
2-1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2. INSTANCES

Every object within the LOOPS system is an instance of some class. In this
manual, however, the word instance generally refers to objects that are not
themselves classes. Instances are a data type that contain local storage for
instance variables, a pointer to the class that describes the instance, the
Unique Identifier (UID), and other information.

This chapter describes naming and creating instances, accessing data stored
within instances or pointed to by instances, and other related topics.

2.1 Instance Naming Conventions

A separate name space for LOOPS objects is maintained by the LOOPS
system within a separate object name table. Since Lisp structures and
LOOPS objects are stored in separate name tables, you can use the same
symbol to refer to both a Lisp structure and a LOOPS object.

Note: The separate name space is not implemented by using the Common
Lisp Package System.

Instances are not created with names; therefore, it may be necessary to keep
pointers to them. Two ways are available to create pointers:

• Use Lisp variables, as in:

(SETQ window1 (← ($ Window) New))

This creates an instance of the class Window that can be referenced by the
Lisp variable window1.

• Use a LOOPS name. This can be done in two ways:

- Assign a name at the same time the instance is created. This can be
done by using

(← ($ Window) New ’window2)

as described above. This creates an instance of the class Window that
can be referenced by the LOOPS expression ($ window2).

- Use the message SetName if you have a pointer to an object and want
to assign a LOOPS name to that object.

The following table shows the items that manipulate LOOPS names.

Name Type Description

$ NLambda Distinguishes between the Lisp value of a symbol and the
and Macro LOOPS value of the same symbol; does not evaluate its

argument.

2-2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.1 INSTANCE NAMING CONVENTIONS

$! Function Distinguishes between the Lisp value of a symbol and the
LOOPS value of the same symbol; evaluates its argument.

SetName Method Assigns a LOOPS name to an object.

UnSetName Method Removes a name pointer to an object.

Rename Method Changes the name of an object.

GetObjectNames Function Returns the names of an object, including its UID.

ErrorOnNameConflict Variable Causes a break to occur when an attempting to name an object
that already has a LOOPS name.

($ name) [NLambda and Macro]

Purpose/Behavior: Returns a pointer to a LOOPS object specified by the LOOPS name name. If
no object exists for name, NIL is returned.

Arguments: name A LOOPS name.

Returns: Pointer to a LOOPS object or NIL; see Behavior.

Example: Given that

24←(← ($ Window) New ’window2)
#,($& Window (NEW0.1Y%:.;h.eN6 . 495))

then

25←($ window2)
#,($& Window (NEW0.1Y%:.;h.eN6 . 495))

The returned value is a pointer to the new window instance. For a further
explanation, see Chapter 18, Reading and Printing.

($! name) [Function]

Purpose/Behavior: Returns a pointer to an object specified by the value of the variable name,
given that the value is a LOOPS name. If no object exists for name, NIL is
returned.

Arguments: name Evaluates to a valid LOOPS name.

Returns: Pointer to a LOOPS object or NIL; see Behavior.

Example: Given that

26←(SETQ foo ’Window)
Window

and Window is a LOOPS object, then

27←($! foo)
#,($C Window)

(← self SetName name) [Method of Object]

Purpose: Assigns a LOOPS name to an object.

Behavior: If name is NIL, then a break occurs. If name is not a symbol, a break occurs.
If name is already in use as a LOOPS name, and if the variable

2-3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.1 INSTANCE NAMING CONVENTIONS

ErrorOnNameConflict is non-NIL, then a break occurs, giving you the chance
to OK "rebinding" name.

Note: If an object has multiple names, (← self SetName NewName) results
in both the old name and new name appearing when (FILES?) is
executed. The instance is also printed twice on the file if both names
are specified to be saved.

Arguments: self An object.

name The LOOPS name to be given to the object; must be a symbol.

Returns: self

Categories: Object

Specializations: Class

Example: Given the commands

28←(SETQ window1 (← ($ Window) New))
#,($& Window (NEW0.1Y%:.;h.eN6 . 496))

29←(← window1 SetName ’window3)
#,($& Window (NEW0.1Y%:.;h.eN6 . 496))

the Lisp variable window1 and the LOOPS expression

($ window3)

now point to the same object.

(← self UnSetName name) [Method of Object]

Purpose: Removes a LOOPS name pointer to an object.

