
5-1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5. ACCESSING DATA

This chapter discusses the various ways to access data:

• Generalized Get and Put functions

• Accessing data in instances

• Accessing data in classes

5.1 Generalized Get and Put Functions

These functions support generalized instance variable and property access for
LOOPS objects. They can be very useful for implementing methods that
support new types of conditional accessing; they have been used to simplify
code in the active values system, for example.

This section deals with the following functions:

Name Type Description

GetIt Function Retrieves values from instance variables and properties.

GetItOnly Function Like GetIt , but returns active values on a variable/property
without triggering them.

GetItHere Function Like GetIt, but returns active values on a variable/property
without triggering them; does not observe NotSetValue as
GetItOnly does.

PutIt Function Stores values into instance variables and properties.

PutItOnly Function Like PutIt, but stores by smashing active values on a
variable/property without triggering them.

(GetIt self varOrSelector propName type) [Function]

Purpose: Retrieves values from instance variables and properties.

Behavior: Varies according to the arguments.

• If type is ’IV or NIL

- If self is an instance, this is equivalent to
(GetValue self varOrSelector propName)

- If self is a class, this is equivalent to
(GetClassIV self varOrSelector propName)

• If type is ’CV,this is equivalent to
(GetClassValue self varOrSelector propName)

5-2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.1 GENERALIZED GET AND PUT FUNCTIONS

• If type is ’CLASS,this is equivalent to
(GetClass self (OR varOrSelector propName))

• If type is ’METHOD,this is equivalent to
(GetMethod self varOrSelector propName)

Arguments: self A class or an instance.

varOrSelector
An instance variable name or the name of a method.

propName Property name.

type Specifies the type of the object self.

Returns: Value depends on the arguments; see Behavior.

Example: The command

(GetIt ($ Window) ’doc NIL ’CLASS)

returns

"A Loops object that represents a window"

(GetItOnly self varOrSelector propName type) [Function]

Purpose: Retrieves values from instance variables and properties without triggering
active values.

Behavior: Varies according to the arguments.

• If type is ’IV or NIL

- If self is an instance, this is equivalent to
(GetValueOnly self varOrSelector propName)

- If self is a class, this is equivalent to
(GetClassIV self varOrSelector propName)

• If type is ’CV,this is equivalent to
(GetClassValueOnly self varOrSelector propName)

• If type is ’CLASS,this is equivalent to
(GetClassOnly self (OR varOrSelector propName))

• If type is ’METHOD,this is equivalent to
(GetMethodOnly self varOrSelector propName)

Arguments: self A class or an instance.

varOrSelector
An instance variable name or the name of a method.

propName Property name.

type Specifies the type of the object self.

Returns: Value depends on the arguments; see Behavior.

Example: The command

(GetItOnly (GetClassValue ($ LoopsIcon) ’Prototype) ’window)

returns the LoopsWindowAV that holds the image of the LOOPS icon. Calling
GetIt with similar arguments returns the Lisp window object held by that
LoopsWindowAV.

5-3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.1 GENERALIZED GET AND PUT FUNCTIONS

(GetItHere self varOrSelector propName type) [Function]

Purpose: Retrieves values from instance variables and properties without triggering
active values; does not observe NotSetValue like GetItOnly.

Behavior: Varies according to the arguments.

• If type is ’IV or NIL

- If self is an instance, this is equivalent to
(GetIVHere self varOrSelector propName)

- If self is a class, this is equivalent to
(GetClassIVHere self varOrSelector propName)

• If type is ’CV,this is equivalent to
(GetCVHere self varOrSelector propName)

• If type is’CLASS,this is equivalent to
(GetClassHere self (OR varOrSelector propName))

• If type is ’METHOD,this is equivalent to
(GetMethodHere self varOrSelector propName)

Arguments: self A class or an instance.

varOrSelector
An instance variable name or the name of a method.

propName Property name.

type Specifies the type of the object self.

Returns: Value depends on the arguments; see Behavior.

Example: The command

(GetItHere (GetClassValue ($ LoopsIcon) ’Prototype) ’title)

returns the value of NotSetValue. Calling GetIt with similar arguments returns
the default value for this instance variable, NIL.

(PutIt self varOrSelector newValue propName type) [Function]

Purpose: Stores values into instance variables and properties.

Behavior: Varies according to the arguments.

