
3-1LOOPS REFERENCE MANUAL, MEDLEY RELEASE  

3.   CLASSES

Classes provide a description of instances within the object domain.  The 
following information is contained within a class:

• The metaclass for this class.  See Chapter 4, Metaclasses,  for a discussion 
of metaclasses.

• Class Properties.  xamples of class properties are an edit stamp and 
 documentation.

• The supers list for this class.  Classes exist in a hierarchy and the supers 
list places the class within that hierarchy.  Instances of the class contain 
data and respond to messages that are described within the class and 
superclasses of the class.

• Class variables, their values, and their properties and vlues.

• Instance variables, their default values, and their properties and values.

This chapter covers creating and destroying classes, editing, accessing data 
stored in classes, inheritance, and related topics.  Other chapters that contain 
information relevant to this chapter are Chapter 4, Metaclasses, since a 
metaclass is a class of classes, and Chapter 10, Browsers, since the primary 
user interface for manipulating classes is the browser.

3.1  Creating Classes

Several ways are available to create a class:

• Use the browser interface.  

• Use function calling or message sending.  

• Use dynamic  mixins to dynamically create classes.

The rules for naming classes are the same as those for naming instances. 
Simply stated, a class name must be a litatom.  One exception to this rule is 
the naming of dynamic mixin classes, which is discussed later in this chapter. 

A class is generally referred to with this form: ($ className).  See Chapter 2, 
Instances, for more details regarding LOOPS names.  

As discussed in Chapter 2, Instances, the protocol that is followed when 
instances are created is for the LOOPS system to send the NewInstance 
message to the newly created instance.  The NewInstance message can be 
specialized to incorporate behavior specific to the creation time of an instance.  
Similarly, the system follows a prototol when creating a class using the New 
message.  After the class is created, it is sent the NewClass message.



3-2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.1  CREATING CLASSES

3.1.1  Function Calling and Message Sending

The following table shows the items in this section.

Name Type Description

DefineClass Function Creates a new class.

New Method Creates a new class.

CreateClass Method Creates a new class.

NewClass Method Provides a placeholder for modifying the class creation protocol.

(DefineClass name supers self) [Function]

Purpose: Creates a new class.

Behavior: If name is not  a litatom, a break occurs.

• If supers is non-NIL, it should be a list of classes or names of classes to be 
the supers for the newly created class.  If the list contains multiple classes, 
this results in a class that has multiple super classes (see Section 3.3, 
"Inheritance"). The order of classes in the list specifies the order in which 
lookup will proceed.  If one of the these classes is not a valid class, a break 
occurs.  

• If supers is NIL and if self is ($ MetaClass),  then the supers list is (Class).  

• If both supers is NIL and self is NIL, the supers list is (Object).

If self is non-NIL, it is installed as the metaclass for the newly created class.  
See Chapter 4, Metaclasses.

A class is then built with an Edited: property containing the date and time and 
the value of variable INITIALS. (See the Interlisp-D Reference Manual.)

The newly created class has no class variables, instance variables, or 
methods.

The variable LASTWORD is set to name, which is added to USERWORDS for 
spelling escape completion.  (See the Interlisp-D Reference Manual for 
information on LASTWORD and USERWORDS.)

Arguments: name A LOOPS name to be given to the class.

supers A list of classes.

self A metaclass.

Returns: The class object.

Examples: The following command defines a subclass of the class Object.

(DefineClass ’ExampleClass)  

The following command defines a subclass of the class Window.

(DefineClass ’MyClass ’(Window)) 

The following command defines a class with multiple supers: ExampleClass 
and Window.

(DefineClass ’AnotherClass ’(ExampleClass Window)) 



3-3LOOPS REFERENCE MANUAL, MEDLEY RELEASE  

3.1  CREATING CLASSES

The following command defines a subclass of the class Window that has 
AbstractClass as its metaclass.

(DefineClass ’DontMakeMe ’(Window) ($ AbstractClass))

(← class New name supers init1 init2  init3) [Method of Metaclass]

Purpose: Creates a new class.

Behavior: Sends the message CreateClass to class, passing the arguments name and 
supers.  This returns a new class which is then sent the message NewClass 
passing the arguments init1, init2, and init3.

Arguments: class A pointer to a class.

name A LOOPS name to be given to the class.

supers A list of classes.

init1, init2, inti3
See Behavior.

Returns: The new class.

Categories: Object

Specializes: Class

Specializations: AbstractClass

Example: The following command creates the class, AClass, which is a subclass of the 
class Window.  The metaclass of AClass is Class.   

(← ($ Class) New ’AClass ’(Window))

After AClass is created, the system sends the following message:

(← ($ AClass) NewClass)

(← self CreateClass name supers) [Method of Metaclass]

Purpose: Creates a new class.

Behavior: Method version of DefineClass.

Arguments: self A metaclass.

name The name of the newly created class.

supers A list of classes.

Returns: The clsss object.

Categories: MetaClass

(← class NewClass init1 init2 init3) [Method of Class]

Purpose: Provides a hook into class initialization.  If you want  special actions to occur 
when creating a class, specialize this method.

Arguments: class A pointer to a class.

init1, init2, init3
Dependent on user-defined functionality.



3-4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.1  CREATING CLASSES

Returns: class

Categories: Class

Example: Create a subclass of Class called MyClass:

(DefineClass ’MyClass ’(Class))

 Give it a method NewClass:

(DefineMethod ($ MyClass) ’NewClass ’(init1 init2 init3) 
’(PROGN (PutClass self init1 ’prop1) self))

 This looks like the following display editor window:

Now send the class MyClass the following command:

(← ($ MyClass) New ’testclass NIL "this is a test")

This results in the creation of the class shown in the following display editor 
window:

To display the class, enter

(← ($ testclass) Edit)

3.1.2  Dynamic Mixins

In some programming situations, you may develop sets of mixins that are 
designed to be used together.  (Mixins are classes that are used only in 
conjunction with another class to create a subclass, or provide some 
functionality useful in more than one class.)  For example, the class 
NamedClass adds one instance variable name and specializes the New 
message to ensure that the instance variable name contains the name of the 
object.  

