
8-1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8. ACTIVE VALUES

Active values are used in LOOPS to transpose the access of data within an
object to a message being sent to a different object. Typical uses include:

• Causing side effects to occur when data is accessed

• Debugging

• Initializing variables

• Maintaining constraints between variables

An ActiveValue is an instance of a subclass of the LOOPS class
ActiveValue. When an ActiveValue instance is installed in the value of a
variable, further references to that variable cause messages to be sent to the
instance.

LOOPS provides several kinds of active values which are described in this
chapter. You can obtain new behavior by specializing one of the existing
LOOPS ActiveValue subclasses.

When GetValue notices that an ActiveValue is installed on the variable, it
sends the GetWrappedValue message to the ActiveValue. Similarly, when
PutValue notices that an ActiveValue is installed on the variable, it sends the
PutWrappedValue message to the ActiveValue. The value returned from the
get or put is the value returned from the message send. Each specialization of
ActiveValue either inherits these methods from its superclasses or specializes
them to call user code. The messages are received and processed by the
ActiveValue instances.

For example, assume that you are modeling a simulation that requires the
value of an instance variable called windSpeed to be a random value. You
can make the value of windSpeed into an active value called ($
RandomWindSpeedAV1). Now, if you try to determine the value of
windSpeed by entering

(@ ($ SomeAirport) windSpeed)

the value returned from this expression is the value returned from

(← ($ RandomWindSpeedAV1) GetWrappedValue . otherArgs)

This returns the required random value.

The variable containing the ActiveValue may still have a current value. Most
system ActiveValue subclasses are specializations of
LocalStateActiveValue, which uses an instance variable localState in the
ActiveValue to hold the value.

For efficient implementation, LOOPS uses a special Interlisp data type, the
annotatedValue data type, to "wrap" each ActiveValue instance when it is
installed as a value within an object; the annotatedValue contains the
ActiveValue instance. That is, if the value of an instance variable is said to
be an active value, in actuality, the value of the instance variable is an
annotatedValue which contains the active value. This allows every GetValue
or PutValue to use Interlisp’s microcoded type checking mechanism to see if it
should be processed normally or via the ActiveValue mechanism. This extra
layer is largely invisible in application programs. LOOPS also contains a class

8-2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.1 USING ACTIVE VALUES

AnnotatedValue to handle the occasional accident when a user forgets about
the distinction between annotatedValue and ActiveValue, and attempts to
treat an annotatedValue as a LOOPS object.

The class ActiveValue defines the general protocol followed by all active
value objects. Methods setting up the basic functionality of ActiveValues are
defined in this class and inherited by all its specializations. Methods defined in
this class include AVPrintSource to specify how annotatedValues print,
AddActiveValue to install an ActiveValues, and DeleteActiveValue to delete
an installed ActiveValue.

The class ActiveValue itself is an abstract class; that is, it is a placeholder in
the class hierarchy that is not intended to be instantiated. When this
documentation refers to an active value object, it is referring to an instantiation
of a specialization of the class ActiveValue.

Note: The current ActiveValue is different from the activeValue
implementation in the Buttress version of LOOPS. See Appendix A,
Active Values in Buttress LOOPS, for more information.

8.1 Using Active Values

A general template is available when using active values. As with all
templates, you should not blindly follow it. A good understanding of the active
value mechanism is necessary to avoid errors in more complicated situations.

• Determine the functionality that you want the active value to provide. For
example, will it cause a side effect to occur on access of data? Will it
maintain constraints between two pieces of data? The required
functionality will give an indication of which active value class you should
use.

• Specialize one of the active value classes to satisfy your specific
requirements, if necessary.

• Create an instance of the active value class that you have chosen or
created.

• Initialize the contents of that instance, if necessary.

• Install that active value instance on the data that you want to become ative.
 This is accomplished by using the AddActiveValue message.

In a number of situations, you may want to install an active value on an
instance variable for every instance of a class. One technique for doing this is
discussed in Section 8.5, "Active Values in Class Structures."

8.2 SPECIALIZATIONS OF THE CLASS ACTIVEVALUE
8.2 SPECIALIZATIONS OF THE CLASS ACTIVEVALUE

8.2 Specializations of the Class ActiveValue

The class ActiveValue is an abstract class, and therefore cannot be
instantiated. This class contains a number of methods, described in Section
8.3, "ActiveValue Methods," that are necessary for the active value
mechanism to function. As a user, you will be making active values which are
instances of some subclass of ActiveValue, either one of those already
provided or one that you created. Figure 8-1 shows the class ActiveValue
and its specializations. This section describes the subclasses of ActiveValue

8-3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.1 USING ACTIVE VALUES

in order of their appearance in this figure. Also included is information on
specializing active values.

ActiveValue

ReplaceMeAV

NotSetValue

LocalStateActiveValue

InheritingAV

IndirectVariable

FirstFetchAV

AppendSuperValue

TraceOnPut

BreakOnPut

LispWindowAV

NoUpdatePermittedAV

ExplicitFnActiveValue

TraceOnPutOrGet

BreakOnPutOrGet

NestedNotSetValue

Figure 8-1. The Class ActiveValue and its Specializations

8.2.1 IndirectVariable

This specialization sets up the functionality of an ActiveValue to return the
value of another variable as its value. It is analogous to the concept of indirect
addressing in other computer languages.

Note: Indirect variables must be the innermost of nested active values.
Wrapping precedence (see Section 8.3, "Active Value Methods")
insures this.

IndirectVariable [Class]

Purpose: Enables variable values to be accessed indirectly from other variables. This
simulates two variables sharing the same memory location. This is a useful
technique for implementing simulations and enforcing constraints.

Behavior: When a Fetch is made on the variable containing the IndirectVariable
instance, this active value retrieves and returns the value of the tracked
variable. If a Store is made with the variable containing the IndirectVariable
instance, this active value stores the new value in the tracked variable.
Essentially, this forces the two variables to share the same data.

Instance Variables: object Object instance containing the tracked value.

varName The name of the variable being tracked.

propName If non-NIL, the name of the variable property being tracked.

type Type of variable being tracked. Value can be CV, IV or NIL,
which defaults to IV.

Examples: Several examples are included to show the use of IndirectVariable.

Example 1: Consider a chemical reactor simulation where you have a tank draining into a
pipe. The output pressure of the tank needs to equal the input pressure of the pipe. The
following demonstrates this.

First, build the appropriate pipe and tank classes and make instances of them.

78← (DefineClass ’Tank)
#,($C Tank)

79← (DefineClass ’Pipe)
#,($C Pipe)

8-4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.1 USING ACTIVE VALUES

80← (← ($ Tank) AddIV ’outputPressure)
outputPressure

81← (← ($ Pipe) AddIV ’inputPressure)
inputPressure

82← (← ($ Tank) New ’tank1)
#,($& Tank (NYW0.0X%:.aF4.6R8 . 5))

83← (← ($ Pipe) New ’pipe1)
#,($& Pipe (NYW0.0X%:.aF4.6R8 . 6))

Create an instance of IndirectVariable and initialize its contents to point to the tank’s output
pressure.