• If type is ’IV or NIL

- If self is an instance, this is equivalent to
(PutValue self varName newValue propName)

- If self is a class, this is equivalent to
(PutClassIV self varName newValue propName)

• If type is ’CV,this is equivalent to
(PutClassValue self varName newValue propName)

• If type is ’CLASS,this is equivalent to
(PutClass self newValue (OR varName propName))

Arguments: self A class or an instance.

5-4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.1 GENERALIZED GET AND PUT FUNCTIONS

varName
An instance variable name.

propName Property name.

type Specifies the type of the object self.

Returns: Value depends on the arguments; see Behavior.

Example: The command

(PutIt (GetClassValue ($ LoopsIcon) ’Prototype) ’title "foo")

sets the instance variable title of the LOOPS icon prototype to "foo". This can
be verified by inspecting (GetClassValue ($ LoopsIcon) ’Prototype) and
examining the title slot.

(PutItOnly self varOrSelector newValue propName type) [Function]

Purpose: Stores values into instance variables and properties and smashes any active
values it finds in its way without triggering them.

Behavior: Varies according to the arguments.

• If type is ’IV or NIL

- If self is an instance, this is equivalent to
(PutValueOnly self varName newValue propName)

- If self is a class, this is equivalent to
(PutClassIV self varName newValue propName)

• If type is ’CV,this is equivalent to
(PutClassValueOnly self varName newValue propName)

• If type is ’CLASS,this is equivalent to
(PutClassOnly self newValue (OR varName propName))

Arguments: self A class or an instance.

varName
An instance variable name.

propName Property name.

type Specifies the type of the object self.

Returns: Value depends on the arguments; see Behavior.

Example: If the inspector from the PutIt example is used to set a break on the the
instance variable title of the LOOPS icon prototype, then doing

(PutItOnly (GetClassValue ($ LoopsIcon) ’Prototype) ’title "mumble")

will set the instance variable title to "mumble" while smashing the trace active
value.

5.2 ACCESSING DATA IN INSTANCES
5.2 ACCESSING DATA IN INSTANCES

5-5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.1 GENERALIZED GET AND PUT FUNCTIONS

5.2 Accessing Data in Instances

Two kinds of variables are associated with an instance:

• Its local instance variables, also referred to as IVs.

• The class variables, also referred to as CVs, that it shares with all instances
of the class.

The data contained within instances are the values of instance variables and
associated properties as well as a pointer to the class that describes the
instance. Details of the LOOPS implementation determine exactly when the
values of instance variables are stored within an instance. In some cases, the
system must look to the class to find the values of instance variables. In
general, you do not need to be concerned with this distinction; however, the
details of it are covered in Chapter 2, Instances.

The types of data that an instance may contain is not limited. The values for
an instance variable or a class variable can be any Lisp or LOOPS data
structure.

The active value is a special case of data. When you try to access a variable
with an active value as its value, the active value may be returned, depending
upon the type of access. Normally, however, data computed by the active
value is returned, not the active value. The details of how this computation is
performed is described in Chapter 8, Active Values.

Instance variable names and class variable names are symbols and are not
necessarily unique to each class. Although it is possible to use the same
symbol for both a class variable name and an instance variable name, it is
advisable not to do this since some of the LOOPS functionality examines both
the instance variables and class variables in the search for data. See the
method IVMissing in the class Object.

This section deals with the following functions and methods. See the LOOPS
Library Modules Manual for information on how these interact with
Masterscope.

Name Type Description

GetValue Function Finds the value of an instance variable.

Get Method Finds the value of an instance variable.

PutValue Function Writes the value of an instance variable.

Put Method Writes the value of an instance variable.

GetValueOnly Function Finds the value of an instance variable without triggering active
values.

PutValueOnly Function Writes the value of an instance variable without triggering active
values.

GetClassValue Function Returns the value of a class variable.

PutClassValue Function Changes the value of a class variable. The change occurs within
the class and therefore causes all instances to access the new
value of the variable.

GetClassValueOnly Function Returns the value of a class variable; does not trigger active
values.

PutClassValueOnly Function Changes the value of a class variable. The change occurs within
the class and therefore causes all instances to access the new
value of the variable. Does not trigger active values.

5-6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.1 GENERALIZED GET AND PUT FUNCTIONS

GetIVHere Function Gets the value stored in an instance variable without invoking
active values.

(GetValue self varName propName) [Function]

Purpose: Finds the value of an instance variable when varName and propName are to
be computed.

