
7-1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

7. MESSAGE SENDING FORMS
 

Objects in LOOPS communicate with each other by sending messages.  This 
chapter describes the standard message sending forms used in LOOPS.   

The following table shows the macros in this section.

Name Type Description

← Macro and Sends a message to an object.
Function

SEND Macro and Sends a message to an object.
Function

←! Macro and Evaluates the selector and sends a message to an object.
Function

←IV Macro Invokes the function stored in an instance variable of the object.

←Try Macro Sends a message to an object only if it has a corresponding 
method.

←Proto Macro Sends a message to the prototype instance of a class.

←Super Macro and Combines an inherited method with local code; must appear F
unction in the body of a method.

←Super? Macro Combines an inherited method with local code; must appear in 
the body of a method.  This does not cause an error if there is no 
inherited method.

←SuperFringe Macro and Invokes general methods for objects with more than one
Function super class from which to inherit methods; must appear in the 

body of a method.

←New NLambda Creates an instance of a class and then sends a message to 
NoSpread that instance.
Macro

FetchMethod Macro Finds the function name which implements the method invoked 
by a selector.

In addition, Chapter 8, Active Values, contains a description of ←AV, and 
Chapter 15, Performance Issues, contains a description of ←Process and 
←Process!.

(← self sel  arg1 ... argn )  [Macro and Function]

Purpose: Sends the message with the selector sel to an object self.  This is the standard 
way to send a message.

Behavior: Evaluates all arguments except sel. 

When an object receives a message, it tries to match the selector sel with the 
names of its methods. If the object or the message does not recognize the 
message, a Not Understood error occurs.  



7-2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

7.  MESSAGE SENDING FORMS

The function version does more error checking than the macro and also 
attempts to convert unbound symbols into names for classes and instances.

Arguments: self Pointer to an object.

sel Selector; not evaluated.

arg1...argn Arguments associated with sel.

Returns: The value returned by the method associated with sel.

Example: In this example, the message New is sent to the class Window.  This returns 
the newly created instance.

76←(← ($ Window) New ’Window1)
#,($& Window (|OZW0.1Y:.;h.Qm:| . 495))

(SEND self sel  arg1 ... argn )  [Macro and Function]

Purpose: Same as ←, above.

Example: The expression

(SEND ($ Window) ’New ’Window1)

is equivalent to

(← ($ Window) New ’Window1)

(←! self sel arg1 ... argn)  [Macro and Function]

Purpose/Behavior: Sends a message with the selector sel to an object self.  It differs from ← in 
that it evaluates all of its arguments, including sel.

Arguments: self Pointer to an object.

sel Selector, which is evaluated.

arg1...argn Arguments associated with sel.

Example: This example illustrates the fact that ←! evaluates the sel argument. 

The code  

(for sel in ’(Shape Invert)
     do (←! ($ Window1) sel))

is equivalent to

(←Window1 Shape)(←Window1 Invert)

(←IV self IVName arg1...argn)  [Macro]

Purpose: Invokes the function stored in the instance variable IVName of the object self.

Behavior: Gets a function from IVName of self and applies the function to self with the 
arguments args. Returns the value of the function or breaks.

←IV does not evaluate IVName.

Arguments: self Pointer to an object.

IVName Instance variable name, which is not evaluated.



7-3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

7.  MESSAGE SENDING FORMS

arg1...argn Arguments associated with sel; bound to arguments specified in 
the call.

(←Try self  sel  arg1 ... argn)  [Macro]

Purpose: Sends the message with the selector sel to self, but only if there is a 
corresponding method.

Behavior: If sel  is in fact a selector of self, the method is applied and the appropriate 
value is returned.  If the method is not a selector of self, the symbol NotSent is 
returned. 

Arguments: self Pointer to an object.

sel Selector; not evaluated.

arg1...argn Arguments associated with sel.

Example: The expression (←($ Window1) abcd) normally causes a break.

79←(←Try ($ Window1) Update)
NIL

80←(←Try ($ Window1) abcd)
NotSent

(←Proto class sel arg1 ... argn)  [Macro]

Purpose: Sends a message to the prototype instance of a class.

Behavior: Creates an instance of a class, if necessary, and puts that instance on the 
class variable Prototype of class, marking the class as changed.  This 
instance is referred to as the prototype instance.   Proto then sends the 
message sel to that instance.

Arguments: class Pointer to a class.

sel Selector; not evaluated.

arg1...argn Arguments associated with sel.

Example: Usually only one instance of LoopsIcon is needed at a time, so the class 
LoopsIcon keeps one in its class variable Prototype.

81←(←Proto ($ LoopsIcon) Open)

(←Super self sel arg1 ... argn)  [Macro and Function]

Purpose: Can invoke an inherited method within a method.  ←Super must appear in the 
body of a method; it cannot be invoked directly.

Behavior: Searches up the class hierarchy and invokes the next more general method of 
the same name, even if a specialized method is inherited over a distance.  It 
returns the value from that super method.  You can use the form (←Super) 
when the arguments are not changed.  If no arguments are provided, ←Super 
uses the arguments of the method from which it was called.