(DefineClass ’NamedClass)
(← ($ NamedClass) AddIV ’name)
(DefineMethod ($ NamedClass) ’New ’(self name)
’(←@ (←self NewInstance name) name name))

Other classes that want the names of their objects in an instance variable 
name can use NamedClass as a mixin.

As another example, assume that you have one set consisting of A1, A2, A3, 
and A4 and another set containing B1, B2, and B3.  Formerly, to allow 
creation of an instance taking properties from arbitrary combinations of an 
element from each set, you had to create in advance all 12 combinations of 
classes with a super from A and a super from B.  This was even more 
cumbersome if the As and Bs can also combine with any of a set of 5 Cs.  



3-5LOOPS REFERENCE MANUAL, MEDLEY RELEASE  

3.1  CREATING CLASSES

What is desired is the ability to create combinations of these classes on the fly, 
without having to invent a name for each combination and without having each 
present in the system when only a few may be needed in any given 
application.  To meet this need, LOOPS now provides the dynamic mixin 
class.  The name of such a class is a list, in order, of the classes which are to 
be the supers of the class.  Such a class is automatically created the first time 
it is referred to.  Thus, the following sequence 

(DefineClass ’A)
(DefineClass ’B)
(← ($ (A B)) New)

creates the class whose supers are A and B (if it did not already exist), and 
builds an instance of that class.  

Dynamic mixins appear in browsers as shown in this sample window.

All of the browser operations still function on dynamic mixin classes.

These classes print as 

#,($C (A B))

3.2  DESTROYING CLASSES
3.2  DESTROYING CLASSES

3.2  Destroying Classes

The following messages have been provided to destroy a class that has been 
created.  Destroyed classes, if not being pointed to in some fashion, are 
eventually collected by the garbage collector.

The following table shows the methods in this section.

Name Type Description

Destroy Method Removes a class from the LOOPS system.

Destroy! Method Destroys a class and its subclasses.

DestroyClass Method Destroys a class by deleting its contents.

(← class Destroy) [Method of Class]

Purpose: Removes a class from the LOOPS system.

Behavior: If self has any subclasses, a break occurs and you are prompted to determine 
if you want to use Destroy!.  

Sends the message DestroyClass to the metaclass of self.

Specializations of this method may be necessary to undo any actions that 
might have been performed by user specializations of the NewClass method.   
If you specialize Destroy, be sure to include a ←Super to guarantee that the 
functionality of the Destroy method is performed.



3-6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.1  CREATING CLASSES

Arguments: class Must be a class.

Returns: NIL

Categories: Object

Specializes: Object

Specializations: DestroyedClass

Example: The following command  destroys the class Datum:

(← ($ Datum) Destroy)

(← class Destroy!) [Method of Class]

Purpose: Destroys a class and its subclasses.

Behavior: Recursively sends the Destroy message to self and its subclasses.

Arguments: class Must be a class.

Returns: NIL

Categories: Object

Specializes: Object

Specializations: DestroyedClass

(← class DestroyClass classToDestroy) [Method of Class]

Purpose: Destroys classToDestroy by deleting its contents.  This method is invoked by 
the LOOPS system and should generally not be called directly by user code.  
However, it can be specialized to change the way classes are destroyed.

Behavior: Performs the following  actions:

• Removes classToDestroy from any files on FILELST.  

• Sends the Destroy! message to all methods locally associated with 
classToDestroy. 

• Removes classToDestroy from any subclass data contained in the supers 
of classToDestroy.

• Changes the class name of classToDestroy to *aDestroyedClass*.

• Changes the supers list of classToDestroy to DestroyedObject and 
Object.

• Changes the metaclass of classToDestroy to DestroyedClass.

• Sets other fields of the internal class data structure to NIL.

Arguments: class Metaclass of classToDestroy.

classToDestroy
Class to destroy.

Returns: NIL

Categories: Class

Specializations: DestroyedClass



3-7LOOPS REFERENCE MANUAL, MEDLEY RELEASE  

3.3  INHERITANCE

3.3  Inheritance

Classes exist in an ordered lattice or hierarchy.  Information contained within a 
class - the supers list - defines where that class is located within the lattice.  
The supers list specifies the classes immediately above a given class.  When 
an instance of a class is created, it contains not only the instance variables of 
the defining class, but also the instance variables of all of the classes above 
the defining class in the class hierarchy.  When you try to determine the value 
of a class variable associated with an instance, all classes above the defining 
class may be searched.  When you send a message to an instance,  all 
classes above the defining class may be searched for the appropriate method.

There are two types of inheritance:

• Simple, in which a class has only one superclass.

• Multiple, in which a class has two or more classes on its supers list.

When an instance is created, it may contain an instance variable that is 
defined in more than one class.  The default value for that instance variable 
depends on its inheritance.  In the case of simple inheritance, the instance 
variable gets the value from the class that is lowest in the hierarchy.  In 
multiple inheritance, the instance variable gets the value from the class that is 
lowest in an inheritance list.  To create this list,

1. Put the first  class that describes the instance.

2. Begin with the first class on its supers list and move up from it, making a 
list of classes which assume simple inheritance.

3. Build one of these lists for all successive super classes.

4. Append these lists together.

5. Remove all occurrences of any classes that appear in the list a 
multiplenumber of times except for the last entry.

Another way to think about this, which creates the same inheritance list, is the 
following:

1. Begin with the first super class and walk up the hierarchy until you reach a 
class where the inheritance paths merge.

2. Walk up each path leading from each successive super class to where 
paths merge.

3. Take the class where the paths merge and walk up from there.

As an example of simple inheritance, examine Figure 3-1 which shows some 
of the class variables and instance variables defined within each class.