Behavior: Varies according to the arguments.

• If self is an instance and propName is NIL, this returns the value of the
instance variable varName. If there is no instance variable of the name
varName and there is a class variable of that name, this returns the value of
the class variable. See the IVMissing message for a complete discussion
of this behavior. If there is neither an instance variable or class variable of
that name, a break occurs.

• If self is an instance and propName is non-NIL, this returns the value of the
property propName of the instance variable or class variable varName. If
there is no property of the name, propName, this returns the value of the
variable NoValueFound.

• If the value of varName (or propName if it is non-NIL) is an active value, the
active value is activated.

• If self is not an instance, this calls (GetIt self varName propName ’IV)

See the LOOPS Library Modules Manual about interaction with Masterscope.

Arguments: self A class or an instance.

varName Instance or class variable name.

propName Property name.

Returns: Value depends on the arguments; see Behavior.

Example: Given that

32←(← ($ window1) Shape ’(100 200 300 400))
(100 200 300 400)

then

33←(GetValue ($ window1) ’width)
300

34←(GetValue ($ window1) ’LeftButtonItems)
((Update ...))

(← self Get varName propName) [Method of Object]

Purpose/Behavior: Method version of GetValue.

Arguments: See GetValue.

Categories: Object

(PutValue self varName newValue propName) [Function]

Purpose: Writes the value of an instance variable when varName and propName are to
be computed.

5-7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.1 GENERALIZED GET AND PUT FUNCTIONS

Behavior: Varies according to the arguments.

• If self is an instance and propName is NIL, this changes the value of the
instance variable varName to newValue. This returns newValue. If
varName is not an instance variable of self, this causes a break.

• If self is an instance and propName is non-NIL, this changes the value of
the property propName of the instance variable varName to newValue. If
propName is not already a property of varName, it is added. This returns
newValue.

• If the value of varName (or propName if it is non-NIL) is an active value, the
active value is activated.

• If self is a class, this calls
(PutIt self varName newValue propName ’IV)

See the LOOPS Library Modules Manual about interaction with Masterscope.

Arguments: self A class or an instance.

varName Instance name or class name.

newValue The new value for varName or propName.

propName Property name.

Returns: Value depends on the arguments; see Behavior.

Example: (PutValue ($ window1) ’width 120)

(← self Put varName newValue propName) [Method of Object]

Purpose/Behavior: Method version of the function PutValue.

Arguments: See PutValue.

Categories: Object

Specializations: Class

(GetValueOnly self varName propName) [Function]

Purpose: Similar to GetValue, except that it overrides the active value mechanism.

Behavior: See GetValue. If the value found is an active value, it is returned without
triggering its side effects.

Arguments: See GetValue.

Returns: See Behavior.

Example: The following expressions compare GetValue and GetValueOnly

35←(GetValue ($ window1) ’window)
{WINDOW}#nn,mmmm

36←(GetValueOnly ($ window1) ’window)
#,($AV LispWindowAV ...)

(PutValueOnly self varName newValue propName) [Function]

Purpose: Similar to PutValue, except that it overrides the active value mechanism.

5-8 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.1 GENERALIZED GET AND PUT FUNCTIONS

Behavior: See PutValue. The argument newValue overwrites any active value on the
slot without triggering it.

Arguments: See PutValue.

Returns: Used for side effect only.

(GetClassValue self varName propName) [Function]

Purpose: Returns the value of a class variable.

Behavior: Varies according to the arguments.

• If propName is NIL, this returns the value of the class variable varName. If
varName is not a class variable, a break occurs.

• If propName is non-NIL, this returns the value of the property, prop, of the
class variable varName. If varName has no property of that name, the
value of the variable NoValueFound is returned.

See the LOOPS Library Modules Manual about interaction with Masterscope.

Arguments: self An instance or a class.

varName Class variable name of self.

propName Property name for class variable varName; may be NIL.

Returns: Value depends on the arguments; see Behavior.

Example: The following commands show a variety of retuned values.

37←(GetClassValue ($ window1) ’window)

This breaks, since window is not a class variable of Window.

38←(GetClassValue ($ window1) ’LeftButtonItems)

 ((Update ...))

39←(GetClassValue ($ window1) ’LeftButtonItems ’qwerty)
NIL

(PutClassValue self varName newValue propName) [Function]

Purpose: Changes the value of a class variable. The change occurs within a class and
therefore causes a class variable lookup by other instances to find the new
value.