84← (← ($ IndirectVariable) New ’indVar1)
#,($& IndirectVariable (NYW0.0X%:.aF4.6R8 . 7))

85← (←@ ($ indVar1) object ($ tank1))
#,($& Tank (NYW0.0X%:.aF4.6R8 . 5))

86← (←@ ($ indVar1) varName ’outputPressure)
outputPressure

Install the active value instance as the value of the pipe’s input pressure.

87← (← ($ indVar1) AddActiveValue ($ pipe1) ’inputPressure)
#,($AV IndirectVariable (indVar1 (NYW0.0X%:.aF4.6R8 . 7)) (object
#,($& Tank (NYW0.0X%:.aF4.6R8 . 5))) (varName outputPressure))

Accesses to either the pipe’s input pressure or the tank’s output pressure produce the same
result.

90← (@ ($ pipe1) inputPressure)
NIL

92← (←@ ($ pipe1) inputPressure 100)
100

94← (@ ($ tank1) outputPressure)
100

95← (←@ ($ tank1) outputPressure 200)
200

96← (@ ($ pipe1) inputPressure)
200

An inspector window of ($ pipe1) appears as follows:

Example 2: Consider a conveyor that must be three feet above a bin. Assume both have an
instance variable named height.

First, create the classes and instances.

53← (DefineClass ’Bin)
#,($C Bin)

54← (DefineClass ’Conveyor)
#,($C Conveyor)

55← (← ($ Bin) AddIV ’height 0)
height

8-5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.1 USING ACTIVE VALUES

56← (← ($ Conveyor) AddIV ’height 0)
height

57← (← ($ Bin) New ’bin1)
#,($& Bin (|DAW0.1Y:.H53.]99| . 506))

58← (← ($ Conveyor) New ’conveyor1)
#,($& Conveyor (|DAW0.1Y:.H53.]99| . 507))

Create a specialization of IndirectVariable and specialize the methods GetWrappedValue
and PutWrappedValue. You need to specialize IndirectVariable because you do not want to
maintain equality between the two variables, but instead want to maintain a different
mathematical relationship. The _Supers are used to use the default behavior of
IndirectVariable which takes care of retrieving or storing the data into the tracked variable.

59← (DefineClass ’3FeetAbove
’(IndirectVariable))
#,($C 3FeetAbove)

Create an instance of 3FeetAbove and initialize its contents to point to the bin’s height.

65← (← ($ 3FeetAbove) New ’3fa1)
#,($& 3FeetAbove (|DAW0.1Y:.H53.]99| . 505))

66← (←@ ($ 3fa1) object ($ bin1))
#,($& Bin (|DAW0.1Y:.H53.]99| . 506))

67← (←@ ($ 3fa1) varName ’height)
height

Install this instance of 3FeetAbove as the value of the conveyor’s height.

68← (← ($ 3fa1) AddActiveValue ($ conveyor1) ’height)
#,($AV 3FeetAbove (3fa1 (|DAW0.1Y:.H53.]99| . 505))

(object #,($& Bin (|DAW0.1Y:.H53.]99| . 506)))
(varName height))

The height of bin1 defaults to 0, what is the height of conveyor1?

69← (@ ($ bin1) height)
0

8-6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.1 USING ACTIVE VALUES

70← (@ ($ conveyor1) height)
3

Set either bin1’s height or conveyor1’s height and notice how they track each other.

71← (←@ ($ bin1) height 15)
15

72← (@ ($ conveyor1) height)
18

73← (←@ ($ conveyor1) height 21)
21

74← (@ ($ bin1) height)
18

8.2.2 LocalStateActiveValue

This specialization sets up a class of ActiveValue that contains the instance
variable localState, which is used primarily for storing the value of the
referenced variable.

If you need an active value that will produce your own specific side-effect, you
will most likely use your own specialization of LocalStateActiveValue. The
data that would have been accessed, had an active value not been installed, is
stored in the localState instance variable.

LocalStateActiveValue [Class]

Purpose: Creates a subclass of ActiveValue with an instance variable to hold the
current value of the referenced variable.

Behavior: Holds the data that normally is stored in the variable where it is installed. At
installation time, the current variable value is placed in the localState instance
variable of the ActiveValue. Subclasses of LocalStateActiveValues are the
most common ActiveValue instances.

The class LocalStateActiveValue is commonly specialized. In particular, it is
usually desirable to specialize the methods GetWrappedValue and
PutWrappedValue associated with new subclasses of
LocalStateActiveValue. These methods implement the active value
messages sent when the variable is accessed.

Instance Variable: localState Stores the value of the referenced variable.

Examples: Several examples are included to show the use of LocalStateActiveValue.

Example 1: In this example, an active value will print a message if an attempt is made to
store an out-of-range value in an instance variable.

Define a subclass of LocalStateActiveValue and give it two instance variables that will store
the values of the limits.

99← (DefineClass ’WarningAV ’(LocalStateActiveValue))
#,($C WarningAV)

100← (← ($ WarningAV) AddIV ’lowTrigger 0)
lowTrigger

101← (← ($ WarningAV) AddIV ’highTrigger 100)
highTrigger

8-7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.1 USING ACTIVE VALUES

Specialize LocalStateActiveValue’s PutWrappedValue method to create one for
WarningAV.

Create an instance of a Bin and attach an instance of a WarningAV to its height.

4← (← ($ Bin) New ’bin3)
#,($& Bin (|DAW0.1Y:.H53.]99| . 513))

5← (←New ($ WarningAV) AddActiveValue ($ bin3) ’height)
#,($& WarningAV (|DAW0.1Y:.H53.]99| . 514))

Attempt to store various values into the bin’s height.

7← (←@ ($ bin3) height 10)
10

8← (←@ ($ bin3) height -10)
The value -10 is out of range.
-10

9← (←@ ($ bin3) height 110)
The value 110 is out of range.
110

10← (@ ($ bin3) height)
110

Example 2: In this example, an active value will return a random number when it is read from.
Puts to it will change the range of the random value returned on gets. This will use
localState for something other than storing the data for active values that provide only pure
side-effect behavior.

99← (DefineClass ’RandomAV ’(LocalStateActiveValue))
#,($C RandomAV)

100← (← ($ RandomAV) AddIV ’localState ’(0 100))
localState

Specialize LocalStateActiveValue’s PutWrappedValue and GetWrappedValue methods to
create them for RandomAV.

8-8 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.1 USING ACTIVE VALUES

Now, try to test this.

