
10-1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10. BROWSERS

As described in Chapter 1, Introduction, one of the key components in the
LOOPS system is inheritance, in which structures have well-defined
relationships to other structures. Class inheritance is a typical example of this
relationship.

Since inheritance can be described by a two-dimensional graph, it is natural
to create a user interface for LOOPS built on the Lisp Library Module,
Grapher. This user interface is called a browser. Browsers are tools to assist
in the development cycle of a product or vehicles for building user interfaces
within a final product.

Much development time is spent building, examining, and modifying the
relationships between classes. These tasks include specifying the contents of
various classes: class variables, instance variables, properties, and methods.
The location of the class within the inheritance structure must also be
determined. After a number of classes have been built, the relationships
between the classes may need to be reviewed. Often, the initial design is
flawed and requires the following changes:

• Moving parts of one class to another class.

• Adding, substracting, or changing data or functionality within classes.

• Adding new classes, or merging different classes.

Browsers are the facility within LOOPS which support these types of
operations. This chapter describes how to use browsers both interactively with
the mouse, and programmatically.

Browsers are most commonly used on the classes defined for an application.
Many of the examples here browse objects which LOOPS uses internally; the
functionality is exactly the same.

1
0.1 Types of Built-in Browsers

A number of different types of browsers are already built into LOOPS:

• Lattice browsers

• Class brwsers

• File browsers

• Supers browsers

• Metaclass browsers

This section describes these browsers in detail.

10-2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.1 TYPES OF BUILT-IN BROWSERS

10.1.1 Lattice Browsers

The most general class is called LatticeBrowser. Figure 10-1 shows a class
inheritance lattice with the subclasses of LatticeBrowser.

Figure 10-1. Sample Lattice Browser

10.1.2 Class Browsers

A class browser shows the linkages between a class or classes and their
subclasses. Super classes are shown on the left (or top) side of the browser
window. Subclasses of these are connected by links moving to the right (or
down). An example of a class browser is shown in the previous section. The
class LatticeBrowser is the root object of this example. Subclasses of
LatticeBrowser are ClassBrowser and InstanceBrowser. Subclasses of
ClassBrowser are FileBrowser, SupersBrowser, and MetaBrowser.

10.1.3 File Browsers

A file browser is a class browser containing all classes defined within a file.
Additionally, file browsers contain a menu interface to common operations on
files.

10.1.4 Supers Browers

A supers browser is an inverted class browser. A class browser is built by
following subclass links from a class. A supers browser is built by following
superclass links from a class. An example of a supers browser is shown in
Figure 10-2.

Figure 10-2. Sample Supers Browser

10.1.5 Metaclass Browsers

A metaclass browser is like a supers browsers, but is built by following
metaclass links. Figure 10-3 shows two root classes: ActiveValue and
ClassBrowser.

10-3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.1 TYPES OF BUILT-IN BROWSERS

Figure 10-3. Sample Metaclass Browser

10.1.6 Instance Browsers

An instance browser shows the relationships between instances. These
relationships may be more dynamic than the inheritance relationships shown
by the class browsers. Typically, the relationships are not defined until
runtime, and may be changed often. By specializing the instance browser,
you can show several relationships between a fixed set of objects.

10.2 OPENING BROWSERS
10.2 OPENING BROWSERS

10.2 Opening Browsers

A browser can be opened in several ways:

• Selecting a menu option from the Background Menu.

• Selecting a menu option from the LOOPS icon.

• Sending a Browse message to an instance of a browser.

• Calling either of the functions Browse or FileBrowse.

10.2.1 Using Menu Options to Open Browsers

Since browsers are an important part of LOOPS, you can use menus in
several ways to create standard browsers. Once opened, via menu or
program, any browser can be operated from both the appropriate menus and
programmatic commands.