Behavior: Varies according to the arguments.

• If propName is NIL, this changes the value of the class variable varName to
newValue. If varName is not a class variable, this breaks.

• If propName is non-NIL, this changes the value of the property, propName,
of the class variable varName to newValue. If varName has no property of
that name, the property is added.

See the LOOPS Library Modules Manual about interaction with Masterscope.

Arguments: self An instance or a class.

varName Class variable name of self.

newValue Value to be assigned to class variable or property name.

5-9LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.1 GENERALIZED GET AND PUT FUNCTIONS

propName Property name for class variable varName; may be NIL.

Returns: newValue

Example: The following command breaks since left is not a class variable name of
Window.

40←(PutClassValue ($ window1) ’left 1234)

The command

41←(PutClassValue ($ window1) ’TitleItems 1234)

changes the value of TitleItems. The command

42←(PutClassValue ($ window1) ’TitleItems 123 ’asdf)

adds the property asdf with the value 123 to TitleItems.

(GetClassValueOnly self varName propName) [Function]

Purpose: Gets the value of a class variable without triggering active values.

Behavior: Varies according to the arguments.

• If propName is NIL, this returns the value of the class variable varName
without triggering active values. If varName is not a class variable, this
breaks.

• If propName is non-NIL, this returns the value of the property, propName, of
the class variable varName without triggering active values. If varName
has no property of that name, the value of the variable NotSetValue is
returned.

See the LOOPS Library Modules Manual about interaction with Masterscope.

Arguments: self An instance or a class.

varName Class variable name for self.

propName Property name of class variable varName; may be NIL.

Returns: Value depends on the arguments; see Behavior.

Example: The following command returns the value of the variable NotSetValue since
LeftButtonItems has no property of the name qwerty.

43←(GetClassValueOnly ($ window1) ’LeftButtonItems ’qwerty)
#,NotSetValue

(PutClassValueOnly self varName newValue propName) [Function]

Purpose: Changes the value of a class variable without triggering active values. The
change occurs within a class and therefore causes a class variable lookup by
other instances to find the new value.

Behavior: The behavior is the same as PutClassValue except that the value stored does
not trigger an active value, but overwrites it instead.

Arguments: self An instance or a class.

varName Class variable name of self.

newValue Value to be assigned to class variable or property name.

5-10 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.1 GENERALIZED GET AND PUT FUNCTIONS

propName Property name for class variable varName; may be NIL.

Returns: newValue

(GetIVHere self varName propName) [Function]

Purpose: Gets the value stored in an instance without invoking active values.

Behavior: Returns the value of varName (or the property, propName, if it is non-NIL)
without triggering active values. If the value of varName (or propName) is not
yet stored in self, the value of the variable NotSetValue is returned.

See the LOOPS Library Modules Manual about interaction with Masterscope.

Arguments: self Must be an instance.

varName Instance variable of self.

propName Property name for variable varName; may be NIL.

Returns: Value depends on the arguments; see Behavior.

Example: Given that

44←(← ($ Window) New ’w2)
#,($& Window (NEW0.1Y%:.;h.eN6 . 496))

then

45←(GetIVHere ($ w2) ’left)
#,NotSetValue

After entering the command

46←(PutValue ($ w2) ’left 123)
123

then

47←(GetIVHere ($ w2) ’left)
123

5.2.1 Compact Accessing Forms

When you write methods for classes that you have defined, there are a
number of accesses to the data contained in the object bound to the method
argument self. The following forms have been created to allow a more
concise notation for these accesses.

Name Type Description

@ Macro Provides compact GetValue and GetClassValue forms.

@* Macro Provides compact GetValue forms.

←@ Macro Provides compact PutValue and PutClassValue forms and
assigns a new value.

(@ accessPath) [Macro]

Purpose: Provides compact GetValue or GetClassValue forms.

5-11LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.1 GENERALIZED GET AND PUT FUNCTIONS

Behavior: The accessPath can be one, two, or three arguments.

• If the accessPath is one argument, self is assumed to be the object and the
argument points to an instance variable. This is the most common usage in
methods in which you need to get the value of an instance variable
contained in self. For example,

(@ iv1)

translates to

(GetValue self ’iv1).