36← (DefineClass ’RandomTest)
#,($C RandomTest)

39← (← IT AddIV ’randomIV)
randomIV

40← (← ($ RandomTest) New ’rt1)
#,($& RandomTest (DCW0.0X%:.aF4.5S; . 518))

41← (←New ($ RandomAV) AddActiveValue ($ rt1) ’randomIV)
#,($& RandomAV (DCW0.0X%:.aF4.5S; . 519))

42← (@ ($ rt1) randomIV)
24

43← redo
32

44← redo
9

45← redo
49

46← (←@ ($ rt1) randomIV ’(4.0 5.0))
(4.0 5.0)

47← (@ ($ rt1) randomIV)
4.190201

48← REDO
4.1129

49← REDO
4.380234

50← REDO
4.397278

8.2.2.1 ExplicitFnActiveValue

ExplicitFnActiveValue emulates the activeValue implementation from the
Butttress version of LOOPS. Users are discouraged from using this particular
form of active values within new projects.

8-9LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.1 USING ACTIVE VALUES

See the LOOPS Users’ Modules for details on LOOPSBACKWARDS, which
describes ExplicitFnActiveValue. See Appendix A, Active Values in Buttress
LOOPS, for details on the compatibility of ActiveValue with activeValue.

8.2.2.2 NoUpdatePermittedAV

This specialization sets up a class of ActiveValue that prevents the value of a
variable from being replaced.

NoUpdatePermittedAV [Class]

Purpose: Prevents the value of a variable from being replaced using the PutValue
method.

Behavior: Stores the current value of the variable in localState, then prevents it from
being updated. GetWrappedValue requests return the value found in
localState, but PutWrappedValue requests cause a break with the break
message NoUpdatePermitted!, or a message if sent from the Exec.

Example: Suppose an identification number for a piece of data should never be
changed. Installing a NoUpdatePermittedAV in the data’s ID number will
cause a break if a replacement attempt is made.

Start with a user-defined class named Datum. Make a Datum instance named
Datum1. Set the instance variable named idNumber to the value 999. Look
at the instance. Make a new instance of NoUpdatePermittedAV, and name it
NumberGuard. Install the ActiveValue in the instance variable idNumber of
the instance Datum1. Look at the ActiveValue instance; the localState
instance variable contains the previous value of idNumber. To test this
ActiveValue, attempt to replace the idNumber of Datum1 with a new value.

67← (DefineClass ’Datum)
#,($C Datum)

68← (← ($ Datum) AddIV ’idNumber 0)
idNumber

69← (← ($ Datum) New ’Datum1)
#,($& Datum (|DAW0.1Y:.H53.]99| . 524))

70← (←@ ($ Datum1) idNumber 999)
999

71← (← ($ Datum1) PP)
(DEFINST Datum (Datum1 (|DAW0.1Y:.H53.]99| . 524)) (idNumber 999))
#,($& Datum (|DAW0.1Y:.H53.]99| . 524))

74← (← ($ NoUpdatePermittedAV) New ’NumberGuard)
#,($& NoUpdatePermittedAV (|DAW0.1Y:.H53.]99| . 525))

75← (← ($ NumberGuard) AddActiveValue ($ Datum1) ’idNumber)
#,($AV NoUpdatePermittedAV (NumberGuard (|DAW0.1Y:.H53.]99| . 525))
 (localState 999))

76← (← ($ Datum1) PP)
(DEFINST Datum (Datum1 (|DAW0.1Y:.H53.]99| . 524))
 (idNumber #,($AV NoUpdatePermittedAV (NumberGuard

(|DAW0.1Y:.H53.]99| . 525)) (localState 999))))
#,($& Datum (|DAW0.1Y:.H53.]99| . 524))

77← (←@ ($ Datum1) idNumber 888)
No update permitted!
NIL

8-10 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.1 USING ACTIVE VALUES

8.2.2.3 LispWindowAV

This specialization sets up a class of ActiveValue used by the system to
guarantee that the window instance variable within a LOOPS Window
instance contains an Interlisp window. This class provides functionality
required by the LOOPS system, and should not generally used by LOOPS
users.

LispWindowAV [Class]

Purpose: Guarantees that a variable contains a window which has been made into a
LOOPS window.

Behavior: Meant to be installed only in the instance variable window of instances of
class Window. A specialization of LocalStateActiveValue. Checks to see if
its localState is a window, and assures that other instance variables of the
window instance are set correctly. See Chapter 19, Windows, for further
details.

8.2.2.4 Breaking and Tracing Active Values

The following active values are all specializations of LocalStateActiveValue
and are used for debugging, as described in Chapter 12, Breaking and
Tracing. This chapter also describes UnbreakIt, which unbreaks or untraces
a method of a class. These classes provide functionality required by the
LOOPS system, and are not generally used by LOOPS users.

Note: All breaks and traces occur before the variable is read or modified.

BreakOnPut [Class]

Purpose: Breaks when a replacement attempt is made.

Behavior: Breaks when a replacement attempt is made. Local variables bound at the
time of the break are containingObj, varName, and propName.

BreakOnPutOrGet [Class]

Purpose: Breaks when a retrieval or replacement of a variable is made. This is a
specialization of BreakOnPut.

Behavior: Break occurs before any access to the variable where it is installed. Local
variables bound at the time of the break are containingObj, varName, and
propName.

TraceOnPut [Class]

Purpose: Traces replacements of a variable.

Behavior: Has a specialized PutWrappedValue method that causes the values of the
arguments containingObj, varName, and propName to print in the trace
window when the variable is about to be modified.

TraceOnPutOrGet [Class]

Purpose: Traces retrievals and replacements of a variable. This is a specialization of
TraceOnPut.

8-11LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.1 USING ACTIVE VALUES

Behavior: The GetWrappedValue method is also specialized so that the variable is
traced before any access of the variable where it is installed.

8.2.2.5 AppendSuperValue

This specialization allows the value of a variable to reside only partially in the
local instance or class. This is a specialization of the ReplaceMeAV,
InheritingAV, and LocalStateActiveValue classes.

AppendSuperValue [Class]

Purpose: Allows the value of a variable to be defined by both a local value and an
inherited value.

Behavior: When an instance of AppendSuperValue is installed in a variable, Get-
references return its localState appended to the end of the inherited value the
variable would have if it had no local value. Any PutValue to the variable
replaces the active value, not just the localState; InheritingAV and its
specializations are designed for use more in class variables where
replacement is infrequent.

Examples: Several examples are included to show the use of AppendSuperValue.

Example 1: Append the localState of the instance variable idNumber to the default value
specified in the class description.