Behavior: Removes the reference of name to self from the object name table maintained
by the LOOPS system. If name is NIL, all names pointing to self in the object
name table are removed from the files on FILELST. If name is non-NIL and
the instance is associated with any files on FILELST, the instance is removed
from those files. If name is not a valid LOOPS name for the object in question,
an error occurs.

Arguments: self An object.

name A LOOPS name.

Returns: Used for side effect only.

Categories: Object

(← self Rename newName oldNames) [Method of Object]

Purpose: Changes the name of an object.

Behavior: If oldNames is NIL, removes all old names when newName is installed as the
name for self; otherwise replaces only names specified in oldNames by
newName. If oldNames is not a valid LOOPS name for the object in question,
an error occurs.

Arguments: self Evaluates to a LOOPS name.

newName The LOOPS name to be given to the object; must be a symbol.

2-4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.1 INSTANCE NAMING CONVENTIONS

oldNames List of symbols whose names are to be removed; if NIL, all old
names are removed when newName is installed as the name for
self.

Returns: self

Categories: Object

Specializations: Class

Example: Examine the following expressions to see the effects of Rename.

30←($ window2)
#,($& Window (NEW0.1Y%:.H53.G2A . 496))

31←(← ($ window2) Rename ’MyWindow)
#,($& Window (NEW0.1Y%:.H53.G2A . 496))

32←($ window2)
NIL

33←($ MyWindow)
#,($& Window (NEW0.1Y%:.H53.G2A . 496))

(GetObjectNames object) [Function]

Purpose/Behavior: Returns the names of object, including its UID.

Arguments: object A LOOPS object.

Returns: The names of object, including its UID.

Example: The command

(PROGN
 (← ($ Window) New ’w1)
 (← ($ w1) SetName ’w1again)
 (GetObjectNames ($ w1)))

returns

(w1again w1 (NEW0.1Y%:.H53.G2A . 497))

ErrorOnNameConflict [Variable]

Purpose/Behavior: Behavior depends on the value.

• If NIL, the existing object is replaced by a new object.

• If non-NIL, a break occurs when an attempt is made to give an object a
name that is already in use as a LOOPS name.

Initially, the value for ErrorOnNameConflict is NIL.
2.2 CREATING INSTANCES

2.2 CREATING INSTANCES

2.2 Creating Instances

When an instance is created by sending the New message to a class, the
default behavior for Class.New is to send the message NewInstance to the

2-5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.1 INSTANCE NAMING CONVENTIONS

newly created object. If you require that special or additional operations occur
at instance creation time, specialize the method NewInstance.
Specializations of the NewInstance method should return self. You also have
the capability to pass arguments to the NewInstance method when the New
message is sent to create the instance. For example, the following defines a
class NamedClass which adds the instance variable name and specializes
New to set that instance variable to the name of the instance when created.

(DefineClass ’NamedClass)
(←($ NamedClass) AddIV ’name)
(DefineMethod ($ NamedClass) ’New ’(self name)
’(←@ (←self NewIstance name) name name))

You can also indicate whether instances are to be saved on files using the File
Manager, which is described in Chapter 14, File Manager.

The following table shows the methods in this section.

Name Type Description

New Method Creates a new object of a particular class.

←New Macro Creates an object and sends a message to it.

NewInstance Method Allows initialization of newly created instances by class.

NewWithValues Method Creates an object with instance variables of assigned values.

(← class New name arg1 arg2 ...) [Method of Class]

Purpose: Creates a new object, which is an instance of the class class.

Behavior: Creates a new instance name and then sends the message
(← "the new instance" NewInstance name arg1arg2 ...)

In the default case, the New method uses the default values for the instance
variable values in the newly created instance. These default values are given
in the instance variable descriptions of the given class. When that process is
finished, the instance can be altered in various ways by sending it messages.
Specializations of the New method should return the new instance, and can
take more arguments after name.

The internal data structure of an instance contains a pointer to the class of
which it is an instance.

Arguments: class Pointer to a class.

name Name assigned to the instance; if NIL, object does not have a
LOOPS name.

arg1arg2... Arguments passed to the NewInstance method.

Returns: Newly created instance of the class.

Categories: Class

Specializations: AbstractClass, MetaClass

Example: The following command creates a new instance named window1 of class
Window.

