
6-1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

6. METHODS

Methods are the expressions that evaluate when a message is sent to an
instance or a class. Methods are analogous to Interlisp-D functions, except
that they are defined by a LOOPS class and invoked by sending a message to
an instance of that class.

This chapter presents the basic constructs used to create and implement
methods. Also included are important methods and functions relevant to the
definition and maintenance of methods.

6.1 Categories

LOOPS methods can be divided into categories. This section contains a brief
description of each method category. These categories serve as additional
documentation only; they do not imply differences in implementation.

Any symbol can be used as a category. Categories can be used as a tool for
the organization of methods. Methods may belong to more than one category.

Class [Category]

Messages associated with a class method can only be sent to an object of
type class. Methods associated with the class Class have this category. See
Chapter 3, Classes, for more information on classes.

Object [Category]

The message associated with an object method can only be sent to an object
of type object. Methods associated with the class Object have this category.

Internal [Category]

Internal methods are low-level system methods, and should not be specialized
by users.

Public [Category]

Public methods are defined by the user or the system. These methods can be
specialized by users.

Any [Category]

Methods that have not been categorized belong to this category by default.

Masterscope [Category]

6-2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

6.1 CATEGORIES

Masterscope is an interactive program analysis tool. Methods that are
predefined for Masterscope are local only to Masterscope and can be used
only when Masterscope has been invoked. Refer to the Lisp Library Modules
Manual for more information on Masterscope.

(← self AllMethodCategories) [Method of Class]

Purpose/Behavior: Extracts and lists the categories of all methods defined by the class self.

Arguments: self Pointer to a class.

Returns: The categories of the methods defined by the class of self.

Categories: Class

Example: Line 98 shows the categories of all methods defined in the class self.

98←(← ($ Class) AllMethodCategories)
(Class Object Masterscope)

(← self CategorizeMethods categorization) [Method of Class]

Purpose: Allows you to change how methods are categorized.

Behavior: Varies according to the arguments.

• If categorization is NIL, this opens a display editor window with a form that
represents the current categorizations. After you have exited from the
editor, these new categorizations are installed.

• If categorization is non-NIL, it must be of the following form:

(category1 (selector1 ... selectorN)) (category2 (selector ...)).

A categorization specified by CategorizeMethods deletes any previous
categorization; i.e., if method Print for class Thing was in categories Internal
and I/O, after doing

(← ($ Thing) CategorizeMethods ’((Output
(Print))(Printing (Print))))

Print will be only in categories Output and Printing.

Arguments: self Pointer to a class.

categorization
A list in the form as described in Behavior, or NIL.

Categories: Class

Example: This example shows how to use CategorizeMethods with categorization NIL.

1←(← ($ MetaClass) CategorizeMethods)

The following display editor window appears:

6-3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

6.1 CATEGORIES

(← self ChangeMethodCategory selector newCategory) [Method of Class]

Purpose: Changes the category of a selected method.

Behavior: Varies according to the arguments.

• If selector is NIL, a menu appears showing the selectors for the class of
self. This is done using the message PickSelector to determine the
selector that is to have its category changed.

• If selector is supplied, but not associated with self, this message returns
NIL.

• If newCategory is an atom, adds selector to the category. If newCategory is
a list of atoms, removes selector from all its current categories, then adds it
to the categories in the list. If newCategory is NIL, pops up a menu
showing all of the known categories and an additional item, *other*. If
other is selected, you are prompted to enter a new category name.

Arguments: self Pointer to a class.

selector Method selector for class of self or NIL.

newCategory
An atom, a list of atoms, or NIL.

Returns: The new category if there was a change made; else NIL.

Categories: Class

Example: The following command changes the categories of the method associated with
Shape1.

2←(← ($ Window) ChangeMethodCategory
’Shape1 ’(Window Internal))
(Window Internal)

6.2 STRUCTURE OF METHOD FUNCTIONS
6.2 STRUCTURE OF METHOD FUNCTIONS

6.2 Structure of Method Functions

This section discusses the structure of a LOOPS method.