23←(DefineClass ’Datum)
#,($C Datum)

24←(← ($ Datum) AddIV ’idNumber ’(5))
idNumber

25←(← ($ Datum) New ’Datum1)
#,($ Datum1)

26←(@ ($ Datum1) idNumber)
(5)

27←(←@ ($ Datum1) idNumber ’(9))
(9)

28←(@ ($ Datum1) idNumber)
(9)

29←(←New ($ AppendSuperValue) AddActiveValue ($ Datum1) ’idNumber)
#,($& AppendSuperValue (45 . 54648))

30←(@ ($ Datum1) idNumber)
(5 9)

Example 2: In this example, there are two classes of cars; the Two-tone-Car class is a
subclass of the class Car. Each Car class has the instance variable color. The default value
for color in the class Car is (white).

89← (DefineClass ’Car)
#,($C Car)

90← (DefineClass ’Two-tone-Car ’(Car))
#,($C Two-tone-Car)

91← (← ($ Car) AddIV ’color ’(white))
color

8-12 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.1 USING ACTIVE VALUES

92← (← ($ Two-tone-Car) AddIV ’color)
color

The default value for color in the class Two-tone-Car is an instance of AppendSuperValue
with its localState set to (blue). The technique for adding active values as default values in a
class is discussed in Section 8.3.1, "Adding and Deleting Active Values.".

100← (← ($ AppendSuperValue) New ’asv1)

1← (←@ ($ asv1) localState ’(blue))

2← (PutClassIV ($ Two-tone-Car) ’color
(create annotatedValue

annotatedValue ← ($ asv1)))
#,($AV AppendSuperValue (asv1 (|DAW0.1Y:.H53.]99| . 528))

(localState (blue)))

9← (← ($ Car) New ’car1)
#,($& Car (|DAW0.1Y:.H53.]99| . 531))

10← (← ($ Two-tone-Car) New ’ttcar1)
#,($& Two-tone-Car (|DAW0.1Y:.H53.]99| . 532))

11← (@ ($ car1) color)
(white)

When an instance of a Two-tone-Car is created the default value for its instance variable color
is the combination of the values in both the classes Car and Two-tone-Car. The first inspector
shows the existence of the active value that provides this behavior. As soon as one puts a
value for color in this instance, the AppendSuperValue active value is replaced by the new
value as shown in the second inspector.

12← (@ ($ ttcar1) color)
(white blue)

13← (INSPECT ($ ttcar1))
{WINDOW}#50,5000

14← (←@ ($ ttcar1) color ’(tan brown))
(tan brown)

For another example, see the TitleItems class variable of the class ClassBrowser, where
AppendSuperValue is used to add menu items to an inherited menu.

8.2.2.6 FirstFetchAV

This specialization has instances that have an expression as the value of the
instance variable localState. These active values allow a form to be
evaluated the first time that they are read.

FirstFetchAV [Class]

Purpose: This is a specialization of the ReplaceMeAV mixin and
LocalStateActiveValue. Instances of this class have an expression as the
value of the instance variable localState.

8-13LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.1 USING ACTIVE VALUES

Behavior: On the first get access, the expression in localState is evaluated. The
resulting value replaces the FirstFetchAV so the variable is no longer an
active value. On the first put access, the put value replaces the FirstFetchAV
so the variable is no longer an active value. A FirstFetchAV is often used as
the default value for a variable. This class also specializes the method
AVPrintSource so that instances print as follows when wrapped in an
annotatedValue:

#,(Defer contentsOfLocalState)

CAUTION

FirstFetchAVs cannot be shared. Unlike lists, SEdit does not make copies of
active values. Hence, if active values are copied in SEdit, they will share
structure, and if one is modified, all will be changed.

Workaround: Use CopyActiveValue to copy the active value instance and
the local state into each instance which uses the FirstFetchAV. See Section
8.3.4, "Shared ActiveValues in Variable Inheritance," for information on
CopyActiveValue.

Example: An example application of FirstFetchAV is an instance variable that stores a
font descriptor. A font descriptor in a class definition does not save
correctly;only the pointer to the descriptor is saved. A FirstFetchAV stores
the expression used to create the descriptor. So, for example the expression
held in the localState of the FirstFetchAV is

(FONTCREATE ’HELVETICA 12 ’BOLD)

On the first access of the instance variable, the font descriptor produced by
calling FONTCREATE replaces the FirstFetchAV.

The complete example follows.

29← (DefineClass ’TextObject)
#,($C TextObject)

30← (← ($ TextObject) AddIV ’font)
font

31← (← ($ FirstFetchAV) New ’ffav1)
#,($& FirstFetchAV (|DAW0.1Y:.H53.]99| . 535))

32← (←@ ($ ffav1) localState ’(FONTCREATE ’HELVETICA 12 ’BOLD)]
(FONTCREATE (QUOTE HELVETICA) 12 (QUOTE BOLD))

33← (PutClassIV ($ TextObject) ’font
(create annotatedValue
annotatedValue ← ($ ffav1)))

#,(Defer (FONTCREATE (QUOTE HELVETICA) 12 (QUOTE BOLD)))

34← (← ($ TextObject) Edit)
TextObject

8-14 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.1 USING ACTIVE VALUES

35← (← ($ TextObject) New ’to1)
#,($& TextObject (|DAW0.1Y:.H53.]99| . 536))

36← (INSPECT ($ to1))
{WINDOW}#47,125470

37← (@ ($ to1) font)
{FONTDESCRIPTOR}#74,167334

8.2.3 InheritingAV

This specialization of ActiveValue is used as a mixin to add the
InheritedValue method.

InheritingAV [Class]

Purpose: Used as a mixin to add the InheritedValue method.

Behavior: An abstract class, adds a method InheritedValue which allows looking at the
value a variable would have if it had no local value, as NotSetValue would
work. Used as a mixin to add this capability to other specializations of
ActiveValue.

Example: Used as super class of AppendSuperValue to provide incremental menus in
various parts of LOOPS.

(← self InheritedValue containingObj varName propName type) [Method of InheritingAV]

Purpose/Behavior: Allows viewing the value a variable would have inherited if it had no local value
yet assigned. Similar to the way NotSetValue works, it is removed by an
assignment to the variable.

Arguments: self InheritingAV instance.

containingObj
The instance or class that contains the variable to be viewed.

varName In the containingObj the variable to be viewed.

propName Name of an instance variable or class variable property to be
looked at. If propName is NIL, the variable itself is viewed.

8-15LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.1 USING ACTIVE VALUES

type One of IV, CV, or NIL: a type of IV or NIL indicates that the
variable is an instance variable or an instance variable property
of containingObj; a type of CV indicates a class variable or class
variable property of containingObj.

Returns: The value which would have been inherited if the variable had no local value.

8.2.4 ReplaceMeAV

This specialization of the class ActiveValue sets up the functionality to
replace itself on the first Put- access.

ReplaceMeAV [Class]

Purpose: Specializes the method PutWrappedValue to simply replace itself on the first
Put- request.

Behavior: No variables are defined in this class. It is an abstract class not intended for
instantiation. It is a mixin (see Chapter 3, Classes) to be combined in
specialization with another class to add its functionality to the subclass.