20←(← ($ Window) New ’window1)
#,($& Window (NEW0.1Y%:.;h.eN6 . 515))

The command

2-6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.1 INSTANCE NAMING CONVENTIONS

21←(INSPECT (← ($ Window) New))

results in the following inspector window:

Some of the values assigned to the various instance variables are default
values. These values are defined in the class Window.

(←New class selector args) [Macro]

Purpose: Creates an instance and sends a message to it within one form.

←New is pronounced "send new."

Behavior: Is equivalent to the form

(← (← class New) selector args)

Arguments: class Evaluates to a class.

selector Name of the message to be sent to the new instance.

args Arguments to be sent to the function invoked by the message.

Returns: The new instance.

Example: The command

23←(←New ($ Window) Open)

creates a new instance of the class Window and then sends the message
Open to the newly created object.

(← self NewInstance name arg1 arg2 arg3 arg4 arg5) [Method of Object]

Purpose: Allows initialization of newly created instances by the class of the instance, as
opposed to the metaclass. Subclasses of Object that specialize this method
should have a ←Super form within the method to allow the execution of the
default behavior.

Behavior: Not normally called directly, but is sent by method New. The default behavior
is as follows.

If name is non-NIL, the message SetName is sent to self.

Within self, instance variables that are bound to the value of NotSetValue and
have an :initForm property in the class description are filled. This allows you
to override the :initForm behavior by setting values for instance variables
before executing the ←Super form. See the discussion of :initForm in
Section 2.3, "Data Storage in Instances at Creation Time."

Sends the message SaveInstance to self with the argument name.

Note: Specializations of the NewInstance method should return self.

2-7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.1 INSTANCE NAMING CONVENTIONS

Arguments: self Evaluates to a class.

name LOOPS name given to a new instance.

arg1...arg5 Optional arguments referenced by user-written specialization
code.

Returns: LOOPS name of new object created.

Categories: Object

Specializations: IndexedObject

(← class NewWithValues valDescriptionList) [Method of Class]

Purpose: Creates a new object and initializes the instance variables specified in
valDescriptionList.

Behavior: Creates the object with no other initialization, directly installs the values and
property lists specified in valDescriptionList, and returns the created object.
Variables that have no description in valDescriptionList are given no value in
the instance and thus inherit the default value from the class.

NewWithValues does not invoke the NewInstance method or the :initForm
properties (see Section 2.3, "Data Storage in Instances at Creation Time").
This means that the instance is not recognized by the File Manager; to be
recognized, the instance must be named.

Arguments: class Pointer to a class.

valDescriptionList
Evaluates to a list of value descriptions, each of which is a list of
variableNames and properties, for example,

((VarName1 value1 prop1a propVal1a prop1b propVal1b ...)
(VarName2 value2 prop2a propVal2a prop2b propVal2b ...) ...)

Returns: The created object.

Categories: Class

Specializations: MetaClass

Example: The command

22←(INSPECT (← ($ Window) NewWithValues ’((width 300)(height 200))))

results in the following inspector window:

Contrast the values for the instance variables width and height with the
inspector window for New, above.

2.3 DATA STORAGE IN INSTANCES AT CREATION TIME
2.3 DATA STORAGE IN INSTANCES AT CREATION TIME

2-8 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.1 INSTANCE NAMING CONVENTIONS

2.3 Data Storage in Instances at Creation Time

When an instance is first created, the value of the variable NotSetValue is
assigned to its instance variables. NotSetValue is initialized to be an active
value of the class NotSetValue and should not be changed by the user.
Trying to access an instance variable triggers this active value which in turn
triggers the method IVValueMissing.

Data is stored in instances on all Puts and on GetValues when the default
value is an active value but not NotSetValue. Be aware that in reading the
value of an instance variable that is not stored in the instance, changes in the
default value of the instance variable in the class description are seen in
accesses of the instance.

One exception to this method of data storage at creation time is if an instance
variable has the property :initForm in the class description. In this case, data
is stored in the instance at the time of creation.

Testing for whether data is stored locally in the instance can be done in two
ways:

• Through the user interface, you can inspect an instance in the local mode.
(See Chapter 18, User Input/Output Modules, for more information.)
Values not locally stored appear as #,NotSetValue.

