
4-1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

4. METACLASSES

In object-oriented programming, every object is described by a class.
Instances are described by classes and classes are, in turn, described by
metaclasses. The methods that an instance inherits are defined in the class
definition of that instance and the methods that the class inherits are defined in
the metaclass definition of that class’s metaclass. Sending a message to an
instance invokes method in class. Similarly, sending a message to class
invokes method in metaclass.

The two classes Class and MetaClass are metaclasses of other classes. If
Class or MetaClass refers to the metaclass, it appears in a bold typeface.

One method defined by a class’s metaclass is New, which returns a new
instance of a class. Different classes can initialize their instances in different
ways. For example, one class may need to have certain values assigned to
instance variables at creation, while another does not. The different forms of
New are defined in separate metaclasses.

A class’s metaclass is assigned when the class is created. A new class is
created by sending a metaclass the message New or by specializing an
already existing class. In the latter case, the metaclass defaults to the
metaclass of the class’s super class. The class’s metaclass can be changed
by directly editing the class definition.

This chapter discusses the metaclasses provided with LOOPS, describes
pseudoclasses, explains how to define new metaclasses, and discusses the
root class Tofu .

4.1 Specific Metaclasses

This section describes the metaclasses provided by LOOPS: Class,
MetaClass, AbstractClass, and DestroyedClass. These metaclasses are
shown in Figure 4-1.

Figure 4-1. Class Browser Showing Metaclasses

4.1.1 Metaclass Class

Class is the default metaclass for LOOPS classes. When a class whose
metaclass is Class receives the message New, it creates a new instance of
itself and returns that instance. If this message is sent at the top level, the
definition of the created instance is printed in the Executive window.

4-2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

4.1 SPECIFIC METACLASSES

4.1.2 Metaclass MetaClass

MetaClass is the metaclass for all metaclasses and provides the message
New to all metaclasses. For metaclasses, the result of sending the message
New is the definition of a new metaclass. This is discussed in detail in Section
4.3, "Defining New Metaclasses."

4.1.3 Metaclass AbstractClass

If a class’s metaclass is AbstractClass, then it cannot be instantiated. If an
abstract class is sent the message New, the following message is printed to
the TTY window.

#,($C className) Abstract Class cannot be instantiated

To make a class an AbstractClass, either send the metaclass AbstractClass
the message New or change the metaclass of the class definition directly
using the editor.

Use an abstract class to define a class which should not have any instances.
For example, consider mixin classes. Mixins are always used in conjunction
with another class to create a subclass. Instances are created from the new
subclass that has the mixin as one of its parents. Because mixins never have
instances, they have AbstractClass as their metaclass.

As an example, consider a circuit simulation module that contains various
classes such as Resistors, Inductors, Batteries, and Wires. A possibility is
to define a super class for these classes called AnalogDevice to contain all
the information common to all such classes: current, impedance, voltage drop,
etc. This super class also holds all the methods common to the classes, such
as ApplyOhmsLaw. Since AnalogDevice is not itself intended to be
instantiated (only its subclasses are), its metaclass can be AbstractClass so
that an error occurs if it is accidentally instantiated.

Note: Whenever AnalogDevice is specialized to create a new subclass, be
sure to change its metaclass.

4.1.4 Metaclass DestroyedClass

DestroyedClass is the metaclass for classes that have been sent the
message Destroy or Destroy! Trying to instantiate a DestroyedClass
causes an error. Attempts to destroy a DestroyedClass have no effect.

4.2 PSEUDOCLASSES
4.2 PSEUDOCLASSES

4.2 Pseudoclasses

Pseudoclasses provide an object interface to Lisp data types, which are also
known as Lisp objects. Pseudoclasses associate a class with the type name
of a Lisp object. When messages are sent to Lisp objects of the named type,
the messages are actually sent to the pseudoclass. Lisp objects which have
pseudoclasses are considered pseudoinstances.

Pseudoclasses provide two special cases in the message-sending
mechanism: for lists whose first element is a class, or for ordinary Lisp data
types.

4-3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

4.1 SPECIFIC METACLASSES

In the first case, the list’s first element is used as the class to look up the
method to be used.