Example: FirstFetchAV combines LocalStateActiveValue and ReplaceMeAV to get an
ActiveValue that replaces itself with the value of an expression stored in the
instance variable localState.

8.2.5 NotSetValue

This section describes where and when instances of this class appear in user-
defined objects.

CAUTION

Do not specialize the classes NotSetValue and NestedNotSetValue. The
documentation is provided here only to explain the functionality that these
classes provide to the LOOPS system.

NotSetValue [Class]

Purpose: This specialization of the class ActiveValue is unique in that it was created
primarily for implementing instance variable inheritance. It has no instance
variable to hold a local value and is replaced after the first Put- variable
access.

Behavior When an instance of any LOOPS object is created, its instance variables are
initialized to contain the value of the variable NotSetValue. NotSetValue is
an annotatedValue whose ActiveValue is the only instance of the class
NotSetValue. The value of NotSetValue stored in an instance variable may
be replaced within other initialization procedures of new instances that are
invoked by the methods NewWithValues and NewInstance and the instance
variable property :initForm.

The class NotSetValue specializes the default ActiveValue protocol to trigger
instance variable inheritance. An annotatedValue check is always done by
GetValue and PutValue. LOOPS speeds up instance generation by always
initializing instance variables to the value NotSetValue. If a retrieval attempt
is made on the variable, NotSetValue finds the inherited value and returns
that value. If no requests are made for the value of the variable, there is no
overhead for the instance variable.

8-16 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.1 USING ACTIVE VALUES

The term local value refers to the values LOOPS has actually written into that
instance’s instance variables. The local value is always equal to NotSetValue
before the first Put- access, and to a new value after the first Put- access.

The annotatedValue #,NotSetValue is bound to the Lisp variable
NotSetValue. It must always be on the inside of any sequence of nested
ActiveValues. Its WrappingPrecedence method returns NIL, ensuring this
functionality. NotSetValue has no localState instance variable to hold any
nested ActiveValues.

See Section 8.3.4, "Shared ActiveValues in Variable Inheritance," for
information on ActiveValues as default values.

Example: Consider the class Datum with the instance variable idNumber. Create a new
instance named Datum2. A standard GetValue or @ call returns the default
value of idNumber, since nothing else has yet been assigned. The call
GetIVHere shows that the value is not stored in the instance, but is actually
returned by NotSetValue.

91←(← ($ Datum) New ’Datum2)
#,($ Datum2)

92←(@ ($ Datum2) idNumber)
NIL

93←(GetIVHere ($ Datum2) ’idNumber)
#,NotSetValue

8.2.5.1 NestedNotSetValue

This subclass of the class NotSetValue is used by the internal of LOOPS to
solve the problem of using active values as default values.

8.2.6 User Specializations of Active Values

If new specializations of the class ActiveValue are defined, the methods
GetWrappedValueOnly and PutWrappedValueOnly might need to be
specialized (LOOPS-defined specializations of ActiveValue, such as
LocalStateActiveValue, have already done this). You may also want to
specialize the following methods:

AVPrintSource Prints an ActiveValue instance.

GetWrappedValue Method associated with getting an ActiveValue.

PutWrappedValue Method associated with putting an ActiveValue.

WrappingPrecedence Returns T, NIL, or a number to specify order of ActiveValue nesting.

CopyActiveValue Copies an annotatedValue and its wrapped ActiveValue.
8.3 ACTIVE VALUE METHODS

8.3 ACTIVE VALUE METHODS

8.3 Active Value Methods

Methods defined in the class ActiveValue describe how active values work.

8-17LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.1 USING ACTIVE VALUES

8.3.1 Adding and Deleting Active Values

This section describes the methods to install, delete, and replace active
values.

Name Type Description

AddActiveValue Method Makes a variable or property an active value.

WrappingPrecedence Method Returns a value which determines how to nest the active value.

DeleteActiveValue Method Deletes an active value.

ReplaceActiveValue Method Replaces an active value.

(← self AddActiveValue containingObj varName propName type annotatedValue) [Method of ActiveValue]

Purpose: Accomplishes two tasks fundamental in making a variable or property an
active value. First, the ActiveValue is wrapped inside an annotatedValue.
Second, the annotatedValue is placed as the value of the variable.

Behavior: AddActiveValue associates the annotatedValue with the variable specified by
the arguments. If the argument annotatedValue is not specified or is NIL, a
new annotatedValue is created containing the ActiveValue self. When the
current value of the variable is already an annotatedValue, the
WrappingPrecedence message determines if it should be nested in the
current one or wrapped around it.

Arguments: self ActiveValue instance.

containingObj
The instance or class that contains the variable where the
ActiveValue is to be added.

varName In the containingObj the variable to be made into an
ActiveValue.

propName Name of an instance variable or class variable property to be
made into an ActiveValue. If propName is NIL, the ActiveValue
is associated with the variable itself.

type One of IV, CV, CLASS, METHOD, or NIL.

- A type of IV or NIL indicates that varName is an instance
variable or an instance variable property of containingObj.

- A type of CV indicates a class variable or class variable
property of containingObj.

- A type of CLASS indicates access to a class object’s instance
variables and properties.

- A type of METHOD indicates access to a method object ’s
instance variables and properties.

annotatedValue
AnnotatedValue object used to contain this ActiveValue. If
NIL, a new annotatedValue is created.

Returns: annotatedValue

Example: Adds the ActiveValue instance named ($ ActiveValueInstance) to the object
($ ExampleLoopsWindowInstance) in the instance variable width.

8-18 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.1 USING ACTIVE VALUES

71←(← ($ ActiveValueInstance) AddActiveValue ($
ExampleLoopsWindowInstance) ’width)

#,($AV IndirectVariable (ActiveValueInstance (NCV0.0X:.SD7.KR . 8))
(object #,($ ExampleLoopsWIndowInstance))(varName width))

(← self WrappingPrecedence) [Method of ActiveValue]

Purpose: Returns a value which determines how to nest the ActiveValue associated
with self.

Behavior: Varies according to the value returned.

• T

The ActiveValue associated with self goes on the outside of any other
active values.

• NIL

This ActiveValue goes on the inside.

If two ActiveValues return either T or NIL, a break occurs.

• Number

Specifies precedence: ActiveValues with larger WrappingPrecedence
values go outside ones with smaller WrappingPrecedence values.

CAUTION

It is potentially dangerous to have more than one class with a T or NIL
precedence.

ActiveValues that have the instance variable localState nest in the following
way. When a new ActiveValue is added to an existing one with equal
WrappingPrecedence, the original ActiveValue is held in the localState of
the new one. ActiveValues not having an instance variable localState must
nest inside of ones that do.

To set the WrappingPrecedence for a user specialization of ActiveValue,
specialize this method to return the proper value.