←Super and the other similar functions are now lexically scoped; that is, it is 
illegal o call ←Super anywhere but within a method body, and any selector 
 given must be the same as the selector for that method.

Arguments: self Pointer to an object.

sel Selector; not evaluated.  Must be the same as the selector of the 
method in which the ←Super appears.



7-4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

7.  MESSAGE SENDING FORMS

arg1...argn Arguments associated with sel.

Example: Two examples of ←Super are included:

• One example shows where the arguments are not changed.

• Oe example shows where the arguments are changed.

Example 1:  A use of ←Super where the arguments are not changed.

Define a subclass of Window that will call RINGBELLS  before a window is 
shaped.

(DefineClass ’RingingWindow ’(Window))

Through the browser interface, specialize the method Shape, to create the 
following method.

(RingingWindow.Shape
  (Method ((RingingWindow Shape)
           self newRegion noUpdateFlg)
  **COMMENT**    **COMMENT**  
          (RINGBELLS)
          (←Super)))

Executing the following command calls RINGBELLS before the new window is 
shaped.

(←New ($ RingingWindow) Shape)

In the method above, if the positions of RINGBELLS and (←Super) were 
reversed, RINGBELLS would be called after the window was shaped.

Example 2: A use of ←Super where the arguments are changed.

Define a subclass of Window that will be square.

(DefineClass ’SquareWindow ’(Window))

Through the browser interface, specialize the method Shape, to create the 
following method.

(SquareWindow.Shape
  (Method ((SquareWindow Shape)
           self newRegion noUpdateFlg)
  **COMMENT**    **COMMENT**  
          (←Super self Shape
                       (create REGION
                          using
                           (SETQ newRegion
                             (OR newRegion
                                 (GETREGION)))
                           HEIGHT ←(fetch WIDTH
                                      of 
                                   newRegion))
                       noUpdateFlg)))

Executing the following command creates a square window:

(←New ($ SquareWindow) Shape)



7-5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

7.  MESSAGE SENDING FORMS

(←Super? self  sel  arg1 ... argn)  [Macro]

Purpose: Invokes the single next most general method; must appear in the body of a 
method.  This does not cause an error if no inherited method matches. 

Behavior: Analogous to ←Super.  The difference between ←Super? and ←Super is 
that ←Super? does not break if the sel does not have a more general method, 
whereas ←Super generates a break if there is not a more general method.

Arguments: self Pointer to an object.

sel Selector; not evaluated.  Must be the same as the selector of the 
method in which the ←Super? appears.

arg1...argn Arguments associated with sel.

(←SuperFringe self  sel  arg1 ... argn)  [Macro and Function]

Purpose: Invokes general methods for objects with more that one super class from 
which you wish to inherit methods; must appear in the body of a method.

Behavior: It invokes and executes the next more general method of the same name from 
each of the classes on the super’s list object’s class. Calling ←SuperFringe is 
analogous to sending ←Super up through each item on the super’s list. If no 
arguments are provided ←SuperFringe uses the arguments of the method 
from which it was called.

Arguments: self Pointer to an object.

sel Selector; not evaluated.  Must be the same as the selector of the 
method in which the ←SuperFringe appears.

arg1...argn Arguments associated with sel.

(←New class selector arg1 ... argn)  [NLambda NoSpread Macro]

Purpose: Creates an instance of class and then sends sel and arguments to that 
instance.

Behavior: Creates a new instance of a class and sends a message to that instance.  It 
returns  the instance as a value and discards any value that may be returned 
by invoking the method specified by selector. ←New is equivalent to (← (← 
ClassName New) selector arg1 ... argn).

Arguments: class Pointer to a class.

sel Selector; not evaluated.

arg1...argn Arguments associated with sel.

Returns: The new instance.

Example: This example shows an example of ←New that creates a new instance of the 
class Window and asks you to shape it.

99← (←New ($ Window) Shape)
#,($& Window (|OZW0.1Y:.;h.Qm:| . 497))

(← class FetchMethod sel )   [Method of Class]

Purpose: Finds the function name which implements the method invoked by sending a 
message with the selector sel to an instance of class.  The function can be 
found in either class or its supers.



7-6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

7.  MESSAGE SENDING FORMS

Behavior: Calls the function FetchMethod. 

Arguments: class Pointer to a class.

sel Selector; evaluated.

Returns: The function for sel or NIL.

Example: Line 100 shows that the class Window implements the method Update.

100←(← ($ Window) FetchMethod ’Update)
Window.Update

Line 1 shows that neither the class Window nor any of its supers implements 
the method abcd.

1←(← ($ Window) FetchMethod ’abcd)
NIL

Line 2 shows that the class Object implements the method PP which will be 
triggered when instances of the class Window receive the PP message.

2←(← ($ Window) FetchMethod ’PP)
Object.PP



7-7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

7.  MESSAGE SENDING FORMS

[This page intentionally left blank]