• Programmatically, through the function GetIVHere with the macro
NotSetValue.

The following table describes the items in this section.

Name Type Description

IVValueMissing Method Handles cases when an attempt is made to access the value of
an instance variable that is not stored in an instance.

NotSetValue Macro Determines if its argument is equivalent to the value of
NotSetValue.

:initForm IV Property Signals a property value that can be evaluated.

(← self IVValueMissing varName propName typeFlg newValue) [Method of Object]

Purpose: Invoked by the system to handle the cases when you try to access the value of
an instance variable that is not stored in an instance. This is the mechanism
the system uses to access default values.

Behavior: Varies according to the functionality that invoked it.

• GetValueOnly accesses return the default value of the instance variable
stored in the class.

• GetValue accesses return the default value of the instance variable stored
in the class if it is not an active value. If the default value is an active value,
a copy of the active value is made, stored in the instance, and sent the
GetWrappedValue message.

• PutValueOnly accesses store the new value in the instance.

• PutValue accesses store the new value in the instance unless the default
value of the instance variable stored in the class is an active value. If this is
the case, a copy of the active value is made, stored in the instance, and
sent the PutWrappedValue message.

Arguments: varName Instance variable name.

2-9LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.1 INSTANCE NAMING CONVENTIONS

propName Property name for instance variable varName.

typeFlg Used internally to indicate the type of access.

newValue If called by PutValueOnly or PutValue, this is the value to be
placed into the instance variable or property name.

Returns: Value depends on the functionality that invoked this method; see Behavior.

Categories: Object

(NotSetValue arg) [Macro]

Purpose: Determines if arg is EQ to the value of NotSetValue.

Arguments: arg Any value.

Returns: NIL or T.

Example: Given that

51←(← ($ Window) New ’w)
#,($& Window (NEW0.1Y%:.;h.eN6 . 515))

then

52←(NotSetValue (GetIVHere ($ w) ’title))
T

:initForm [IV property]

Purpose: This allows instance variables to be initialized at the time of the creation of an
instance. The :initForm property and its value are in the class definition. Its
value is a form that is evaluated when an instance is created. The result of the
evaluation is stored as the value of the instance variable containing this
property in the newly created instance.

This behavior does not hold if the value of the instance variable is not
NotSetValue. Refer to the method Object.NewInstance in Section 2.2,
"Creating Instances," for more information.

Example: Given the commands

53←(DefineClass ’testclass)
#,($C testclass)

54←(AddCIV ($ testclass) ’date NIL ’(|:initForm| (DATE)))
date

then

55←(INSPECT (← ($ testclass) New))

returns the following inspector window:

2.4 CHANGING THE NUMBER OF INSTANCE VARIABLES IN AN INSTANCE
2.4 CHANGING THE NUMBER OF INSTANCE VARIABLES IN AN INSTANCE

2-10 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.1 INSTANCE NAMING CONVENTIONS

2.4 Changing the Number of Instance Variables in an Instance

An instance can contain more instance variables than are defined in the class
that describes it. It is not possible to remove an instance variable from an
instance if the instance variable is defined in the class.

When you try to access the value of an instance variable that is not defined as
an instance variable in the instance, the IVMissing method is invoked.

The following table shows the functions and methods in this section.

Name Type Description

AddIV Function Adds an instance variable to an instance.

AddIV Method Adds an instance variable to self.

DeleteIV Function Removes an instance variable or property from an instance.

DeleteIV Method Removes an instance variable or property from self.

ConformToClass Method Makes self contain only those instance variables that are defined
or inherited by the class of self.

IVMissing Method Is sent by the system when an attempt is made to access an
instance variable that does not exist. It is used for recovery.

(AddIV self name value propName) [Function]

Purpose: Adds an instance variable to an instance.

Behavior: Varies according to the arguments.

• If propName is non-NIL and if name already exists, it is added as a property
to the instance variable name with the value value.

• If name already exists, and if propName is NIL, the value of the instance
variable name is changed to value.

• If name does not exist and if propName is non-NIL, the instance variable
name is added to the instance and given the value of the variable
NotSetValue. It is given the property propName with the value value.

• If name and propName already exist, the value of the property prop is
changed to value.