Arguments: self ActiveValue instance.

Returns: The default method defined in the class ActiveValue returns 100.
WrappingPrecedence for the class NotSetValue returns NIL.
WrappingPrecedence for IndirectVariable returns 50.

(← self DeleteActiveValue containingObj varName propName type) [Method of ActiveValue]

Purpose: Deletes an ActiveValue from containingObj.

Behavior: If the variable defined by the arguments is an ActiveValue, it is deleted. If it
contains a nested ActiveValue, the one matching self is deleted; otherwise,
nothing happens. No ActiveValue messages are triggered. If the deleted
ActiveValue had a localState, it becomes the current value.

Arguments: self ActiveValue instance.

8-19LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.1 USING ACTIVE VALUES

containingObj
The instance or class that contains the variable where the
ActiveValue is found.

varName In the containingObj the variable that contains the ActiveValue.

propName Name of an instance variable or class variable property where
the ActiveValue resides. If propName is NIL, the ActiveValue
is associated with the variable itself.

type One of IV, CV, CLASS, METHOD, or NIL.

- A type of IV or NIL indicates that varName is an instance
variable or an instance variable property of containingObj.

- A type of CV indicates a class variable or class variable
property of containingObj.

- A type of CLASS indicates access to a class object’s instance
variables and properties.

- A type of METHOD indicates access to a method object’s
instance variables and properties.

Returns: The deleted annotatedValue if a match was found, NIL otherwise.

(← self ReplaceActiveValue newVal containingObj varName propName type) [Method of ActiveValue]

Purpose: Replaces an ActiveValue.

Behavior: Replaces the ActiveValue self with newVal. The location of the old
ActiveValue is described by the arguments. No ActiveValue messages are
triggered.

Arguments: self ActiveValue instance.

newVal The new value used to replace self.

containingObj
The instance or class that contains the variable where the
ActiveValue is found.

varName In the containingObj the variable that holds the ActiveValue.

propName Name of an instance variable or class variable property where
the ActiveValue resides. If propName is NIL, the ActiveValue
is associated with the variable itself.

type type is one of IV, CV, or NIL: a type of IV or NIL indicates that
the variable is an instance variable or an instance variable
property of containingObj; a type of CV indicates a class variable
or class variable property of containingObj.

Returns: The value of newVal.

8.3.2 Fetching and Replacing Wrapped Values

The value of a variable is wrapped in an ActiveValue, usually by keeping it in
the instance variable localState. Specify the behavior of new ActiveValue
specializations by specializing the methods GetWrappedValue and
PutWrappedValue. For example, IndirectVariable.GetWrappedValue just
does a GetValue on the slot specified by its object, varName, propName,
and type instance variables. These methods may perform arbitrary work
before returning a value, usually that of localState. The methods
GetWrappedValueOnly and PutWrappedValueOnly are available for
accessing localState and bypassing the ActiveValue mechanism.

8-20 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.1 USING ACTIVE VALUES

The following table shows the items in this section.

Name Type Description

GetWrappedValue Method Contains the code to be triggered by a Get- reference to the
variable which has been made an ActiveValue.

GetWrappedValueOnly Method Provides a mechanism to assist in handling nested
ActiveValues.

PutWrappedValue Method Contains the code to be triggered by a Put- reference to the
variable which has been made an ActiveValue.

PutWrappedValueOnly Method Provides a mechanism to assist in handling nested
ActiveValues.

(← self GetWrappedValue containingObj varName propName type) [Method of ActiveValue]

Purpose: Contains the code to be triggered by a Get- reference to the variable which
has been made an ActiveValue.

Behavior: Performs arbitrary actions, but when finished, it must return a value which will
be returned as the value of the Get to the original variable.

This method is fundamental for ActiveValues. When GetValue or
GetClassValue finds an annotatedValue in an instance, it does not return that
as the value. Instead, it sends the contained ActiveValue the
GetWrappedValue message. This method is not usually called explicitly by
users, but is triggered when the GetValue function retrieves the value of a
variable that contains an ActiveValue. It should be specialized when a new
subclass of ActiveValue is defined.

Arguments: self ActiveValue instance.

containingObj
The instance or class that contains the variable where the
ActiveValue is found.

varName In the containingObj the variable that holds the ActiveValue.

propName Name of an instance variable or class variable property where
the ActiveValue resides. If propName is NIL, the ActiveValue
is associated with the variable itself.

type One of IV, CV, or NIL: a type of IV or NIL indicates that the
variable is an instance variable or an instance variable property
of containingObj; a type of CV indicates a class variable or class
variable property of containingObj.

Returns: The value returned from the actions performed by GetWrappedValue
message.

(← self GetWrappedValueOnly) [Method of ActiveValue]

Purpose: Enables the ActiveValue mechanism to deal with different problems of nested
ActiveValues. You will generally not need to specialize this method, as most
uses of ActiveValues will specialize a subclass of ActiveValue.

Behavior: Specializations of the class ActiveValue may need to specialize this method.
(LocalStateActiveValue, IndirectVariable, and NotSetValue all have
specialized versions of this method.)

The class LocalStateActiveValue specialization simply returns the value of
self’s localState without triggering the active value mechanism.

8-21LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.1 USING ACTIVE VALUES

The class IndirectVariable specialization simply returns the value of tracked
variable without triggering the active value mechanism.

The class NotSetValue specialization simply returns the value of
NotSetValue.

 Arguments: self ActiveValue instance.

Returns: See Behavior.

(← self PutWrappedValue containingObj varName newValue propName type) [Method of ActiveValue]

Purpose: Contains the code to be triggered by a Put- reference to the variable which
has been made an ActiveValue.

Behavior: The PutWrappedValue message is similar to GetWrappedValue except that
it is triggered when the local state of the value is to be replaced. When
PutValue or PutClassValue attempts to replace an ActiveValue, it instead
sends the contained ActiveValue the PutWrappedValue message.

The default method found in the class ActiveValue checks for nested
ActiveValues by sending the GetWrappedValueOnly message to self. If the
result is an AnnotatedValue, PutWrappedValue forwards the message on
the nested ActiveValue; otherwise it sends the message
PutWrappedValueOnly to self and returns the result.

Arguments: self ActiveValue instance.

containingObj
The instance or class that contains the variable where the
ActiveValue is found.

varName In the containingObj the variable that holds the ActiveValue.

newValue The value used to replace the ActiveValue containing self.

propName Name of an instance variable or class variable property where
the ActiveValue resides. If propName is NIL, the ActiveValue
is associated with the variable itself.

type One of IV, CV, or NIL: a type of IV or NIL indicates that the
variable is an instance variable or an instance variable property
of containingObj; a type of CV indicates a class variable or class
variable property of containingObj.

Returns: The value of newValue.