• If the accessPath is two arguments, the first argument is an object and the
second argument is an instance variable. For example,

(@ ($ w) left)

translates to

(GetValue ($ w) ’left).

• If the accessPath is three arguments, the first argument is an object, the
second argument is an instance variable, and the third argument is a
property. For example,

(@ ($ w) menus DontSave)

translates to

(GetValue ($ w) ’menus ’DontSave).

When programming using objects, one object often points to another object.
For example, the value of an instance variable is another object. Using
different accessPath forms allows you to write accesses into objects that are
nested inside of other objects. As an example, assume an object ($ pipe) has
an instance variable named output with a value ($ tank), which has an
instance variable named level. The command

(@ ($ pipe) output:level)

which is equivalent to

(@ (@ ($ pipe) output) level)

gets the value of the instance variable level of ($ tank).

The ":" is a delimiter that indicates instance variable access. The following
table shows all the delimiters.

Delimiter Description

: Indicates instance variable access.

:: Accesses the value of a class variable whose name follows the

double colon.

:, Accesses the value of a property whose name follows the colon-
comma.

. Sends a message to the object with the selector following the
period.

! Evaluates the next expression.

\ States that the next symbol refers to a Lisp symbol. This is often
used in conjunction with the exclamation mark, above.

5-12 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.1 GENERALIZED GET AND PUT FUNCTIONS

$ States that the next expression is a LOOPS object.

You can test forms using these delimiters by evaluating
(Parse@ (LIST accessPath) ’IV).

Arguments: accessPath One, two, or three arguments; refer to Behavior.

Returns: See Behavior.

Example: The following examples show the (@ accessPath) form, the Parse@ test, and
the translation.

1. (@ foo)
(Parse@ (LIST ’foo) ’IV)
(GetValue self ’foo)

2. (@ ::fie:foe)
(Parse@ (LIST ’::fie:foe) ’IV)
(GetValue (GetClassValue self ’fie) ’foe)

The following three examples are rarely seen in code, but they are additional
examples of the expressions that can be interpreted by the system.

3. (@ foo::!::fum)
(Parse@ (LIST ’foo::!::fum) ’IV)
(GetClassValue (GetValue self ’foo)(GetClassValue self ’fum))

4. (@ ($ w) fie:,foe.fum)
(Parse@ (LIST ’($ w) ’fie:,foe.fum) ’IV)
(← (GetValue ($ w) ’fie ’foe) fum)

5. (@ $fie.foe:!\fum.!foo)
(Parse@ (LIST ’$fie.foe:!\fum.!foo) ’IV)
(←! (GetValue (← (GetObjectRec ’fie) foe) fum)(GetValue self ’foo))

(@* accessPath) [Macro]

Purpose/Behavior: Provides a concise form for writing embedded GetValue forms.

Arguments: accessPath An object followed by an arbitrary number of instance variable
names.

Returns: The value of a nested instance variable.

Example: The command

(@* ($ foo) a b c)

translates to

(GetValue (GetValue (GetValue ($ foo) ’a) ’b) ’c)

(←@ accessPath newValue) [Macro]

Purpose/Behavior: Similar to the @ macro, but used to assign a new value instead of reading a
value. Evaluates newValue.

Arguments: accessPath See Behavior in the @ macro.

newValue Value to be assigned to variable indicated by accessPath.

Returns: newValue

5-13LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.1 GENERALIZED GET AND PUT FUNCTIONS

Example: The following examples show the (←@ accessPath) form, the Parse@ test,
and the translation.

1. (←@ foo 1234)
(ParsePut@ (LIST ’foo 1234) ’IV)
(PutValue self ’foo 1234)

2. (←@ ($ w) ::left 1234)
(ParsePut@ (LIST ($ w) ’::left 1234) ’IV)
(PutClassValue #.($ w) ’left 1234)

3. (←@ ($ w) menus DontSave ’Any)
(ParsePut@ (LIST ($ w) ’menus ’DontSave ’(QUOTE Any)) ’IV)

(PutValue #.($ w) ’menus ’Any ’DontSave)

5.2.2 Support for Changetran

Interlisp uses Changetran to provide an extensive set of facilities for
expressing changes to structures, such as push, pushnew, pop, add, change,
by using access expressions. You can use any LOOPS access expression in
a Changetran context, so that you can now write expressions such as:

(push (@ v1) newTop)
(change (@ x) newValue)
(pushnew (@ colors:,truck) ’red)
(pop (@ ::cv17))
(add (@ x:y:z) 37)

The first two are equivalent to:

(PushValue self ’v1 (CONS newTop(@ V1)))
(_@ x newValue)

This uniform interface allows simpler expressions for changes, and arbitrary
extensions through Changetran. See the Interlisp-D Reference Manual for
more information on Changetran.