Arguments: self A pointer to the instance.

name The name of the instance variable to be added.

value The value the new instance variable will be assigned.

propName Property name of instance variable name; may be NIL.

Returns: Used for side effect only.

Example: Given that

55←(← ($ Window) New ’w)

the command

56←(AddIV ($ w) ’left 1234)

changes the value of the instance variable left to 1234. The command

2-11LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.1 INSTANCE NAMING CONVENTIONS

57←(AddIV ($ w) ’foo 1234)

adds the instance variable foo to ($ w) and gives it the value 1234.

(← self AddIV name value propName) [Method of Object]

Purpose: Adds an instance variable to self.

Behavior: Method form of the function AddIV.

Arguments: See the function AddIV.

Returns: NIL

Categories: Object

Specializations: Class

Example: Given that

58←(← ($ Window) New ’w)

the command

59←(← ($ w) AddIV ’left 1234)

changes the value of the instance variable left to 1234. The command

60←(← ($ w) AddIV ’foo 1234)

adds the instance variable foo to ($ w) and gives it the value 1234.

(DeleteIV self varName propName) [Function]

Purpose: Removes an instance variable or property from an instance.

Behavior: Varies according to the arguments.

• If self does not have varName, an error occurs.

• If varName is defined in the class or a super class of self, an error occurs.

• If the instance self has varName, and propName is NIL, the instance
variable is deleted.

• If propName is non-NIL, it is deleted only if it is a locally stored property,
that is, not defined in a class. If propName is not a property of varName or
is defined in a class, no error occurs.

Arguments: self A pointer to the instance from which the instance variable is to
be deleted.

varName The name of the instance variable to be deleted.

propName If non-NIL, specifies that a property, not an instance variable, is
to be deleted.

Returns: If no errors occur, this returns self.

Example: The following command deletes the instance variable foo from ($ w):

62←(DeleteIV ($ w) ’foo)

2-12 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.1 INSTANCE NAMING CONVENTIONS

(← self DeleteIV varName propName) [Method of Object]

Purpose: Deletes an instance variable or property from self.

Behavior: Method version of the function DeleteIV.

Arguments: See the function DeleteIV.

Returns: If no errors occur, this returns self.

Categories: Object

(← self ConformToClass) [Method of Object]

Purpose/Behavior: Makes self contain only those instance variables that are defined in or
inherited by the class of self.

Returns: NIL

Categories: Object

Example: This example adds an instance variable to an instance and shows how
ConformToClass removes it.

63←(← ($ Window) New ’w1)
(#,($& Window (|MXWO.:F5.G18.Z:?|.18))

64←(← ($ w1) AddIV ’NewIV 1234)
1234

65←(INSPECT ($ w1))

This produces the following inspector window:

66←(← ($ w1) ConformToClass)
NIL

67←(INSPECT ($ w1))

This produces the following inspector window:

(← self IVMissing varName propName typeFlg newValue) [Method of Object]

Purpose: This message is sent by the system when an attempt is made to access an
instance variable that does not exist. It is used for recovery.

2-13LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.1 INSTANCE NAMING CONVENTIONS

Behavior: Varies according to the arguments.

• If the instance variable varName is now defined in the class, copy it to self.
This can happen if the class was changed after the instance was created.

• If there is a class variable with the name varName, use it. The method of
use is determined by the :allocation class variable property:

- dynamicCached

Copy the class variable to self on puts or gets.

- dynamic

Copy the class variable to self on puts. If the access is by GetValue or
GetValueOnly, then get the value from the class. The value retrieved
from the class is dependent on the value of propName and the class
variable property :initform. If propName is NIL and there is a class
variable property :initform, then retrieve the value returned from
evaluating :initform. Otherwise, retrieve the value of the class variable
varName if propName is NIL or the value of the property propName if it is
non-NIL.

- class (the default if there is no :allocation property)

Do not copy the class variable varName to self. On puts, store the value
in the class. With gets, do the same as the case when the :allocation
property is dynamic. Essentially, this allows you to access class
variables with the same syntax as instance variables.

An attempt is made to correct the spelling of varName and try the above
steps again before breaking.

Arguments: self A pointer to the instance.

varName Instance variable name for self.

propName Property name of instance variable varName.

typeFlg One of PutValue, PutValueOnly, GetValue, GetValueOnly.

newValue Value to be stored in varName.