10.2.1.1 Overview of Background Menu and LOOPS Icon

When LOOPS is loaded, the option Loops Icon is added to the background
menu, as shown in this window:

The Loops Icon option has two suboptions:

• Browse Class

• Browse File

10-4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.1 TYPES OF BUILT-IN BROWSERS

These suboptions are shown in the following windows:

Selecting Loops Icon puts a LOOPS icon on the screen; you are prompted to
place the icon after it is created. The other commands are discussed in
Section 10.2.1.2, "Command Summary."

The LOOPS icon, which appears in Figure 10-4, is a prototype instance of the
class LoopsIcon. It is provided to give you another convenient menu
interface to typical programming operations.

Figure 10-4. LOOPS Icon

Pressing the left button while the mouse is on the icon causes the following
menu to appear with options appropriate for class browsers:

Pressing the middle button while the mouse is on the icon causes the following
menu to appear with choices appropriate for file browsers:

Pressing the right button while the mouse is on the icon causes the following
menu to appear with two options for operations on the icon itself:

Close removes the icon from the screen. It can be restored at any time from
the background menu. Move lets the icon be moved to another location on
the screen, just as any icon is moved in Lisp.

10.2.1.2 Command Summary

The background menu and the LOOPS icon provide the same functionalities.
This section describes the commands available.

Browse Class, Browse Supers

Selecting either of these options causes the following prompt to appear in the
prompt window.

Please tell me the name of the root object >

10-5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.1 TYPES OF BUILT-IN BROWSERS

Enter the name of a class without using the "$" notation. The system builds
the appropriate type of browser and prompts you to move the window
containing the browser.

Browse File

Selecting this option causes the following menu to appear:

The top option on this menu is *newFile* which has three suboptions; the
remaining options are the names of the files that are on FILELST (Lisp
remembers what files are loaded and how they were loaded; FILELST files
were loaded normally. See the Interlisp-D Reference Manual for a full
explanation). Selecting one of the filenames will open a file browser on that
file.

newFile Prompts you in the prompt window with the following prompt :

Please type in file name: >.

Enter the name of a file to create. The system checks to determine if a
filecoms exists for that file name. If one exists, the system asks for
confirmation before destroying the value of that filecoms and opening up an
empty browser window. If no filecoms exists for that filename, an empty file
browser window is opened.

 loadFile Prompts you with:

Please type in file name to load: >

The system loads that file and opens a browser on it.

hiddenFile Causes a menu to appear with files that have been loaded but not
SYSLOADed and are not on FILELST; that is, the files are on
LOADEDFILELST, but not on FILELST. The LOOPS files, for example, the
.LCOMs that add LOOPS to Lisp, are on this list.

Edit Filecoms

Selecting this option brings up the same menu as the option Browse File.
Instead of opening a browser on the file, a display editor window is opened on
the filecoms of that file. If *newFile* is selected, you are prompted to enter a
file name and an SEdit window is opened with a template containing the File
Manager commands CLASSES, METHODS, FNS, VARS, and INSTANCES.

CleanUp File

Selecting this option first calls FILES? and then builds a menu of files in
FILELST that have changed. From this menu, select a file to be cleaned up;
this calls CLEANUP.

10.2.2 Using Commands to Open Browsers

You can use the following methods and functions for opening browsers
programmatically and from the Lisp Executive window.

Name Type Description

Browse Method Opens a browser showing the relationships between classes.

10-6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.1 TYPES OF BUILT-IN BROWSERS

BrowseFile Method Opens a browser showing the relationships between classes on
a file.

Browse Function Provides a short way to create a class browser.

FileBrowse Function Provides a short way to create a file browser.

(← self Browse browseList windowOrTitle goodList position) [Method of LatticeBrowser]

Purpose/Behavior: Opens a browser showing inheritance relationships between classes.

Arguments: self An instance of ClassBrowser, MetaBrowser, or
SupersBrowser.

browseList A LOOPS class name, a LOOPS pointer to a class name, or a
list of those.

windowOrTitle
A title to appear on the browser or a window to use (but which
will be reshaped to fit the browser.) Title defaults to "Class
browser."

goodList A goodList other than the browselist. (See Section 10.5.1,
"Instance Variables of Class LatticeBrowser," for more
information on goodList.)

position Lower left corner of browser. If NIL, position the window with the
mouse.