In the second case, the class of the data type is found by using the
GetLispClass function, which looks in an internal table based on the type
name of the data type. If none is found, it is assumed to be Tofu. If found, the
data type is considered a pseudoclass and instances of it pseudoinstances.

Pseudoclasses also provide special cases in the behavior of GetValue and
PutValue, to allow simulation of variable or property access, as described
below.

(GetValue pseudoinstance varName propName) [Function]

Purpose: A variation on the behavior of GetValue to simulate retrieving variable or
property values on pseudoinstances.

Behavior: If GetValue is called with self bound to a pseudoinstance, then the method
associated with the selector GetValue in the pseudoclass is called with the
arguments:

pseudoinstance varName propName

Arguments: pseudoinstance
A Lisp object which has a pseudoclass.

varName The simulated variable name.

propName The simulated property name, or NIL.

Returns: The result of the call to the GetValue method in the pseudoclass.

(PutValue pseudoinstance varName propName newValue) [Function]

Purpose: A variation on the behavior of PutValue to simulate setting of variable or
property values on pseudoinstances.

Behavior: If PutValue is called with self bound to a pseudoinstance, then the method
associated with the selector PutValue in the pseudoclass is called with the
arguments:

instance varName newValue propName

Arguments: pseudoinstance
A Lisp object which has a pseudoclass.

varName The simulated variable name.

propName The simulated property name, or NIL.

newValue The new value to be placed in the simulated slot.

Returns: The result of the call to the PutValue method in the pseudoclass.

(GetLispClass obj) [Function]

Purpose: Used by the system to compute a class corresponding to a Lisp data type.

Behavior: Gets the hash value for the key (TYPENAME obj) from an internal hash array.

• If this hash value is NIL, ($ Tofu) is returned.

• If the hash value is not NIL and it is a class, it is returned.

4-4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

4.1 SPECIFIC METACLASSES

• In all other cases, the hash value, which should be a function, is applied to
obj and the result is returned.

Arguments: obj A Lisp object.

Returns: Value depends on the hash value; see Behavior.

Example: The command

79←(GetLispClass (create annotatedValue))

returns

#,($C AnnotatedValue)

LispClassTable [Global Variable]

Purpose: Used by GetLispClass to map type names of Lisp objects to pseudoclasses.

Format: This hash table has EQ hashing. It contains pairs of symbol keys (a type
name) and either classes, NIL, or a function object to be applied (see
GetLispClass).

4.2.1 Example

This example creates a pseudoclass from the Lisp data type STRINGP.

1. Define a class String that receives its messages:

37←(DefineClass ’String)
#,($C String)

2. Place an entry in the LispClass hash table to link the Lisp data type
STRING to the String class.

38←(PUTHASH ’STRINGP ($ String) LispClassTable)
#,($C String)

3. Add methods to String which will operate on Lisp STRINGPs, for example:

39←(DefineMethod ($ String) ’UpCase ’(self)
’(U-CASE self))

String.Upcase

This allows messages like the following:

40←(← "abc" UpCase)
"ABC"

4. Specialize GetValue and PutValue to allow element access in strings, for
example:

41←(DefineMethod ($ String) ’GetValue ’(index)
’(NTHCHAR self index))

String.GetValue

42←(DefineMethod ($ String) ’PutValue ’(index value)
’(RPLSTRING self index value))

String.PutValue

4-5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

4.1 SPECIFIC METACLASSES

This allows messages to access characters in strings, for example:

43←(← "abc" GetValue 2)
b

44←(← "abc" PutValue 2 ’p)
"apc"

4.3 DEFINING NEW METACLASSES
4.3 DEFINING NEW METACLASSES

4.3 Defining New Metaclasses

A new metaclass must be defined if you want to create several classes for
which a class message, such as Destroy, needs to be specialized. To create
a new metaclass, an object of the class MetaClass must be instantiated. This
is done by sending MetaClass the message New.

(← ($ MetaClass) New metaClassName supers) [Method of Metaclass]

Purpose: Instantiates a new metaclass with MetaClass as its metaclass,
metaClassName as its name, and supers as a list of its super classes.

Behavior: Evaluates metaClassName, which must evaluate to a symbol. The default for
supers is (Class). If used, supers must evaluate to a list of classes. The
message returns the new metaclass.