3-8 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.3  INHERITANCE

CVs

IVs

LeftButtomItems

..

.
((Update  &)&)

.

.

Window

width
height
menus

.

.

12
12
T
.
.

CVs

IVs

LeftButtomItems

..

.
((Boxnode &)&)

.

.

width
height

title

.

.

64
32

"Lattice Browser"
.
.

CVs

IVs

LeftButtomItems

..

. .
.

CVs

IVs

LeftButtomItems

..

.
((Recompute &)&)

.

.

InstanceBrowser

LatticeBrowser

ClassBrowser

((PrintSummary &)&)

title "Class Browser"
.
.

.

.

title "Instance Browser"
subIV NIL

. .

Figure 3-1.  Simple Inheritance Lattice

An instance of the class ClassBrowser has this as an inheritance list:

ClassBrowser
LatticeBrowser
Window
Object
Tofu 

The instance variable values of this instance are as follows:

IV Value From Class
title "Class browser" ClassBrowser
width 64 LatticeBrowser
height 32 LatticeBrowser
menus T Window

Accessing the value of the class variable LeftButtonItems  causes this value 
to come from the class ClassBrowser.

Figure 3-2 shows an example of multiple inheritance.



3-9LOOPS REFERENCE MANUAL, MEDLEY RELEASE  

3.3  INHERITANCE

Class1

CVs
cv1
cv2

A1

IVs
iv1 11
iv2 21

Class3

CVs
cv3

IVs
iv3
iv4

Class2

CVs
cv1 A2

IVs
iv2
iv3

Class4

CVs
cv1
cv4

A4

IVs

Class5

CVs

IVs
iv4

B1

D4

45

C3

33
43

22
32

Figure 3-2.  Multiple Inheritance Lattice

If the order of the supers for Class5 is Class3 and then Class4 (that is, its 
supers list is (Class3 Class4 )), then the inheritance list for an instance of 
Class5 is as follows: 

Class5
Class3
Class4
Class2
Class1  

The instance variable and class variable values this instance are as follows:

IV Value From Class CV Value From Class
iv1 11 Class1 cv1 A4 Class4
iv2 22 Class2 cv2 B Class1
iv3 33 Class3 cv3 C Class3
iv4 45 Class5 cv4 D4 Class4

3.4  EDITING CLASSES
3.4  EDITING CLASSES



3-10 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.3  INHERITANCE

3.4  Editing Classes

Changing the contents of a class typically involves using the display editor, 
although programmatical ways to make these changes are available.  To edit 
a class structure, the LOOPS system first changes the structure to a list and 
then passes that list to the display editor.  Upon exit from the display editor, 
the system translates the modified list back into the class structure.

The editor is most often called from the browser interface.  (See Chapter 10, 
Browsers.)  The following method provides a programmatical way to invoke 
the editor.

(← class Edit commands) [Method of Class)

Purpose: Edits a class definition.

Behavior: Calls EDITE (see the Interlisp-D Reference Manual) with the translated class 
structure passed as the EXPR argument and commands passed as the COMS 
argument.

This method binds the variable LASTCLASS to the class name of self.

Arguments: class Pointer to a class.  

commands Commands passed to EDITE.

Returns: Name of the class.

Categories: Object

Specializes: Object

Example: The following command causes a display editor window to appear.

(← ($ LoopsIcon) Edit)

Calling the editor causes a structure to appear in a display editor window.  At 
this time, you can change the structure of the class by using any of the 
following techniques:

• Changing the value of the class’s metaclass.  This is done by changing th 
 class name after the word MetaClass.

• Changing the superclasses for the class.  The form for this is :

(Supers class1 class2 ...)

At least one class must be in the supers list.  The order of this list 
determines the order of inheritance; the first class after the word Supers on 
this list is the first class to search for inherited data and methods.

• Adding or removing clas  properties.  Class properties occur within the 
same list as MetaClass, after the metaclass class name.  The form for this 
is

(MetaClass metaclassName classProp1 propVal1 classProp2 
propVal2 ...)

• Adding or removing class variables or associated properties.  The form for 
class variables is: 

(ClassVariables  
(cvName1 cvVal1 prop1a propVal1a prop1b propVal1b ...) 
(cvName2 cvVal2 prop2a propVal2a prop2b propVal2b ...) 
...)



3-11LOOPS REFERENCE MANUAL, MEDLEY RELEASE  

3.3  INHERITANCE

It is not necessary to have any properties for a class variable.  If the length 
of each class variable list is not an even number, a break occurs under the 
editor.  The message in the break window describes an odd length list the 
first time you try to exit from the editor.

• Adding or removing instance variables or associated properties.  These 
have the same form as class variables with the distinction that the value 
listed for each instance variable is not its value, but only its default value for 
the purposes of instanciation.

For example, examine the display editor window in Figure 3-3.

Figure 3-3.  Sample Display Editor Window

This figure shows the following information:

• The title bar of the display editor window indicates the class being edited.

• The metaclass of the class IndirectVariable in this example is the class 
Class.  IndirectVariable has two class properties.  The first is a doc 
property.  The second is an Edited: property.

• This class has one super class: ActiveValue.  

• This class has no class variables.  It has four instance variables: object, 
varName, propName, and type.  Each has a doc property.  

• The MethodFns are listed in this structure as a convenience.  It is not 
possible to add or delete elements of this list from the editor and have any 
changes actually occur.  Selecting one of the method function names and 
then selecting Edit (Meta-O in SEdit) allows you to edit that method either 
as its method code (METHOD-FNS), its method object (METHODS), or its 
Interlisp code (FNS).

3.5  MODIFYING CLASSES
3.5  MODIFYING CLASSES

3.5  Modifying Classes

In addition to the editing technique for changing a class, you can use 
programmatic means to modify the structure of a class.  This section describes 
the functions and methods for modifying classes.