Returns: Pointer to the browser object.

Examples: The following command opens a class browser on Window.

(←New ($ ClassBrowser) Browse ’Window)

The following command opens a supers browser on InstanceBrowser and
ClassBrowser.

(←New ($ SupersBrowser) Browse (LIST ’InstanceBrowser ($ ClassBrowser)))

(← self BrowseFile fileName) [Method of FileBrowser]

Purpose: Opens a browser showing relationships between classes on a file.

Behavior: Classes defined within fileName are displayed within the browser. If fileName
is NIL, a menu of files on FILELST opens. The selected file has a file browser
opened on it.

Arguments: self An instance of the class FileBrowser

fileName File to browse; should not be a list.

Returns: self

Categories: FileBrowser

Example: The following command opens a file browser on the file LoopsWindow.

(←New ($ FileBrowser) BrowseFile ’LoopsWindow)

(Browse classes title goodClasses position) [Function]

10-7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.1 TYPES OF BUILT-IN BROWSERS

Purpose: Provides a short way to create a class browser.

Behavior: Sends a Browse message to a new instance of a ClassBrowser passing
classes, title, goodClasses, and position as arguments. If goodClasses is T, it
is rebound to the value of classes before the message is sent.

Arguments: classes A LOOPS class name, a LOOPS pointer to a class name, or a
list of those.

title A title to appear on the browser. Title defaults to "Class
browser."

goodClassses
A goodList other than classes. (See Section 10.5.1, "Instance
Variables of Class LatticeBrowser," for more information on
goodList.)

position Lower left corner of browser. If NIL, position the window with the
mouse.

Returns: A new instance of ClassBrowser.

Example: The following command creates a class browser on the class ActiveValue
and all its subclasses.

11←(Browse ’ActiveValue)

(FileBrowse filename) [Function]

Purpose: Provides a short way to create a file browser.

Behavior: Sends a BrowseFile message to a new instance of a FileBrowser passing
filename as the argument.

Arguments: filename File to browse.

Returns: New instance of FileBrowser.

Example: The following command creates a file browser on the file LoopsWindow.

12←(FileBrowse ’LoopsWindow)

10.3 USING CLASS BROWSERS, META BROWSERS, AND SUPERS BROWSERS
10.3 USING CLASS BROWSERS, META BROWSERS, AND SUPERS BROWSERS

10.3 Using Class Browsers, Meta Browsers, and Supers Browsers

Instances of ClassBrowser, SupersBrowser, MetaBrowser all have the
same menu interface. This section shows examples of the various menus
followed by descriptions of the actions performed after selecting particular
options.

Three pop-up menus are associated with browsers:

• One menu appears by positioning the mouse on the title bar of the browser
window and pressing either the left or the middle mouse button. This menu
contains options that control the appearance of the browser.

• A second menu appears by positioning the mouse on one of the nodes in a
browser and pressing the left mouse button. This menu contains
informational options.

10-8 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.1 TYPES OF BUILT-IN BROWSERS

• A third menu appears by positioning the mouse on one of the nodes in a
browser and pressing the middle mouse button. This menu contains editing
options.

These menus differ depending on the browser type. The following sections
describe the menus associated with class browsers, supers browsers, and
metaclass (or, more simple, meta) browsers. Sections then describe the
additional functionality associated with file browser menus.

10.3.1 Selecting Options in the Title Bar Menu

The following menu appears when you position the mouse on the title bar of
the browser menu and press either the left or the middle mouse button:

This section describes each menu option.

10.3.1.1 Recompute and its Suboptions

Selecting the Recompute option and dragging the mouse to the right causes
the following submenu to appear:

Most of the Recompute suboptions change the appearance of a browser but
not its contents. For example, SaveValue provides a pointer to the browser
without changing anything in it.