5.3 ACCESSING DATA IN CLASSES
5.3 ACCESSING DATA IN CLASSES

5.3 Accessing Data in Classes

A number of functions and methods are available for reading and storing data
within classes. Some of these change existing data, and others change the
structure of the class by adding variables or properties.

When reading or storing data, some of these functions trigger any active
values that are associated with that data. See Chapter 8, Active Values, for a
discussion of their behavior.

5.3.1 Metaclass and Property Access

Associated with a class are a metaclass and properties. This section
describes the following functions to manipulate their values.

Name Type Description

GetClass Function Obtains a class’s metaclass or properties.

5-14 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.1 GENERALIZED GET AND PUT FUNCTIONS

PutClass Function Changes the metaclass or class properties of a class.

GetClassOnly Function Obtains a class’s metaclasses or properties without triggering
active values.

PutClassOnly Function Changes the metaclass or class properties of a class without
triggering active values.

GetClassHere Function Obtains a property local to the class.

(GetClass classRec propName) [Function]

Purpose: Obtains a class’s metaclass or properties by following metaclass links.

Behavior: Sends the message GetClassProp to classRec and passes propName as an
argument.

Varies according to the arguments.

• If propName is NIL, this returns the class’s metaclass.

• If propName is non-NIL, this looks first in class for that property. If it cannot
find it there, it looks through class’s metaclass links.

• If no property is found, the value of the variable NotSetValue is returned.

Arguments: classRec Pointer to a class.

propName Property name.

Returns: See Behavior.

Example: The following commands show the variety of returned values.

31←(GetClass ($ Window))

 #,($C Class)

32←(GetClass ($ Window) ’doc)

" A LOOPS object which represents a window"

33←(GetClass ($ IconWindow) ’doc)
"An icon window that appears as an irregular shaped image
on the screen -- See the ICONW Library utility"

(PutClass classRec newValue propName) [Function]

Purpose: Changes the metaclass or class properties of a class.

Behavior: Varies according to the arguments.

• If propName is NIL, this changes the metaclass of classRec to newValue. If
newValue is not a class or the name of a class, this causes a break.

• If propName is non-NIL and classRec already has this property, this triggers
an active value on propName if it exists and changes the value of
propName to newValue.

• If propName is non-NIL and classRec does not have this property, the
property is added with the value newValue.

Marks the class classRec as changed.

Arguments: classRec Pointer to a class.

5-15LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.1 GENERALIZED GET AND PUT FUNCTIONS

newValue See Behavior.

propName Property name.

Returns: Newly created class object.

Example: The following command changes the doc property of class Datum:

66←(DefineClass ’Datum)
#,($C Datum)

67←(PutClass ($ Datum) ’(* this is the updated doc for class Datum) ’doc)
(* this is the updated doc for class Datum)

(GetClassOnly classRec propName) [Function]

Purpose: Obtains a class’s metaclass or properties by following superclass links,
without triggering active values.

Behavior: Varies according to the arguments.

• If propName is NIL, this returns the classRec’s metaclass.

• If propName is non-NIL, this looks first in classRec for that property. If it
cannot find it there, it looks through classRec’s supers links. This returns
the value of the property found without triggering active values.

• If no property is found, the value of the variable NotSetValue is returned.

Arguments: classRec Pointer to a class.

propName Property name.

Returns: Value depends on the arguments; see Behavior.

Example: The command

(GetClassOnly ($ IconWindow) ’doc)

returns

"An icon window that appears as an irregular shaped image
on the screen -- See the ICONW Library utility"

(PutClassOnly classRec newValue propName) [Function]

Purpose: Changes the metaclass or class properties without triggering active values.

Behavior: Varies according to the arguments:

• If propName is NIL, this changes the metaclass of classRec to newValue. If
newValue is not a class or the name of a class this causes a break.

• If propName is non-NIL and classRec already has this property, this
changes the value of propName to newValue. Any active values are
replaced.

• If propName is non-NIL and classRec does not have this property, the
property is added with the value newValue.

The class classRec is marked as changed.