Name Type Description

Add Method Adds a component to a class.

Delete Method Deletes a component from a class.



3-12 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.3  INHERITANCE

DeleteClassProp Function Removes a class property from a class.

AddCV Function Adds a class variable to a class.

AddCV Method Adds a class variable to a class.

DeleteCV Function Deletes a class variable or one of its properties from a class.

AddCIV Function Adds an instance variable to a class; can also add properties to 
a class.

AddIV Method Adds an instance variable to a class.

DeleteCIV Function Removes an instance variable or property from a class.

ReplaceSupers Method Changes the super classes of a class.

(← class Add type name value prop) [Method of Class]

Purpose/Behavior: Adds a component to a class.

Arguments: class Pointer to a class.

type One of IV, IVPROP, CV, CVPROP, METACLASS, or METHOD.

name The name of the item to be added.

value The value, or default value if type is one of IV or IVPROP.

prop The name of the property, if a property is to be added.

Returns: NIL

Categories: Class

Example: The following command adds a new instance variable color to class Datum:

(← ($ Datum) Add ’IV ’color)

(← class Delete type name prop) [Method of Class)

Purpose: Deletes a component from a class.

Behavior: Varies according to the arguments.

• If type is one of IV, IVPROP, or NIL, this calls (DeleteCIV class name prop).

• If type is one of CV or CVPROP, this calls (DeleteCV class name prop).

• If type is META, METACLASS, or CLASS, and if prop is NIL, then the 
metaclass of self is changed to the class Class. 

• If type is META, METACLASS, or CLASS, and if prop is non-NIL, then this 
calls (DeleteClassProp class prop).  

• If  type is METHOD or SELECTOR, this calls (DeleteMethod class name 
prop).

Arguments: class A pointer to a class.

type See Behavior.

name IV, CV, or selector name.



3-13LOOPS REFERENCE MANUAL, MEDLEY RELEASE  

3.3  INHERITANCE

prop A property name.

Returns: NIL

Categories: Class

Example: The following command deletes the instance variable color from the class 
Datum:

(← ($ Datum) Delete ’IV ’color)

(DeleteClassProp classRec propName) [Function]

Purpose: Removes a class property from a class.

Behavior: Marks classRec as changed.

Arguments: classRec Pointer to a class.

propName Property to be deleted.

Returns: NIL is propName is not found; otherwise propName.

(AddCV class varName newValue) [Function]

Purpose: Adds a class variable to a class.

Behavior: Varies according to the arguments.

• If varName is NIL, you are prompted to enter a name.

• If varName is already a class variable, its value is changed to newValue.  
NIL is returned.

• If varName is not a class variable of class, it is added to class with the value 
newValue.  Also, a doc property is added with the following value: 

‘(* CV added by , (USERNAME NIL T))   

varName is returned in this case.

Arguments: class A pointer to a class.

varName Name of the new variable.

newValue The new value.

Returns: Value depends on the arguments; see Behavior.

(← class AddCV varName newValue) [Method of Class]

Purpose: Adds a class variable to a class.

Behavior: Provides a method version of the function AddCV. 

Arguments: See the function AddCV. 

Returns: NIL

Categories: Class

(DeleteCV class varName prop) [Function]



3-14 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.3  INHERITANCE

Purpose: Deletes a class variable or one of its properties from a class.

Behavior: Marks class  as changed.

Arguments: class Pointer to a class.

varName Class variable name to be deleted.

prop Property to be deleted.

Returns: NIL, if varName is not found, else varName.

(AddCIV class varName defaultValue otherProps) [Function]

Purpose: Adds an instance variable, and perhaps properties,  to a class.

Behavior: If the length of otherProps is odd, an error occurs.

The remaining behavior varies according to the arguments.

• If varName is NIL, you are prompted to enter a name.

• If varName is already an instance variable of class, then change its default 
value to defaultValue.  Properties on otherProps are added or changed as 
necessary.  NIL is returned.

• If varName is not an instance variable of class, it is added to class and its 
default value is defaultValue.  Properties on otherProps are also added.  If 
there is no doc property, it is added and given the following value:

 ‘(* IV added by , (USERNAME NIL T))

varName is returned in this case.

Arguments: class Must be a pointer to a class.

varName New instance variable name.

defaultValue
New default value.

otherProps NIL or a list in property list format. 

Returns: Value depends on the arguments; see Behavior.

(←  class AddIV varName defaultValue otherProps) [Method of Class]

Purpose: Adds an instance variable to a class.

Behavior: Provides a method version of the function AddCIV.

Arguments: See the function AddCIV.

Returns: NIL

Categories: Object

Specializes: Object

Example: Define a new class TestClass, add an instance variable testIV with two 
properties testProp1 and testProp2, all with initial values, and then prettyprint 
the class’s variables.

64←(DefineClass ’TestClass)
#,($C TestClass)



3-15LOOPS REFERENCE MANUAL, MEDLEY RELEASE  

3.3  INHERITANCE

65←(← ($ TestClass) AddIV ’testIV 1234
’(testProp1 1 testProp2 2))
testIV

66←(← ($ TestClass) PPV! T)

#,($ TestClass)
MetaClass and its Properties
  Class  Edited: (* edited: 24-Sep-87 08:41 by mcgill)
Supers
  (Object Tofu)
Instance Variable Descriptions
  testIV 1234 doc (* IV added by MCGILL) 
testProp2 2 testProp1 1
Class Variables

(DeleteCIV class varName prop) [Function]

Purpose: Removes an instance variable or property from a class.

Behavior: If class does not have varName, a break occurs.

Marks class as changed. 

Arguments: class Pointer to a class.

varName Instance variable to be deleted.

prop If non-NIL, property to be deleted.

Returns: Value depends on the arguments.

• NIL for removing an instance variable if successful.  

• prop for removing a property if successful.

• NIL if prop is not a property.