(Method :FUNCTION-TYPE type ((class selector) self args ...) body...) [Definer]

Purpose: Similar to DefineMethod, but gives more control over the argument list and
body syntax. Allows use of Common Lisp lambda argument lists, and
Common Lisp syntax in the body of the method. This is the form you will see
when editing methods.

6-4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

6.1 CATEGORIES

Behavior: Defines a method whose argument list is either Interlisp (default) or Common
Lisp style. The body of the method may likewise contain either Common Lisp
or Interlisp syntax. Common Lisp syntax is distinguished by lexical scoping,
etc. (see the Common Lisp Implementation Notes for more information).

Arguments:

type The :FUNCTION-TYPE type clause is optional and defaults to
:IL.

:IL - The body of the method uses Interlisp syntax, allows CLISP
expressions, etc.

:CL - The body of the method uses Common Lisp syntax (is
lexically scoped).

class The class to which the method will be attached.

selector The new method’s selector.

self This argument must be present and first.

args If type was given as :CL this argument list may contain Common
Lisp keys like &OPTIONAL, &KEY and &REST.

body The body of the method. If the type was given as :CL it will be
treated as the body of a Common Lisp lambda is, e.g. scoping
will be lexical.

Returns: The name of the method function.

Example:
12← (Method :FUNCTION-TYPE :CL ((Window Foo) self bar
&OPTIONAL baz &REST glorp)

(CL:FORMAT T "Bar ~s baz ~s glorp ~s~%%" bar baz
glorp))
13← (← ($ Window) New ’Flarb)
14← (← ($ Flarb) Foo 1 2 3 4)
Bar 1 baz 2 glorp (3 4)

6.3 CREATING, EDITING, AND DESTROYING METHODS
6.3 CREATING, EDITING, AND DESTROYING METHODS

6.3 Creating, Editing, and Destroying Methods

This section describes the methods and functions which are used to create,
rename, delete, and edit LOOPS methods.

Name Type Description

DefineMethod Function Defines a new method on a class.

DeleteMethod Function Deletes a method from a class.

EditMethod Method Invokes the editor on a method of a class.

SubclassResponsibility MacroAppears in the template when you create a new method.

6-5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

6.1 CATEGORIES

(DefineMethod class selector args expr file -) [Function]

Purpose: Defines a new method on a class.

Behavior: Varies according to the arguments.

• If args is a non-NIL symbol and expr is NIL, its function definition is installed
as the method for (class selector). This definition must accept an
appropriate number of arguments and otherwise work as a LOOPS method.
Also, args must be a symbol of the form Name1.Name2 for many of the
LOOPS internal routines to handle it properly.

• If args is a list of arguments and expr is a function, its body will be installed
as the definition of class.selector.

Arguments: class Class in which method is defined.

selector Method selector (message).

args List of arguments.

expr Function definition or NIL.

file Place where method is stored.

Example: The following expression shows how to add a method called Increment to a
class called Documentation.

(DefineMethod ($ Documentation) ’Increment ’(Number) ’(PLUS number 1]

(DeleteMethod class selector prop) [Function]

Purpose: Deletes a method from a class.

Behavior: Varies according to the arguments.

• If prop is NIL or T, the method is deleted from the class.

• If prop is T, the function definition is also deleted.

Note: You may also delete methods by using the ClassInheritance
Browser. Position the mouse on the appropriate class, press the
middle mouse button, and select DeleteMethod from the resulting
menu.

Arguments: class Class in which method is defined.

selector Method selector (message).

prop T or NIL; determines whether the function definition is deleted.

Example: The following command deletes the method associated with ’MyOpen from
LatticeBrowser.

(DeleteMethod ($ LatticeBrowser) ’MyOpen)

(← self EditMethod selector commands okCategories) [Method of Class]

Purpose: Invokes the display editor on a method of a class.

Behavior: Varies according to the arguments.

• If selector is NIL, a menu of selectors is presented using the message
PickSelector in okCategories . This can be a list or a symbol.