Returns: If doing a put, this returns NewValue; else this returns the value of the
instance variable name.

Categories: Object

Example: If w1 is a Window, then the following command breaks under
Object.IVMissing because windows do not have an instance variable named
mumble.

(← ($ w1) Get ’mumble)
2.5 MOVING VARIABLES

2.5 MOVING VARIABLES

2.5 Moving Variables

These functions allow you to move variables between classes.

Name Type Description

RenameVariable Function Changes a variable name in a class.

2-14 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.1 INSTANCE NAMING CONVENTIONS

MoveVariable Function Moves an instance variable from one class to another.

MoveClassVariable Function Moves an class variable from one class to another.

(RenameVariable className oldVarName newVarName classVarFlg) [Function]

Purpose: Changes oldVarName to newVarName in class className.

Behavior: Can cause inconsistency without warning; does not test for references to the
variable in methods of className.

Arguments: className Class in which function is defined.

oldVarName
Old name of variable.

newVarName
New name of variable.

classVarFlg If not NIL, then oldVarName refers to a class variable.

Returns: If successful, returns newVarName; else NIL.

Example: The following command renames the class variable OldVar to NewVar.

27←(RenameVariable ($ MyClass) ’OldVar ’NewVar T)

(MoveVariable oldClassName newClassName varName) [Function]

Purpose: Moves an instance variable from oldClassName to newClassName.

Behavior: Moves both the varName instance variable and its description to
newClassName. Deletes varName from oldClassName.

Arguments: oldClassName
Source class.

newClassName
Destination class.

varName Variable to be moved.

Returns: Used for side effect only.

(MoveClassVariable oldClassName newClassName varName) [Function]

Purpose: Moves a class variable from oldClassName to newClassName.

Behavior: Moves the class variable varName and its properties to newClassName.
Deletes varName from the oldClassName.

Arguments: oldClassName
Source class.

newClassName
Destination class.

varName Class variable to be moved.

Returns: Used for side effect only.

2.6 DESTROYING INSTANCES

2-15LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.6 Destroying Instances

A protocol allows you to customize the behavior of the system at instance
destruction time. The naming convention is somewhat asymmetrical to that of
creation time. To programmatically influence instance creation, specialize the
method NewInstance. To programmatically influence instance destruction,
specialize the method Destroy. Include a (←Super) in specializations of
Destroy to guarantee normal system behavior.

The following table describes the methods in this section.

Name Type Description

Destroy Method Removes an object from the environment.

Destroy! Method Removes an object from the environment. If the object is a
class, it also destoys all subclasses.

DestroyInstance Method Modifies the data structure of an instance as described above.

(← self Destroy) [Method of Object]

Purpose: Removes an object from the environment.

Behavior: Sends the DestroyInstance message with self as an argument to the class of
self. UnmarkedAsChanged is called to remove the instance from the notice
of the File Manager.

Arguments: self A pointer to the instance.

Returns: Used for side effect only.

Categories: Object

Specializations: Class, DestroyedClass, IndexedObject, Window

Example: The following command destroys an instance named window1.

70←(← ($ window1) Destroy)

(← self Destroy!) [Method of Object]

Purpose/Behavior: Removes an object from the environment. If the object is a class, it also
destoys all subclasses.

Arguments: self A pointer to the instance.

Returns: Used for side effect only.

Categories: Object

Specializations: Class, DestroyedClass, DestroyedObject

(← class DestroyInstance instance) [Method of Class]

2-16 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.6 DESTROYING INSTANCES

Purpose/Behavior: Destroys instance by overwriting its contents. When an instance is destroyed,
several things occur:

• The instance is removed from any files on FILELST. See the Interlisp-D
Reference Manual.

• The instance is deleted from system hash tables used for maintaining
object identities.

• The class of the instance is changed to DestroyedObject.

• Other fields of the internal instance data structure are set to NIL.

If an instance is only pointed to by a LOOPS name, its data structure is freed
for garbage collection.

Arguments: class Class of instance.

instance The instance being destroyed.

Returns: Used for side effect only.

Categories: Class

Specializations: MetaClass, DestroyedClass
2.7 METHODS CONCERNING THE CLASS OF AN OBJECT

2.7 METHODS CONCERNING THE CLASS OF AN OBJECT

2.7 Methods Concerning the Class of an Object

Given an instance, you often need to manipulate the class of an instance.
This section describes how to perform this manipulation.