(← class ReplaceSupers supers) [Method of Class]

Purpose: Changes the super classes of a class.

Behavior: Checks that no circular lists can be made in the inheritance lattice.

• If the super class of class is Tofu, no change occurs.

• If supers is different from the current supers, the supers list of class is 
changed and class is marked as changed.

Arguments: class Pointer to a class.

supers A list of class names or classes.

Returns: NIL

Categories: Class
3.6  METHODS FOR MANIPULATING CLASS NAMES

3.6  METHODS FOR MANIPULATING CLASS NAMES



3-16 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.3  INHERITANCE

3.6  Methods for Manipulating Class Names

LOOPS classes must have one and only one LOOPS name.  The following 
functions and methods allow you to change and rename class names.

Name Type Description

Rename Method Changes the name of a class.   Prompts for name if not 
provided, then calls SetName.

SetName Method Changes the name of a class.

UnSetName Method Unnames a class.

ClassName Function Finds the class name of an object.

(← class Rename newName) [Method of Class]

Purpose: Changes the name of a class.  Prompts for name if not provided, then calls 
SetName.

Behavior: Varies according to the argument.

• If newName is NIL, this causes a break and prompts you for a name. 
Rename then sends the message SetName passing this name as an 
argument

• If newName is non-NIL, Rename sends the message SetName passing 
newName as an argument.

Arguments: class Pointer to a class.

newName A litatom.

Returns: NIL

Categories: Object

Specializes: Object

Example: The following command renames class Datum to Thing:

(← ($ Datum) Rename ’Thing)

(← class SetName newClassName) [Method of Class]

Purpose: Changes the name of a class.

Behavior: Removes the old name of self from ObjNameTable.

SetName uses the Interlisp-D function EDITCALLERS to rename references 
to the class name or any file that contains the class.  If EDITCALLERS cannot 
succeed, for example, when a file is not RANDACCESSP, a message is 
printed that the class cannot be renamed on that file.  For complete 
information on EDITCALLERS,  see the Interlisp-D Reference Manual. 

The names of the method functions of class are changed to use 
newClassName.

Arguments: class Pointer to a class.

newClassName
A litatom.



3-17LOOPS REFERENCE MANUAL, MEDLEY RELEASE  

3.3  INHERITANCE

Returns: NIL

Categories: Object

Specializes: Object

(← class UnSetName) [Method of Class]

Purpose: Unnames a class, but does not destroy it.  Has limited usefulness for keeping 
a class name from being typed in.

Behavior: Removes class from the LOOPS name hash table and from any files on 
FILELST.  This method is intended to be used internally only; it is not 
recommended to create an unnamed class.

Arguments: class Pointer to a class.

Returns: NIL

Categories: Object

Specializes: Object

(ClassName self) [Function]

Purpose: Finds the class name of an object.

Behavior: Varies according to the arguments.

• If self is a class, this returns the name of that class.

• If self is an instance, this returns the name of the class that describes that 
instance.

• If self is neither a class or an instance, this returns Tofu.

Arguments: self See Behavior.

Returns: Value depends on the arguments; see Behavior.

Example: Given that

(← ($ Window) New ’w1)

the commands

(ClassName ($ w1))
(ClassName ($ Window)) 

both return  Window.
3.7  QUERYING THE STRUCTURE OF A CLASS

3.7  QUERYING THE STRUCTURE OF A CLASS

3.7  Querying the Structure of a Class

The following  functions and methods allow you to query what is contained in a 
class.

Name Type Description



3-18 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.3  INHERITANCE

GetClassProp Method Obtains a class’s metaclass or properties.

HasAttribute Method Determines whether self has an attribute name.

HasAttribute! Method Recursive form of HasAttribute, but works only on classes.

HasCV Method Determines if a class has a class variable with a specified 
property.

HasItem Method Determines if a class has an item of a given type.

HasIV Method Determines if a class has an instance variable with a specified 
property.

HasIV! Method Same as HasIV, except that HasIV! also searches up the supers 
chain.

ListAttribute Method Lists the elements of a class that are local to the class.

ListAttribute! Method Lists all the items associated with a class.

WhoHas Function Determines what classes contains a specified item.

(← class GetClassProp propname) [Method of Class]

Purpose: Obtains a class’s metaclass or properties  by following metaclass links.

Behavior: Varies according to the arguments.

• If propname is NIL, this returns the class’s metaclass.

• If propname is non-NIL, this looks first in class for that property.  If it cannot 
find it there, it looks through class’s metaclass links.

• If no property is found, the value of the variable NotSetValue is returned.

Arguments: class A pointer to a class.

prop Property name.

Returns: Value depends on the arguments; see Behavior.

Categories: Class

Example: The following commands show the variety of responses.

51←(← ($ Window) GetClassProp) 
#,($C Class)

52←(← ($ Window) GetClassProp ’doc) 
"A LOOPS object which represents a window"

53←(← ($ IconWindow) GetClassProp ’doc) 
"An icon window that appears as an irregular shaped image 
on the screen -- See the ICONW Library utility"

(← self HasAttribute type name propname) [Method of Class]

Purpose: Determines whether self has an attribute name, with a property propname if 
supplied.

Behavior: self can be an instance or a class. Remaining behavior depends on type, 
which is converted to uppercase on entry:



3-19LOOPS REFERENCE MANUAL, MEDLEY RELEASE  

3.3  INHERITANCE

• If type is IV, IVPROP, or NIL, this returns T if self has an instance variable 
of name, with a property called propname (if propname is non-NIL), 
otherwise it returns NIL.

• If type is CV or CVPROP, this returns T if self has a CV called name, with a 
property of propname (if propname is non-NIL), otherwise it returns NIL.

• If type is METHOD or SELECTOR, this returns NIL or the name of the 
method implementing name.