6-6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

6.1 CATEGORIES

• If selector is non-NIL, and if it corresponds to a method that is in not self’s
class, you are asked whether the method should be created.

• If selector cannot be found, the spelling corrector is invoked to find a correct
local selector. If it can be corrected, the local method is used, or an
inherited method that is made local is used. When the method is finally
determined, EDITF (refer to the Lisp Release Notes and the Interlisp-D
Reference Manual) is invoked with commands passed as the second
argument.

Note: You may also edit methods by using the ClassInheritance Browser.
Position the mouse on the appropriate class, press the middle mouse
button, and select EditMethod from the resulting menu.

Arguments: self Class name.

selector Refers to the method.

commands List of EDITF commands.

okCategories Atom or list specifying valid categories.

Categories: Class

(SubclassResponsibility) [Macro]

Purpose/Behavior: Appears in the template when you create a new method. It is used to make
sure you specialize a method.

6.4 ESCAPING FROM MESSAGE SYNTAX
6.4 ESCAPING FROM MESSAGE SYNTAX

6.4 Escaping from Message Syntax

The methods described in the previous section manipulate methods in a
specific order. Sometimes it may be necessary to invoke multiple inherited
methods in some other order. The more general functions in this section
have been provided to do this.

CAUTION

These functions do not conform to the conventions of method inheritance and
should be used as a last resort and with extreme caution.

The following table shows the items in this section.

Name Type Description

DoMethod Function Computes the action which should be a method associated with
a class and applies it to an object and arguments.

ApplyMethod Function Computes the action which should be a method associated with
a class and applies it to an object and argument list.

6-7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

6.1 CATEGORIES

DoFringeMethod Function Invokes a method in the class of an object or in each of the
super classes for that class.

(DoMethod object selector class arg1 ... argn) [Function]

Purpose: Computes the action which should be a method associated with class and
applies it to object.

Behavior: All of the arguments are evaluated. If class is NIL, DoMethod uses the class
of object. If no method from class can be computed from selector, an error is
generated.

Arguments: object Instance to which action is applied.

selector Evaluates to a method selector.

class NIL or class in which method name resides.

arg1...argn The arguments for the method.

(ApplyMethod object selector argList class) [Function]

Purpose: Same as DoMethod.

Behavior: Applies the selected method to the already evaluated arguments in argList;
otherwise, this is the same as DoMethod.

Arguments: object Instance to which action is applied.

selector Evaluates to a method name.

arglist The arguments for the method.

class Class in which method name resides.

Example: This example illustrates the MessageNotUnderstood protocol, the function
ApplyMethod, and the macro _Super. This is a specialization of the default
MessageNotUnderstood message that tries to correct the spelling of the
selector. (See Chapter 11, Errors and Breaks, for more information on
MessageNotUnderstood .)

(Method ((DwimObject MessageNotUnderstood)
 self selector mesageArguments superFlg)
 (LET ((correctSelector (FixSelectorSpelling selector)))
 (COND ((correctSelector (ApplyMethod correctSelector mesageArguments))
 (T (_Super))))))

Note: self is included in the list of messageArguments.

(DoFringeMethods object selector arg1 ... argn) [Function]

Purpose: Invokes method for selector in the class of object or in each of the super
classes for that class.

Behavior: Evaluates all of the arguments. If the method for selector in the class of object
is defined in that class (not through inheritance), DoFringeMethods invokes
the local method. If there is no local method, DoFringeMethods goes down
the class of object, and for each super invokes its method for selector if one
exists. If the supers share supers this can result in the same method being
called more than once.

Arguments: object Class instance.

selector Method selector.

6-8 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

6.1 CATEGORIES

arg1...argn Arguments to selector.

Returns: NIL
6.5 MOVEMENT BETWEEN CLASSES

6.5 MOVEMENT BETWEEN CLASSES

6.5 Movement between Classes

This section describes functions and methods that are used in moving
methods between classes, as well as stack method macros.