Arguments: metaClassName
Name of the new metaclass; must evaluate to a symbol.

supers List of classes.

Categories: MetaClass

Specializes: Class.New

Specializations: AbstractClass.New

Example: Assume the following MetaClass definition:

42←(←($ MetaClass) New ’ListMetaClass ’(Class))
#,($C ListMetaClass)

The message New can then be defined for the metaclass, ListMetaClass. In
this example, it saves all the instances created of a class with the metaclass
ListMetaClass. The instances are stored as the value of the class property
AllInstances. Define the message New using DefineMethod as follows:

DefineMethod ($ ListMetaClass) ’New ’(name arg1 arg2 arg3
arg4 arg5)

’((* * Create an instance and add it to
list in class)

(LET ((newObj (←Super)))

(* * newObj is the instance returned by
sending the New message provided by
the class CLASS.)

(PutClass
 self
 (CONS newObj (LISTP (GetClassHere

4-6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

4.1 SPECIFIC METACLASSES

self ’AllInstances)))
 ’AllInstances)

(* * LISTP returns list or
NIL if not a list)

(* * GetClassHere returns the value
of a property of a class.)

 newObj]

Now a new class can be defined by sending #,($C ListMetaClass) the
message New. The result is a new class with ListMetaClass as the
metaclass.

43←(←($ ListMetaClass) New ’Book)

#,($C Book) [New class called Book]

44←(←($ Book) New ’Book1)
#,($C Book1)

45←(←($ Book) New ’Book2)
#,($C Book2)

46←(GetClass ($ Book) ’AllInstances)

#,($C Book2) #,($C Book1) [List of all instances created so far]
4.4 TOFU

4.4 TOFU

4.4 Tofu

The highest class in the LOOPS hierarchy is Tofu, which is an acronym for
Top of the Universe. It is the simplest class, having no instance variables and
only three defined messages:

• MessageNotUnderstood

• MethodNotFound

• SuperMethodNotFound

Figure 4-2 shows specializations of Tofu. The most familiar specialization of
Tofu is the class Object, which is the root of the most of the other classes.
Another specialization of Tofu is AnnotatedValue. AnnotatedValue is used
with active values (see Chapter 8, Active Values).

Figure 4-2. Specializations of Tofu

If another evaluation protocol or scheme for catching error conditions is
needed, specialize Tofu and define all the methods required for handling data,
usually some subset of the methods of Object. Specializing Tofu should only
be necessary on very rare occasions.

The following table shows the methods in this section.

Functionality Type Description

4-7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

4.1 SPECIFIC METACLASSES

MessageNotUnderstood Method Provides the error handling mechanism for when a message is
sent to an object that cannot respond to that message.

MethodNotFound Method Provides some intermediate checking before sending the
message MessageNotUnderstood.

SuperMethodNotFound Method Provides some intermediate checking before sending the
message MessageNotUnderstood.

(← self MessageNotUnderstood selector messageArguments superFlg) [Method of Tofu]

Purpose/Behavior: Provides the error handling mechanism for when a message is sent to an
object that cannot respond to that message.

Calls ERROR with a list which includes self, selector, and "not understood."

Arguments: self An object receiving a message with the selector selector.

selector A selector.

messageArguments
A list of the arguments to the message.

superFlg Used internally.

Returns: See Behavior.

Categories: Tofu

Specializations: Object

(← self MethodNotFound selector) [Method of Tofu]

Purpose/Behavior: Provides some intermediate checking before sending the message
MessageNotUnderstood.

Arguments: self An object receiving a message with the selector selector.

selector A selector.

Returns: Used for side effect only.

Categories: Tofu

(← self SuperMethodNotFound selector classOfSendingMethod) [Method of Tofu]

Purpose/Behavior: Provides some intermediate checking before sending the message
MessageNotUnderstood.

Arguments: self An object receiving a message with the selector selector.

selector A selector.

classOfSendingMethod
The class with the method that contains a ←Super.

Returns: Used for side effect only.

Categories: Tofu

4-8 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

4.1 SPECIFIC METACLASSES

[This page intentionally left blank]