HasAttribute applied to an instance reports on the actual state of the 
instance; it sees all instance variables and class variables whether local, 
inherited, or specially added to the instance.  If only local attributes are 
required, use (← (Class instance) HasAttribute ...).

Arguments: self Can be an instance or a class.

type See Behavior.

name A symbol which is looked up as the variable or method name.

propname A symbol which is looked up as the property name.

Returns: See Behavior.

Categories: Object

Specializations: Class

Example:  The command

(← ($ LoopsIcon) HasAttribute ’IV ’icon) 

returns T.

(← class HasAttribute! type name propname) [Method of Class]

Purpose: Recursive form of HasAttribute; only works on classes

Behavior: Similar to  HasAttribute, but will also search through class ’s supers.

Arguments: class A class.

type See Behavior under HasAttribute.

name A symbol which is looked up as the variable or method name.

propname A symbol which is looked up as the property name.

Returns: See Behavior.

Categories: Object

Specializations: Class

Example:  The command

(← ($ LoopsIcon) HasAttribute ’IV ’left) 

returns NIL, but

(← ($ LoopsIcon) HasAttribute! ’IV ’left)
 

returns T.



3-20 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.3  INHERITANCE

(← class HasCV cvName prop) [Method of Class]

Purpose: Determines if a class has a class variable cvName with a property prop.  

Note:  The preferred form of this method is HasAttribute or HasAttribute!.

Behavior: Varies according to the arguments.

• If prop is NIL, this returns T if class contains a class variable called 
cvName, else NIL.

• If prop is non-NIL, this returns T if class contains a class variable called 
cvName with the property prop, else NIL.

Note: HasCV does not distinguish between locally defined class variables 
and inherited class variables.  If you need to test a class to see if it 
has a class variable defined locally, you can use the HasAttribute 
method.  For example, the form (←MyClass HasAttribute ’CV ’ABC) 
will return a non-NIL value if and only if the class MyClass has a local 
definition of the class variable ABC.

Arguments: class A pointer to a class.

cvName A class variable name.

prop Property name.

Returns: NIL or T; see Behavior.

Categories: Object

Specializes: Object

Example: The command

(← ($ Window) HasCV ’TitleItems) 

returns T.

(← class HasItem itemName prop itemType) [Method of Class]

Purpose: Determines if a class has an item of a given type.

Note:  The preferred form of this method is HasAttribute or HasAttribute!.

Behavior: Varies according to the arguments.

• If itemType is IV or IVS, this sends the message (←  class HasIV 
itemName prop).

• If itemType is CV or CVS, this sends the message (← class HasCV 
itemName prop).

• If itemType is SELECTOR, METHOD, SELECTORS, or METHODS, this 
finds the corresponding local method of class.

• If itemType is not one of the above, this returns NIL.

Arguments: class Pointer to a class.

prop Property name.

itemType See Behavior.

Returns: Value depends on the arguments; see Behavior.



3-21LOOPS REFERENCE MANUAL, MEDLEY RELEASE  

3.3  INHERITANCE

Categories: Class

(← class HasIV IVName prop) [Method of Class]

Purpose: Determines if a class has an instance variable IVName with a property prop.

Note:  The preferred form of this method is HasAttribute or HasAttribute!.

Behavior: class should point to a class.   

•  If prop is NIL, this returns T if IVName is contained in class.

• If prop is non-NIL, this returns T if IVName is contained in class, and prop is 
a property of IVName in class or one of its supers.

Arguments: class Pointer to a class.

IVName Instance variable name.

prop Property name.

Returns: Value depends on the arguments; see Behavior.

Categories: Object

Specializes: Object

(← class HasIV! IVName prop) [Method of Class]

Purpose/Behavior: Same as HasIV, except that HasIV! also searches up the supers chain.

Note:  The preferred form of this method is HasAttribute or HasAttribute!.

Arguments: See the method HasIV.

Returns: Value depends on the arguments; see Behavior.

Categories: Class

(← class ListAttribute type name) [Method of Class]

Purpose: Lists the elements of a class that are local to the class.

Behavior: type is converted to uppercase on entry.  The remaining behavior varies 
according to the arguments.

• If type is IVS, this returns the instance variable names (not values) local to 
class.  name is ignored.

• If type is IV, IVPROPS, or NIL, name should be bound to an instance 
variable of class.  This returns the property names (not values) of the 
instance variable name.  If name is not an instance variable of class, this 
returns NIL.

• If type is CVS, this returns the class variables local to class.  name is 
ignored.

• If type is CV or CVPROPS, name should be bound to a class variable of 
class.  This returns the property names of the class variable name.  If name 
is not a class variable of class, this returns NIL.



3-22 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.3  INHERITANCE

• If type is METHODS or SELECTORS, this returns the selectors for the 
class.  name is ignored.

Arguments: class Pointer to a class.

type See Behavior.

name See Behavior.

Returns: Value depends on the arguments; see Behavior.

Categories: Object

Specializes: Object

Example: The following commands show the variety of responses.

55←(← ($ SupersBrowser) ListAttribute ’IVs) 
(title)

56←(← ($ Window) ListAttribute ’iv ’menus) 
(DontSave Title LeftButtonItems MiddleButtonItems TitleItems doc)

57←(← ($ IconWindow) ListAttribute ’METHODS) 
(GetMenuItems)

(← class ListAttribute! type name verboseFlg) [Method of Class]

Purpose: Lists all items associated with a class.

Behavior: Provides a recursive version of ListAttribute.

If verboseFlg is NIL, items that are inherited from Tofu, Object, or Class are 
omitted, unless class is one of Tofu, Object, or Class.

type is converted to uppercase on entry.

• If type is META or METACLASS, this returns the same as ListAttribute.

• If type is IVS or NIL, this returns the instance variables an instance of  class 
would have.

• If type is SUPERS or SUPERCLASSES, this returns the ordered list of 
super classes of class.

• If type is SUBS or SUBCLASSES, this returns all of the subclasses of class.