Arguments: classRec Pointer to a class.

5-16 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.1 GENERALIZED GET AND PUT FUNCTIONS

newValue A class or the name of a class.

propName NIL or the name of a class property.

Returns: newValue

(GetClassHere classRec propName) [Function]

Purpose: Obtains property local to class.

Behavior: Gets the class property without triggering active values or inheritance. If there
is no local property the value of NotSetValue is returned.

Arguments: classRec Pointer to a class.

propName NIL or the name of a class property.

Returns: newValue

Example: The command

(GetClassHere ($ ActiveValue) ’doc)

returns

#,NotSetValue

5.3.2 Class Variable Access

A class variable can be thought of as being shared by all instances of that
class and by all instances of any of its subclasses. This section describes how
to access class variables with the functions shown in the following table.

Name Type Description

GetClassValue Function Returns the value of a class variable or property.

PutClassValue Function Stores a value in a class variable or property.

GetClassValueOnly Function Returns the value of a class variable or property, without
triggering active values.

PutClassValueOnly Function Stores a value in a class variable or property, without triggering
active values.

GetCVHere Function Returns the value of a class variable in a particular class without
looking for inherited values.

PutCVHere Function Stores a class variable locally with a value if it is not local.

(GetClassValue self varName prop) [Function]

Purpose: Returns the value of a class variable or property.

Behavior: Varies according to the arguments.

If self is an instance, the lookup begins at the class of the instance, since
instances do not hav class variables stored locally. If self is a class, the
 lookup is in that class.

5-17LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.1 GENERALIZED GET AND PUT FUNCTIONS

• If prop is NIL, GetClassValue returns the value of the class variable
varName. If varName is not found, this breaks.

• If prop is non-NIL, GetClassValue returns the value of the property prop,
associated with the class variable varName. If the value is an active value,
it is activated. If varName has no property prop, this returns the value of
the variable NoValueFound.

If the class does not have a class variable varName, GetClassValue
searches through the super classes of the class until it finds varName. Since
this is rare, class variables are stored only in the class in which they are
defined, and the runtime search is necessary.

Arguments: self An instance or a class.

varName A class variable name.

prop Property name.

Returns: Value depends on the arguments; see Behavior.

Example: Given that

(← ($ Window) New ’window1)

then the command

(GetClassValue ($ window1) ’LeftButtonItems)

 returns the same value as the command

(GetClassValue ($ Window) ’LeftButtonItems)

The command

(GetClassValue ($ Window) ’abcde)

breaks. The command

(GetClassValue ($ Window) ’LeftButtonItems ’wxyz)

 returns the value of NoValueFound.

(PutClassValue self varName newValue propName) [Function]

Purpose: Stores a value in a class variable or property.

Behavior: Varies according to the arguments.

If self is an instance, the lookup begins at the class of the instance, since
instances do not have class variables stored locally. If self is a class, the
lookup is in that class.

• If prop is NIL, PutClassValue changes the value of the class variable
varName.

• If prop is non-NIL, PutClassValue stores newValue as the value of the
property, prop. If an active value is the current value, it is triggered.

If varName is not local to the class, the value is put in the first class in the
inheritance list in which varName is found. If varName is not found, a break
occurs.

Arguments: self An instance or a class.

varName A class variable name.

5-18 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.1 GENERALIZED GET AND PUT FUNCTIONS

newValue A new value.

propName Property name.

Returns: newValue

Example: Given that

(← ($ Window) New ’window1)

then the command

(PutClassValue ($ window1) ’LeftButtonItems 2 ’number)

adds the property number with the value 2 to the class variable
LeftButtonItems of the class Window. The following command performs the
same action.

(PutClassValue ($ Window) ’LeftButtonItems 2 ’number)

(GetClassValueOnly classRec varName prop) [Function]

Purpose: Returns the value of a class variable or property, without triggering active
values.

Behavior: Similar to GetClassValue, with the following exceptions:

•If GetClassValueOnly finds that the value is an active value, the active value
 is returned without being triggered.

• If prop is non-NIL and is not found, GetClassValueOnly returns the value
of the variable NotSetValue.

Arguments: See GetClassValue.

Returns: Value depends on the arguments; see Behavior.

Example: The command

(GetClassValueOnly ($ Window) ’abcde)

breaks. The command

(GetClassValueOnly ($ Window) ’LeftButtonItems ’wxyz)

 returns the value of NotSetValue.