Name Type Description

ChangeClass Method Changes the class of an instance.

Class Macro Determines the class of an object.

Class Method Determines the class of an object.

ClassName Function Returns the class name of an object.

ClassName Method Returns the class name of an object.

InstOf Method Determines if self is an instance of a class.

InstOf! Method Determines if self is an instance of a class or any of its
subclasses.

You can also compute a class corresponding to a Lisp data type for Lisp
objects by using GetLispClass, described in Chapter 4, Metaclasses.

(← self ChangeClass newClass) [Method of Object]

Purpose: Changes the class of an instance.

Behavior: Creates a blank instance of the newClass. Any instance variables that are
locally stored within self are added to the new instance.

2-17LOOPS REFERENCE MANUAL, MEDLEY RELEASE

If newClass is not the name of a class or a pointer to the class, an error
occurs.

Arguments: self A pointer to an instance.

newClass Either the name of a class or a pointer to the class.

Returns: self

Categories: Object

Specializations: IndexedObject

Example: Create an instance of class Window and assign a local value to the instance
variable width - all other instance variables of ($ w) lack local values. Then,
when the class of ($ w) is changed to IndirectVariable, ($ w) will have all of
the instance variables of its new class, plus the one instance variable of its old
class which had a local value, width.

71←(← ($ Window) New ’w)
#,($& Window (NEW0.1Y%:.;h.eN6 . 501))

72←(←@ ($ w) width 123)
123

73←(← ($ w) ChangeClass ’IndirectVariable)
#,($& IndirectVariable (NEW0.1Y%:.;h.eN6 . 502))

74←(← ($ w) Inspect)

This produces the following inspector window:

(Class self) [Macro]

Purpose: Determines the class of an object.

Behavior: If self is a LOOPS object, return its class.

If self is not a LOOPS object, evaluate (GetLispClass self)

Arguments: self A pointer to a LOOPS or Lisp object.

Returns: Value depends on the arguments; see Behavior.

Example: Given that

75←(← ($ Window) New ’window1)
#,($& Window (NEW0.1Y%:.;h.eN6 . 503))

then

76←(Class ($ window1))
#,($C Window)

Note: If self is an annotated value, the method Class and the macro Class
return different values. See Chapter 8, Active Values, for more
information on annotated values.

2-18 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.6 DESTROYING INSTANCES

(← self Class) [Method of Object]

Purpose/Behavior: Method version of the macro Class.

Arguments: self A pointer to a LOOPS object or a Lisp data structure.

Returns: Value depends on the arguments; see Behavior of the macro Class.

Categories: Object

Example: Given that

77←(← ($ Window) New ’window1)
#,($& Window (NEW0.1Y%:.;h.eN6 . 504))

then

78←(← ($ window1) Class)
#,($C Window)

(ClassName self) [Function]

Purpose: Returns the class name of the class of the object.

Behavior: Varies according to the argument.

• If self is a class, this returns the name of that class.

• If self is an instance, this returns the name of the class that describes that
instance.

• If self is neither of these, an attempt is made to get the class of self by
applying the function GetLispClass to self. If this returns NIL, the function
LoopsHelp is called with the arguments self and "has no class name."

Arguments: self Can have multiple values; see Behavior.

Returns: Value depends on the argument; see Behavior.

Example: The command

80←(ClassName ($ Window))

returns

Window

(← self ClassName) [Method of Object]

Purpose/Behavior: Method version of the function ClassName.

Arguments: See the function ClassName.

Returns: Value depends on the arguments; see Behavior of the function ClassName.

Categories: Object

(← self InstOf class) [Method of Object]

Purpose/Behavior: Determines if self is an instance of class.

Arguments: self A pointer to an instance.

class A symbol name of a class or a pointer to a class.

2-19LOOPS REFERENCE MANUAL, MEDLEY RELEASE

Returns: T or NIL

Categories: Object

Example: Given that

83←(← ($ Window) New ’w1)
#,($& Window (NEW0.1Y%:.;h.eN6 . 505))

then

84←(← ($ w1) InstOf ’Window)
T

85←(← ($ w1) InstOf ($ Window))
T

(← self InstOf! class) [Method of Object]

Purpose: Determines if self is an instance of class or any of class’s subclasses.