• If type is any other option that can be passed to ListAttribute, this returns 
all local and inherited values.

Arguments: class Pointer to a class.

type See Behavior.

name A litatom.

verboseFlg See Behavior.

Returns: Value depends on the arguments; see Behavior.

Categories: Object

Specializes: Object

(WhoHas name type files editFlg) [Function]



3-23LOOPS REFERENCE MANUAL, MEDLEY RELEASE  

3.3  INHERITANCE

Purpose: Determines what classes contain a specified item.

Behavior: Returns a list of classes on files that contain name.  If editFlg is non-NIL, then 
edit the methods (if type is METHOD), or the classes before returning.

Arguments: name The item specified.

type One of IV, CV, METHOD, or Method.  If type is NIL, it defaults to 
METHOD.

files A file or a list of files.  If files is NIL, it defaults to FILELST.

editFlg T or NIL.

Returns: A list of classes on files that contain name.
3.8  COPYING CLASSES AND THEIR CONTENTS

3.8  COPYING CLASSES AND THEIR CONTENTS

3.8  Copying Classes and Their Contents

Inheritance lets classes be described in terms of other classes in a hierarchical 
manner.  When it is preferable to duplicate a class description in different parts 
of a lattice these methods provide the capability.

The following table shows the methods in this section.

Name Type Description

Copy Method Copies a class.

CopyCV Method Copies a class variable to another class.

CopyIV Method Copies an instance variable to another class.

(← class Copy name) [Method of Class]

Purpose: Makes a copy of a class.

Behavior: If name is NIL, you are prompted to supply a name for the new class. This 
copies variables and properties and methods.

Arguments: class The class being copied.

name The name of the copy.

Returns: The new class.

Categories: Class

Example: Given that

(DefineClass ’Datum)
(← ($ Datum) AddIV ’someThing)

the following command makes a copy of class Datum and names it Thing:

(← ($ Datum) Copy ’Thing)

(← class CopyCV cvName toClass) [Method of Class]



3-24 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.3  INHERITANCE

Purpose/Behavior: Copies a class variable to another class.  This also copies the properties of 
cvName to toClass.

Arguments: class The source class.

cvName The name of the class variable to copy.

toClass The destination class.

Returns: NIL

Categories: Class

(← class CopyIV ivName toClass) [Method of Class]

Purpose/Behavior: Copies an instance variable to another class.  This also copies the properties 
of ivName to toClass.

Arguments: class The source class.

ivName The name of the instance variable to copy.

toClass The destination class.

Returns: NIL

Categories: Class
3.9  ENUMERATING INSTANCES OF CLASSES

3.9  ENUMERATING INSTANCES OF CLASSES

3.9  Enumerating Instances of Classes

New instances may be created without names, or without being tracked. 
These methods allow you to produce a list of instances according to their 
classes.  Prototype instances are a convenience used where the methods 
defined for a class must be used, but there is no logical instance for the class.

The following table shows the items in this section.

Name Type Description

AllInstances Method Finds all instances of a class.

AllInstances! Method Finds all instances of a class or its subclasses.

IndexedObject Class Keeps track of instances so that AllInstances searches can 
proceed more rapidly.

PrintOn Method Modifies how instances of IndexedObject that do not have 
LOOPS names will be printed.

Prototype Method Returns an instance of a class that is stored on the class’s class 
variable Prototype.

(← class AllInstances) [Method of Class]

Purpose: Finds all instances of a class.



3-25LOOPS REFERENCE MANUAL, MEDLEY RELEASE  

3.3  INHERITANCE

Behavior: Checks if class is a subclass of IndexedObject.  If so, a faster search is used 
to find all of the instances of class.  If not, this checks if each object is an 
instance of class.  Instances that do not yet have a UID will not be found.

Arguments: class A class.

Returns: A list of the instances found.

Categories: Class

Example: The following command produces a list of all the LOOPS window instances:

61←(← ($ Window) AllInstances)

(← class AllInstances!) [Method of Class]

Purpose: Finds all instances of a class or its subclasses.

Behavior: Returns a list of instances that are instances of class or any of its subclasses. 
Instances that do not have the class IndexedObject as a super class, or that 
do not yet have a UID are not found.  (See Chapter 18, Reading and Printing, 
for more information on UIDs.)

Arguments: class A pointer to a class.

Returns: A list of the instances found.

Categories: Class

IndexedObject [Class]

Purpose: Keeps track of instances so that AllInstances searches can proceed more 
rapidly.

Behavior: This class is to be used as a Mixin (an addition superclass), and should be the 
first class on a supers list for a class.

IndexedObject provides NewInstance and Destroy protocols that cause 
instances to be added to or removed from a global list when they are created 
or destroyed.  This global list allows the AllInstances protocols to search 
more quickly.

IndexedObject also provides a PrintOn protocol that modifies how instances 
will be printed if they have no LOOPS name.

MetaClass: Class

Supers: Object

Class Variables: IdentifierVar 
The name of an instance variable which will contain a string 
which could provide some identification to the user.  Used in 
PrintOn if variable is in object and filled. shortName, the value 
of this class variable, is the default variable name which is used.

(← self PrintOn) [Method of IndexedObject]

Purpose: Modifies how instances of IndexedObject that do not have LOOPS names will 
be printed.

Behavior: If self has a LOOPS name, or if self does not have an instance variable with a 
name equal to (@ self ::IdentifierVar), then do a (←Super).  Otherwise, build a 



3-26 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.3  INHERITANCE

form that incorporates the value of the instance variableIV referenced by (@ 
self ::IdentifierVar).

Arguments: self An instance.

Returns: A list ; see example

Categories: Object

Specializes: Object

Example: Create a class, IndexedObjectTest, that has this structure.

62←(DefineClass ’IndexedObjectTest ’(IndexedObject))
#,($C IndexedObjectTest)

63←(← ($ IndexedObjectTest) AddIV ’shortName ’ioTest)
shortName

Create an instance.