(PutClassValueOnly self varName newValue propName) [Function]

Purpose: Stores the value of a class variable or property, without triggering active
values.

Behavior: Similar to PutClassValue, except that PutClassValueOnly does not trigger
an active value, but replaces it with newValue.

Arguments: See PutClassValue .

Returns: Used for side effect only.

(GetCVHere classRec varName propName) [Function]

Purpose: Returns the value of a class variable in a particular class without looking for
inherited values.

5-19LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.1 GENERALIZED GET AND PUT FUNCTIONS

Behavior: Returns the value of the class variable varName, or the propName property if
propName is non-NIL.

If the value is an active value, it is returned without being triggered.

If there is no varName (or propName), this returns the value of the variable
NotSetValue.

Arguments: classRec Must be a class.

varName A class variable name.

propName Property name.

Returns: Value depends on the arguments; see Behavior.

Example: The command

(GetCVHere ($ NonRectangularWindow) ’LeftButtonItems)

 returns

#,NotSetValue

The command

(GetCVHere ($ Window) ’LeftButtonItems)

returns

((Update (QUOTE Update)...)

(PutCVHere self varName value) [Function]

Purpose: Puts a class variable locally with a value if it is not local.

Behavior: Calls (AddCV self varName value).

Arguments: self An instance or a class.

varName A class variable name.

value Value for the class variable.

Returns: value

5.3.3 Instance Variable Access

An instance variable can be thought of as being local to each instance of a
class. The class defines what instance variables and their default values will
be in an instance. This section describes the functions that manipulate the
default values in the class.

See the LOOPS Library Modules Manual for interaction with Masterscope.

Name Type Description

GetClassIV Function Gets the default value of an instance variable or associated
property as defined in a class or one of its supers.

GetClassIVHere Function Gets the default value of an instance variable or associated
property as defined in a class.

5-20 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.1 GENERALIZED GET AND PUT FUNCTIONS

PutClassIV Function Changes the default value for an instance variable in a class.

(GetClassIV self varName prop) [Function]

Purpose: Gets the default value of an instance variable or associated property as
defined in a class or one of its supers.

Behavior: If self is not bound to a class, an error occurs.

Searches through the supers of self to find varName or prop.

• If prop is NIL, this returns the default value for varName.

• If prop is non-NIL, this returns its default value.

If the default value is an active value, it is returned without being triggered.

Arguments: self Must be bound to a class.

varName The name of an instance variable.

prop Name of a property associated with varName.

Returns: Value depends on the arguments; see Behavior.

Example: The commands

(GetClassIV ($ Window) ’window)
(GetClassIV ($ NonRectangularWindow) ’window)

both return

 #,($AV LispWindowAV ...)

(GetClassIVHere self varName prop) [Function]

Purpose: Gets the default value of an instance variable or associated property as
defined in a class.

Behavior: Similar to GetClassIV. This does not search the super classes of self for
varName. If varName or prop is not local to self, this returns the value of
NotSetValue.

Arguments: self Pointer to a class.

varName Name of an instance variable.

prop Name of a property associated with varName.

Returns: The default value of varName or prop or NotSetValue.

Example: The command

(GetClassIVHere ($ Window) ’window)

returns

#,($AV LispWindowAV ...)

the command

(GetClassIVHere ($ NonRectangularWindow) ’window)

returns

5-21LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.1 GENERALIZED GET AND PUT FUNCTIONS

#,NotSetValue

(PutClassIV self varName newValue propName) [Function]

Purpose: Changes the default value for an IV in a class.

Behavior: If self is not a class that contains the instance variable varName, an error
occurs.

• If propName is NIL, the default value for the instance variable varName is
changed to newValue.

• If propName is non-NIL, the default value for it is changed to newValue.

Arguments: self Must be a class that contains the instance variable varName.

varName An instance variable name.

newValue The new default value.

propName Property name.

Returns: newValue (used for side effect only).

Example: After the commands

68←(DefineClass ’Datum)
#,($C Datum)

69←(← ($ Datum) AddIV ’id# NIL)
id#

the following command changes the default value of the instance variable id#
to ’(7) for all new instances of the class Datum:

70←(PutClassIV ($ Datum) ’id# ’(7))
(7)

5-22 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.1 GENERALIZED GET AND PUT FUNCTIONS

[This page intentionally left blank]