6.5.1 Movement of Methods

The following functions and methods are used to move methods, instance
variables, and class variables between classes.

Name Type Description

RenameMethod Function Renames a function used as a method.

MoveMethod Function Moves a method from one class to another.

MoveMethod Method Moves a method from one class to another.

MoveMethodToFile Function Moves a method to this file if it has the same name as a function
on a specified file.

CalledFns Function Finds names of all functions called from a set of classes.

(RenameMethod classOrName oldSelector newSelector) [Function]

Purpose: Renames a function used as a method in classOrName.

Behavior: This changes the selector for a method. If no method is associated with
oldSelector or newSelector, this generates an error. Explicit references to
oldSelector such as

(←Super self oldSelector))

will not be fixed by RenameMethod.

Arguments: classOrName
Class in which function is defined.

oldSelector Old name of method; invokes method before this function is
called.

newSelector
New name of method; invokes method after this function is
called.

Returns: If successful, returns newSelector in the form ClassName.Selector.

6-9LOOPS REFERENCE MANUAL, MEDLEY RELEASE

6.1 CATEGORIES

Example: The following command renames a method named Foo to Fie in the class
MyClass.

24←(RenameMethod ($ MyClass) ’Foo ’Fie)

(MoveMethod oldClassName newClassName selector newSelector files) [Function]

Purpose: Moves a method from oldClassName to newClassName. The method is
deleted from oldClassName.

Behavior: If newSelector is a different name than selector, MoveMethod renames the
method. Explicit references to oldSelector such as

(←Super self oldSelector))

will not be fixed by RenameMethod.

Note: You may also move methods by using the ClassInheritance
Browser. Position the mouse on the appropriate class, press the
middle mouse button, and select MoveMethod from the resulting
menu.

Arguments: oldClassName
Source class.

newClassName
Destination class.

selector Method selector to be moved.

newSelector
New name; if NIL, the existing selector is preserved.

files Files in which the change is to occur.

Example: The following command moves the method Buy from class Car to class Boat
and renames the method to Purchase.

25←(MoveMethod ($ Car) ($ Boat) ’Buy ’Purchase)

Boat.Purchase

(← self MoveMethod newClassName selector) [Method of Class]

Purpose: Moves a method from the class associated with self to newClassName.

Behavior: Same as the function MoveMethod, except that you cannot rename selector.

Arguments: self Pointer to a class from which the method is taken.

newClassName
Destination class; must be a class, not a class name.

selector Method selector to be moved.

Returns: NewsClass.Selector

(MoveMethodsToFile file) [Function]

Purpose/Behavior: Moves a method to this file if it has the same name as a function on file.

Arguments: file Name of a file to which methods are moved.

Returns: Normally T; NIL if a method does not have the same name as a function on
file.

6-10 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

6.1 CATEGORIES

(CalledFns classes definedFlg) [Function]

Purpose: Finds names of all functions called from a set of classes.

Behavior: Varies according to the arguments.

• If definedFlg is NIL, all the functions associated with classes are returned.

• If definedFlg is T, the defined functions are returned.

• If definedFlg is 1, the undefined functions are returned.

Arguments: classes List of classes to search.

definedFlg NIL, 1, or T.

Returns: NIL or the list of functions.

Example: The following command finds all functions called from the class Method.

(CalledFns ’(Method))

6.5.2 Stack Method Macros

This section describes macros that access methods on the stack.

(ClassNameOfMethodOwner) [Macro]

Purpose: Uses the stack to perform a help check. Returns the name of the class to
which the method on top of the stack belongs.

(SelectorOfMethodBeingCompiled) [Macro]

Purpose: Uses the stack to perform a help check. Returns the name of the method
being compiled.

(ArgsOfMethodBeingCompiled) [Macro]

Purpose: Uses the stack to perform a help check. Returns all arguments associated
with the method being compiled.

6-11LOOPS REFERENCE MANUAL, MEDLEY RELEASE

6.1 CATEGORIES

[This page intentionally left blank]