SaveValue The browser instance is stored in the instance variable savedValue of the
prototype instance of LoopsIcon and in the value of IT (see the Interlisp-D
Reference Manual). This value is returned from the function call SavedValue.

Recompute Recomputes the entire browser structure from the starting objects. It does not
recompute the labels for each item if those labels have been cached in the
property objectLabels of the instance variable menus.

RecomputeLabels Recomputes the entire browser structure from the starting objects and
recomputes the labels for each item.

InPlace Recomputes the browser without affecting the scrolled location of the lattice
within the window. This may be necessary for a browser containing a large
lattice structure.

ShapeToHold Makes the window for the browser just large enough to hold all of the nodes in
the browser, up to a maximum size. Browser windows may also be changed
interactively or programmatically with SHAPEW.

ChangeFontSize Causes a menu to appear containing 8, 10, 12, and 16. Selecting one
changes the font size used to display the nodes to that value. The font family
is

10-9LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.1 TYPES OF BUILT-IN BROWSERS

(@ self browseFont:,FontFamily)

The font face is

(@ self browseFont:,FontFace)

Note: An alternative way to change the font of a browser is to enter:

[PROGN (←@ ($ InstanceOfBrowser) browseFont
(FONTCREATE))(← ($ InstanceOfBrowser)
RecomputeLabels)]

Lattice/Tree Causes the following menu to appear:

Using the example of a supers browser for the class ClassBrowser, this
browser is drawn for each of the formatting options. A tree does not show
branches recombining; a lattice does. A boxed node in a tree indicates the
node shows up in more than one location in a tree. When a browser is
constructed by the system the default formatting style is
HORIZONTAL/LATTICE.

• HORIZONTAL/LATTICE

• VERTICAL/LATTICE

10-10 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.1 TYPES OF BUILT-IN BROWSERS

• HORIZONTAL/TREE

• VERTICAL/TREE

10.3.1.2 AddRoot and its Suboptions

The AddRoot options add items or subtrees to the browser.

Selecting the AddRoot option and dragging the mouse to the right causes the
following submenu to appear:

AddRoot A prompt appears in an attached window to enter the name of a class to be
added to the browser. If the entered item is not an object, a message that
nothing was added to the browser is printed. If the entered item is already in
the browser, nothing occurs. If the entered name does not correspond to a
class, nothing occurs.

RemoveFromBadList Objects within a browser can be put on the instance variable badList. This
can be done by positioning the mouse on the node in a browser, pressing the
left mouse button, and selecting an option from the menu that appears. Items
on the badList are not displayed in the browser. If you select the option
RemoveFromBadList, a menu appears showing any objects on the badList.
Selecting one of those objects removes it from the badList and causes it to be
redisplayed in the browser.

10.3.1.3 Add Category Menu

The system searches all methods in all classes shown in the browser and
computes the categories for these. These categories are made into a sorted
menu with the categories Any and Public included at the top. This menu is
attached to the left side of the browser. Selecting options in this menu acts as
a toggle, either highlighting them or returning them to their normal display.

10-11LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.1 TYPES OF BUILT-IN BROWSERS

Selected options are stored on the browser instance variable
viewingCategories. Options on this menu interact with the browser interface
for editing methods as described in Section 10.3.2, "Selecting Options in the
Left Menu."

Note: Very often when using a browser, you ask to see what items a class
inherits from classes above it in the inheritance lattice. To keep this
inherited information more manageable, information inherited from the
classes Tofu, Object, and Class are filtered out from the information
presented to you. As an example, see the description of PP in the
following section.

10.3.2 Selecting Options in the Left Menu

When the mouse is inside a browser and you hold down the left mouse button,
nodes within the browser become inverted when the cursor moves over them,
as shown in the following window:

If you release the left mouse button while the cursor is over a node, the
following menu appears:

The options shown on the menu operate on the node (class) selected. Several
of these options have associated submenus. Common options are in the main
menu, and less common ones are menu suboptions. The actions that occur as
a result of selecting one of these options are described in the following
subsections. An additional subsection describes extended functionality
available with the left mouse button.