64←(SETQ test (← ($ IndexedObjectTest) New)) 
#,($& IndexedObjectTest (YMW0.0X%:.>T4.n18 . 36))

65←(←@ test shortName ’changeName)
changeName

66←(← test PrintOn) 
("#," $& IndexedObjectTest (changeName (YMW0.0X%:.>T4.n18 . 36)))

(← class Prototype newProtoFlg) [Method of Class]

Purpose: Returns a prototype instance of a class.  

Behavior: Varies according to the arguments.

• If class has a class variable Prototype and the variable’s value is an 
instance of class, return the value (assuming newProtoFlg is NIL).

• If there is no class variable Prototype, or if there is a class variable 
Prototype but its value is not an instance of class, or if newProtoFlg is non-
NIL, then create a new instance of class, store the instance on the class 
variable Prototype, and return the instance.

See Proto in Chapter 7, Message Sending Forms, for more information.

Arguments: class A class.

newProtoFlg
If non-NIL, create a new prototype instance.

Returns: The prototype.

Categories: Class

Example: LOOPS defines an icon to make it easy to bring up class browsers and file 
browsers.  The icon is the Prototype instance of the class LoopsIcon.

To move the icon to the center of the bottom of the screen, enter

71←(←Proto ($ LoopsIcon) Move (QUOTIENT SCREENWIDTH 2) 0)
(576 . 0)

This places the left edge of the icon at the center of the screen.  To move the 
icon to the center of the screen, enter



3-27LOOPS REFERENCE MANUAL, MEDLEY RELEASE  

3.3  INHERITANCE

72←(LET ((icon (← ($ LoopsIcon) Prototype)))
       (← icon Move (QUOTIENT (DIFFERENCE SCREENWIDTH
                                          (@ icon width))
                              2)
                    0))
(544 . 0)

3.10 DEALING WITH INHERITANCE
3.10 DEALING WITH INHERITANCE

3.10  Dealing with Inheritance

The inheritance lattice for classes shows how methods and variables are 
shared (see Chapter 10, Browsers, for details on how to graph the lattice on 
the screen).  To programmatically inspect and add to this lattice via 
Specialize, use the following functions and methods:

Name Type Description

Fringe Method Finds the leaves of a branch of an inheritance tree.

Specialize Method Creates a subclass of a class.

SubClasses Method Returns a list of subclasses.

Subclass Method Determines if a class is a subclass of another class.

AllSubClasses Function Computes the subclasses of a class.

SubsTree Function Computes all the names of the subclasses of a class.

(← class Fringe) [Method of Class]

Purpose: Finds the leaves of a branch of an inheritance tree.

Behavior: Returns a list of subclasses of class, whether close or distant, that have no 
subclasses.

Arguments: class A class, the root of the tree to explore.

Returns: Names of subclasses of class that have no subclasses.

Categories: Class

Example: The following commands show the variety of responses. 

73←(← ($ Window) Fringe) 
(InstanceBrowser MetaBrowser SupersBrowser FileBrowser 
LoopsIcon IconWindow)

74←(← ($ ClassBrowser) Fringe) 
(MetaBrowser SupersBrowser FileBrowser)

(← class Specialize newName) [Method of Class]

Purpose: Creates a subclass of a class.

Behavior: Creates a class with class as its only super.

• If newName is non-NIL, this is the name of the new class.



3-28 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.3  INHERITANCE

• If newName is NIL, this creates a name consisting of the name of class 
followed by an integer.

Arguments: class Pointer to a class.

newName Name of the new subclass.

Returns: The new class.

Categories: Class

Example: Given that

(DefineClass ’Datum)

the following command creates a specialization of the class Datum called 
DatumX:

(← ($ Datum) Specialize ’DatumX)

(← class SubClasses) [Method of Class]

Purpose: Returns a list of subclasses.

Behavior: The classes returned by this are the immediate subclasses of class.

Arguments: class A pointer to a class.

Returns: A list of subclasses.

Categories: Class

Specializations: DestroyedClass

Example: The following command gets a list of the subclasses of the class Window:

(← ($ Window) SubClasses)

(← class Subclass super) [Method of Class]

Purpose: Determines if a class is a subclass of another class.

Behavior: If class is a subclass of super, super is returned, else NIL.

Arguments: class Pointer to a class.

super Either the LOOPS name of a class or a pointer to a class.

Returns: Value depends on the arguments; see Behavior.

Categories: Class

Example: The command 

(← ($ DestroyedClass) Subclass ’Class) 

returns 

#,($C Class)

(AllSubClasses class currentSubs) [Function]

Purpose: Computes the subclasses of a class.



3-29LOOPS REFERENCE MANUAL, MEDLEY RELEASE  

3.3  INHERITANCE

Behavior: This is a recursive function that computes (without duplicates) all of the 
subclasses of class.

Arguments: class Must be a pointer to a class, for example, ($  Window).

currentSubs Used by LOOPS; NIL when called by the user.

Returns: A list of classes.

Example: The command

(AllSubClasses ($ LatticeBrowser)) 

returns

(#,($C FileBrowser) #,($C SupersBrowser) 
#,($C MetaBrowser) #,($C ClassBrowser) 
#,($C InstanceBrowser))

(SubsTree class currentList) [Function]

Purpose: Computes the names of the subclasses of a class.

Behavior: Provides a recursive function that computes (without duplicates) all of the 
names of the subclasses of class.

Arguments: class Can be a class name or a pointer to a class

currentList Used internally by SubsTree; it should be NIL when called by 
the user.

Returns: A list of class names.

Example: The command 

(SubsTree ’LatticeBrowser) 

returns 

(InstanceBrowser ClassBrowser MetaBrowser SupersBrowser 
FileBrowser)



3-30 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.3  INHERITANCE

[This page intentionally left blank]