(← self PutWrappedValueOnly newValue) [Method of ActiveValue]

Purpose: Enables the ActiveValue mechanism to deal with different problems of nested
ActiveValues. You will generally not need to specialize this method, as most
uses of ActiveValues will specialize a subclass of ActiveValue.

Behavior: Specializations of the class ActiveValue may need to specialize this method.
(LocalStateActiveValue, IndirectVariable, and NotSetValue all have
specialized versions of this method.)

The class LocalStateActiveValue specialization simply stores newValue into
self’s localState without triggering the active value mechanism.

The class IndirectVariable specialization simply stores newValue into tracked
variable without triggering the active value mechanism.

The class NotSetValue specialization causes a break.

8-22 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.1 USING ACTIVE VALUES

Arguments: self ActiveValue instance.

newValue The new value for localState.

Returns: See Behavior.

8.3.3 Get and Put Functions Bypassing the ActiveValue Mechanism

ActiveValues normally convert GetValue, GetClassValue, PutValue, and
PutClassValue accesses into messages which invoke methods to return a
value, usually from the localState instance variable of the ActiveValue. The
following functions allow access to class variables and instance variables
without triggering any installed ActiveValue. See Chapter 2, Instances, for
details.

Name Type Description

GetValueOnly Function Finds the value of an instance variable without triggering active
values.

PutValueOnly Function Writes the value of an instance variable without triggering active
values.

GetClassValueOnly Function Returns the value of a class variable; does not trigger active
values.

PutClassValueOnly Function Changes the value of a class variable and changes the value of
a class variable. The change occurs within the class and
therefore causes all instances to access the new value of the
variable. Does not trigger active values.

8.3.4 Shared ActiveValues in Variable Inheritance

When a LocalStateActiveValue is used as the default value for an instance
variable in a class, it must be copied into each instance or else all of the
instances try to share a single localState. This copying is done automatically
by LOOPS when the instance variable is first accessed, which means that all
instances will share the same ActiveValue until that first access. Copying an
ActiveValue implies creating a new annotatedValue, so it must be done with
the specialized method CopyActiveValue.

ActiveValues with no local state may be shared by several variables. In the
most extreme case, one instance of NotSetValue is the default for the
instance variables of all new instances of all classes.

(← self CopyActiveValue annotatedValue) [Method of ActiveValue]

Purpose: Makes a copy of an ActiveValue instance.

Behavior: Copies the AnnotatedValue and the wrapped ActiveValue handling instance
variables as follows:

• Instance variables that contain AnnotatedValues are copied using the
CopyActiveValue method.

• The instance variable localState is copied so that each copy has its own
unique local state.

• All other instance variables are considered shared, and are not copied.

Arguments: self ActiveValue instance.

8-23LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.1 USING ACTIVE VALUES

annotatedValue
The annotatedValue that surrounds self.

Returns: A new annotatedValue wrapped around a copy of the ActiveValue self.

8.3.5 Creating Your Own Active Value

This example defines a new kind of active value, a BlippingActiveValue,
which prints out a "blip" of some kind whenever the variable it wraps is read or
written.

First, define the new class as a specialization of LocalStateActiveValue, then
specialize the PutWrappedValue and GetWrappedValue methods. This is
done with the display editor, so in the example they are printed out via the
PPMethod method. In each case, a PRINTOUT function was added before
the call to ←Super.

Create an instance of Window for a location to install a BlippingActiveValue
for the example. Line 38 is required to set the value of height locally to
instance Window1; if this is not done, its initial value is the active value
#,NotSetValue, which would remove any active value as soon as it was
accessed.

The last few statements in the example show how read and write accesses to
height cause a blip character to be printed before height is either read or
written, with a "!" character representing a write access triggering
PutWrappedValue, and a "." character representing a read access triggering
GetWrappedValue.

32←(DefineClass ’BlippingActiveValue ’(LocalStateActiveValue]
#,($ BlippingActiveValue)

33←(← ($ BlippingActiveValue) SpecializeMethod ’PutWrappedValue]
BlippingActiveValue.PutWrappedValue

34←(← ($ BlippingActiveValue) SpecializeMethod ’GetWrappedValue]
BlippingActiveValue.GetWrappedValue

35←(← ($ BlippingActiveValue) PPMethod ’PutWrappedValue]

(BlippingActiveValue.PutWrappedValue
 (Method ((BlippingActiveValue PutWrappedValue)
 self containingObj varName newValue propName type)

COMMENT **COMMENT**
 (PRINTOUT PPDefault "!")
 (←Super self PutWrappedValue containingObj varName newValue
 propName type)))
(BlippingActiveValue.PutWrappedValue)

36←(← ($ BlippingActiveValue) PPMethod ’GetWrappedValue]

(BlippingActiveValue.GetWrappedValue
 (Method ((BlippingActiveValue GetWrappedValue)
 self containingObj varName propName type)

COMMENT **COMMENT**
 (PRINTOUT PPDefault ".")
 (←Super self GetWrappedValue containingObj varName propName
type)))
(BlippingActiveValue.GetWrappedValue)

37←(← ($ Window) New ’Window1]
#,($ Window1)

38←(←@ ($ Window1) height 9876]

8-24 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.1 USING ACTIVE VALUES

9876

39←(←New ($ BlippingActiveValue) AddActiveValue ($ Window1) ’height]
#,($& BlippingActiveValue (46 . 45056))

40←(←@ ($ Window1) height 300)
!300

41←(@ ($ Window1) height]
.300

42←(FOR I TO 20 SUM (@ ($ Window1) height]
....................6000

43←(←@ ($ Window1) height 123]
!123

44←(FOR I TO 20 DO SUM (←@ ($ Window1) height I]
!!!!!!!!!!!!!!!!!!!!210

45←

8.4 ANNOTATED VALUES
8.4 ANNOTATED VALUES

8.4 Annotated Values

AnnotatedValue is a LOOPS pseudoclass, and instances of it, called
pseudoinstances, are Interlisp data type instances.

The structure of the data type is simple. Each annotatedValue contains one
field named annotatedValue. This field contains an ActiveValue object. The
Interlisp record package macros discussed below let you create and work with
instances of the data type annotateValue.

There is also a LOOPS class named AnnotatedValue. It is an abstract class
so it cannot be instantiated, but paradoxically there are objects which consider
it their class. (Actually, it is not paradoxical, but this behavior is implemented
at a low level within the LOOPS system.) These are the Lisp data type
annotatedValue. In normal use this class can be ignored.

AnnotatedValue [Class]

Purpose: LOOPS class equivalent of Lisp data type annotatedValue.

Behavior: This is a LOOPS class, but not a subclass of Object. Its super is the LOOPS
class Tofu. (See Chapter 4, Metaclasses, for a description of Tofu.)
AnnotatedValue is a LOOPS abstract class, and instances are Interlisp data
type instances. LOOPS fields messages sent to the annotatedValue data type
instances by using the class definition AnnotatedValue.

