasses referring to nonexistent superclasses. Destroy! destroys all of the
subclasses as well. Be sure this is what you want before you type "OK".

11-7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

11.1 ERROR HANDLING FUNCTIONS AND METHODS

11.2.2 Methods and Messages

This section describes errors that occur when sending messages to LOOPS
objects.

GetValue, PutValue, GetValueOnly, PutValueOnly or GetIVHere self args not possible

Explanation: An attempt has been made to access a value in an abstract class, which
cannot have any values.

← or ←Super self selector -- not understood

Explanation: Neither the object to which the message was sent nor any of its ancestors has
such a method selector.

(← NIL selector --) not understood

Explanation: An attempt has been made to send a message to NIL. One way to do this is
to execute (_($ foo) ...), where foo does not name a LOOPS object.

class does not contain the selector selector. Type RETURN ’selectorName to try again

Explanation: An attempt has been made to delete a nonexistent method. If the problem is
that the wrong method selector was typed or the selector was misspelled,
typing "RETURN ’correctName" will fix the problem.

selector is not local for self To copy anyway, type OK

Explanation: The object to which CopyMethod was sent does not contain selector, but one
of its supers does. This is not necessarily an error.

selector is not a selector for self

Explanation: Neither the object to which CopyMethod was sent nor any or its supers
contains selector.

newClass is not a class. Type OK to use oldClass

Explanation: Something may be missing from the argument to HELPCHECK, since nothing
is printed after oldClass. Alternatively, the destination class specified in
CopyMethod is neither a class nor a valid class name.

Typing "OK" causes the method to be copied to the class to which the
message was sent. The net result can be to copy a method down from one of
the class’s supers or to make a copy within the class with a new selector.

name is not a defined function

Explanation: The selector named in CopyMethod exists but it does not have a function
defined for it. It is possible the class has been loaded but the method has not
or that the function definition for the method was somehow erroneously
destroyed.

name not a currently defined class. Cannot add method to class.
Type OK to create class and go on.

11-8 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

11.1 ERROR HANDLING FUNCTIONS AND METHODS

Explanation: An attempt has been made to add a method to a nonexistent class.

If the class should exist, but has not been created yet, type "OK" to let
LOOPS create it automatically. If the class has yet to be loaded, abort and
load it first.

Can’t find source for fn

Explanation: The source file containing a method of a class that is being moved via
MoveToFile cannot be found. WHEREIS is used to try to find it. Either add
the necessary file to FILELST or use LOADFNS to load the function(s).

11.2.3 Naming Objects

This section describes errors that occur when naming objects.

name is already used as a name for an object

Explanation: ErrorOnNameConflict has been set to T and an object with the given name
already exists. Typing "OK" will cause the new object to be created anyway.

Can’t name object NIL

Explanation: The name argument to the method SetName has been left out.

name should be a symbol to be a name

Explanation: The method SetName has been given a non-symbolic name.

name cannot be a class name. Type OK to ignore

Explanation: A non-symbolic class name has somehow gotten into the CLASSES of a file.

Typing "OK" will continue writing the file, but will not remove the offending
name.

Can’t rename a class without specifying name.
Type RETURN <newName> to continue and rename class: self

Explanation: The newName argument has been left out of Rename. Classes can not be
named NIL.

Typing "RETURN ’aNewName" renames the class.

name not defined as a class or an instance. Type OK to ignore and go on.

Explanation: A name which refers to a nonexistent class or instance is in the CLASSES or
INSTANCES file command of a file.

Typing "OK" continues writing out the file, but does not remove the offending
name.

11-9LOOPS REFERENCE MANUAL, MEDLEY RELEASE

11.1 ERROR HANDLING FUNCTIONS AND METHODS

name not the name of an instance! Type OK to proceed.

Explanation: A name that refers to a nonexistent instance is in the THESE-INSTANCES file
command of a file.

Typing "OK" continues writing out the file, but does not do anything to correct
the source of the problem; that is, it does not remove the name from the
filecoms or find out why it does not exist.

name is a defined object, but is not a class.

Explanation: The name of some LOOPS object that is not a class has been used as an
argument where a class name should have been used.

11.2.4 Annotated and Active Values

This section describes errors that occur when using annotated values and
active values.

Active value not found, so can’t replace it.

Explanation: The old active value specified in ReplaceActiveValue does not exist or has
been specifed incorrectly.

Unknown access type type

Explanation: An improper type has been given to the message AddActiveValue or
DeleteActiveValue.

Invalid type type

Explanation: An active value has an incorrect type specifier.

Conflicting active value wrapping precedence self activeValue otherPrecedence

Explanation: An attempt has been made to add an annotated value with wrapping
precedence T or NIL to an existing annotated value with the same wrapping
precedence.

Unknown access type type

Explanation: GetWrappedValue or PutWrappedValue has been given an incorrect type.

Can’t set the local state of #.NotSetValue

Explanation: PutWrappedValueOnly has been erroneously sent to a #.NotSetValue.

11.2.5 Miscellaneous

This section describes other errors that can occur when using LOOPS.

Use one of METHODS IVS CVS for type. RETURN one of these symbols to go on.

Explanation: An incorrect type has been specified to the method WhereIs.

11-10 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

11.1 ERROR HANDLING FUNCTIONS AND METHODS

To continue, enter the type into the break window. For example, enter
"RETURN ’METHODS".

Name not installed because of error in source

Explanation: The source specification of a class has been corrupted in some way. It may
be necessary to manually redefine the class or edit the file.

Time is not set! Call (SETTIME dd-mmm-yy hh:mm:ss) and then type in OK

Explanation: LOOPS uses the date and time to create unique internal names for objects;
thus, the time must be set before any objects are created. Call SETTIME and
then type "OK". For example, (SETTIME "15-APR-87 12:00:00") sets time at
noon on April 15, 1987.

self varName propName not broken. Type OK to go on

Explanation: Either an attempt has been made to unbreak a value which was not broken or
the value was specified incorrectly.

11-11LOOPS REFERENCE MANUAL, MEDLEY RELEASE

11.1 ERROR HANDLING FUNCTIONS AND METHODS

[This page intentionally left blank]