8.4.1 Explicit Control over Annotated Values

This section describes the macros and methods that allow explicit control over
annotated values.

Name Type Description

type? Macro Performs a type check for an instance of the Lisp data type
annotatedValue.

8-25LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.1 USING ACTIVE VALUES

create Macro Creates a new instance of the data type annotatedValue.

fetch Macro Retrieves the contents of the annotatedValue field of an
annotatedValue instance.

replace Macro Replaces contents of the annotatedValue field of the
annotatedValue instance.

_AV Macro Sends a message to the ActiveValue object wrapped in an
annotatedValue.

MessageNotUnderstood Method Forwards messages intended for the wrapped ActiveValue to
that object.

(type? annotatedValue value) [Macro]

Purpose: Performs a type check for an instance of the Lisp data type annotatedValue.

Arguments: value The value to type check.

Returns: T if value is an instance of the data type annotatedValue, NIL otherwise.

(create annotatedValue annotatedValue ← object) [Macro]

Purpose: Creates a new instance of the data type annotatedValue.

Arguments: object An ActiveValue object to initialize the field annotatedValue of
the new annotatedValue instance. This must be an object that
has a method AVPrintSource (a method of ActiveValue) or this
form breaks on evaluation. No type checking of object will be
performed by the macro.

Returns: An instance of annotatedValue.

(fetch annotatedValue of value) [Macro]

Purpose: Retrieves the contents of the annotatedValue field of an annotatedValue
instance.

Arguments: value An annotatedValue instance.

Returns: Contents of field annotatedValue.

(replace annotatedValue of value with object) [Macro]

Purpose: Replaces contents of the annotatedValue field of annotatedValue instance
with object.

Arguments: value An annotatedValue instance.

object ActiveValue object to be stored in the field. No type checking is
done on object.

Returns: If value is not an annotatedValue, generates an error; otherwise the previous
contents of the field is returned.

(_AV av selector . args) [Macro]

Purpose: Sends a message to the ActiveValue object wrapped in an annotatedValue.

8-26 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.1 USING ACTIVE VALUES

Behavior: Equivalent to

(_ (fetch annotatedValue of av) selector .args)

Arguments: av Instance of an annotatedValue.

selector Selector for message to send to the ActiveValue object.

args Arguments to be passed when the message is sent.

Returns: Result of message.

(← self MessageNotUnderstood) [Method of AnnotatedValue]

Purpose: Forwards messages intended for the wrapped ActiveValue to that object.

Behavior: Messages sent to an annotatedValue are forwarded to its wrapped
ActiveValue. Users should not explicitly send this message.

8.4.2 Saving and Restoring Annotated Values

The following are methods of the class ActiveValue that handle annotated
values.

(← self AVPrintSource) [Method of ActiveValue]

Purpose: Prints ActiveValues.

Behavior: An annotatedValue determines how it prints out by sending the
AVPrintSource message to its wrapped ActiveValue.

The default method in ActiveValue returns a list of the form:

("#," $AV className avNames(ivName value propName value ...)(ivName ...) ...)

which causes the annotatedValue to print out as

#,($AV className avNames(ivName value propName value ...)(ivName ...) ...)

Arguments: self ActiveValue instance.

className Name of the class of the ActiveValue.

avNames List of names of self; the last element being the unique identifier
(UID) of self

The list (ivName value propName value ...) describes the state of the instance
variables of the ActiveValue. Including the UID of the ActiveValue in the
print form enables recovery of the identity of the ActiveValue. This enables
different annotatedValues to share the same ActiveValue, and maintain this
sharing across saving to a file and reloading into Lisp.

Returns: A form suitable for use by the Interlisp function DEFPRINT. Result should be
a pair of the form (item1 . item2); item1 will be printed using PRIN1, and item2
will be printed using PRIN2 (see Lisp Release Notes and the Interlisp-D
Reference Manual description of DEFPRINT).

Example: #,($AV IndirectVariable (HeightFromWidth (NCV0.0X:.SD7.KR
. 8))
(object #.($ SquareWindow)) (varName width) (propName NIL)
(type IV))

8-27LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.1 USING ACTIVE VALUES

($AV className avNames . ivForms) [NLambda, NoSpread Function]

Purpose: Reconstructs an annotatedValue that has been saved to a file.

Arguments: className Name of the class of ActiveValue.

avNames A list of the LOOPS names of ActiveValue instances.

ivForms A list describing the state of the instance variables of the
ActiveValue.

Returns: A new annotatedValue whose ActiveValue is reconstructed from the
avNames and ivForms.

8.5 ACTIVE VALUES IN CLASS STRUCTURES
8.5 ACTIVE VALUES IN CLASS STRUCTURES

8.5 Active Values in Class Structures

It is possible to have an active value as the default value of an instance
variable or the value of a class variable in a class. For example, the following
class has an active value installed in the class variable dontChange and one
installed in the instance variable firstRead.

LocalStateActiveValue active values as default IV values are copied down
into the instance when their localState is smashed, instead of being shared by
all instances; this is different from normal default behavior. It is also possible
to create a LocalStateActiveValue which inherits its localState value by
giving it a localState value of the value of NotSetValue). These copy the
inherited value down from the superclass when the LocalStateActiveValue is
created; if the value in the superclass is changed after the
LocalStateActiveValue is created, that change will not be reflected in the
LocalStateActiveValue. Normally inherited values are always tracked by
instances that inherit them.

There are two ways to enter active values into the structure of a class: with the
editor or programmatically.

It is possible to create active values by typing in a form such as:

($AV activeValueClassName NIL (ivname value propName value ...)(ivname
value propName value ...) ...). None of the arguments are evaluated.

To add an active value through the editor, you can type in the above form,
select it, and mutate it with the function EVAL.

Programmatically, you can use the functions PutClassIV, PutClassValue,
PutClassValueOnly, AddCIV, AddCV, etc. or different methods, such as
Add, to modify or add class variables and instance variables.

8-28 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.1 USING ACTIVE VALUES

For example, given the above class, test:

(← ($ test) Add ’CV ’randomJustOnce ($AV FirstFetchAV NIL
(localState (RAND 0 1000))))

and

(AddCIV ($ test) ’newIV ($AV LocalStateActiveValue NIL
(localState (1 2 3))))

will result in the following:

An even more general programmatic method that more easily allows
customization of an active value uses the annotatedValue data type explicitly.
First, you must create an instance of an ActiveValue class.

(← ($ MyActiveValue) New ’MyAV1)

Then the contents of the instance MyAV1 are initialized. Finally, it is added as
the value of a variable in a class structure.

(AddCIV ($ test) ’myNewIV (create annotatedValue
annotatedValue ← ($ MyAV1)))

8-29LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.1 USING ACTIVE VALUES

[This page intentionally left blank]