Behavior: Tests if class of self is a subclass of class.

Arguments: self A pointer to an instance.

class A symbol name of a class or a pointer to a class.

Returns: Object

Categories: Object
2.8 COPYING INSTANCES

2.8 COPYING INSTANCES

2.8 Copying Instances

This section describes the methods for copying instances.

Name Type Description

CopyDeep Method Copies all nested objects, annotated values, and lists.

CopyShallow Method Creates a new instance of the same class as oldInstance. Fills
the instance variables of the new instance with the data
contained in the old instance.

(← oldInstance CopyDeep newObjAList) [Method of Object]

Purpose: Copies all nested objects, annotated values, and lists. All other values are
shared, not copied. This method is similar to the Interlisp function COPYALL.

Behavior: Creates a new instance of the same class as oldInstance. Fills the instance
variables of the new instance with copies of lists, active values, and instances
pointed to by oldInstance.

Arguments: oldInstance A pointer to an instance.

newObjAList

2-20 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.6 DESTROYING INSTANCES

An association list of old copied objects with their associated
copies; used to allow copying of circular structures. Users
typically let this argument default to NIL.

Returns: The value of the new instance.

Categories: Object

Example: Create the class CopyTest with the following structure:

Create the instance CopyTest1 and initialize it as shown in the following
inspector:

Now create a copy and inspect it.

(INSPECT (SETQ DeepCopy (← ($ CopyTest1) CopyDeep)))

The value of the instance variable instance is different. Also,

(EQ (@ ($ CopyTest1) list)(@ DeepCopy list))

returns NIL.

(← oldInstance CopyShallow) [Method of Object]

Purpose/Behavior: Creates a new instance of the same class as oldInstance. Fills the instance
variables of the new instance with the data contained in the old instance.

Arguments: oldInstance
A pointer to an instance.

Returns: A copy filled with the values shared by the instances.

Categories: Object

Example: Compare this example to the CopyDeep example above. Use the same
CopyTest1 instance as above.

(INSPECT (SETQ ShallowCopy (← ($ CopyTest1) CopyShallow)))

2-21LOOPS REFERENCE MANUAL, MEDLEY RELEASE

The value of the instance variable instance is the same. Also,

(EQ (@ ($ CopyTest1) list)(@ ShallowCopy list))

returns T.
2.9 QUERYING STRUCTURE OF INSTANCES

2.9 QUERYING STRUCTURE OF INSTANCES

2.9 Querying Structure of Instances

At run time, user-written code may need to determine the structure of some
object which has been passed into it. This section describes the methods to
do this.

Name Type Description

HasCV Method Determines if a class variable can be accessed via self.

HasIV Method Determines if an instance variable can be accessed via self.

Inspect Method Inspects self as a class or instance.

ListAttribute Method Determines instance variable or instance variable property
names contained in an instance.

ListAttribute! Method Recursively determines instance variable or instance variable
property names contained in an instance.

WhereIs Method Searches the supers hierarchy to find a class where a specified
name is defined.

(← self HasCV cvName propName) [Method of Object]

Purpose: Returns T if the class variable cvName (or its property propName if it is non-
NIL) can be accessed via self; otherwise NIL.

Behavior: Sends the message HasCV to the class of self passing the arguments
cvName and propName.

Arguments: self A pointer to an instance or a class.

cvName Class variable name

propName Property name for class variable cvName.

Returns: T or NIL; see Behavior.

Categories: Object

Specializations: Class

Example: The following command checks if an instance window1 has the class variable
RightButtonItems:

2-22 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.6 DESTROYING INSTANCES

87←(← ($ window1) HasCV ’RightButtonItems)
T

(← self HasIV ivName propName) [Method of Object]

Purpose/Behavior: Returns T if the instance variable ivName (or its property propName if it is non-
NIL) can be accessed via self; otherwise NIL.

Arguments: self A pointer to an instance or a class.

ivName Instance variable name.

propName Property name for instance variable ivName.

Returns: T or NIL; see Behavior.

Categories: Object

Specializations: Class

(← self Inspect INSPECTLOC) [Method of Object]

Purpose/Behavior: Inspects self as a class or an instance. Uses INSPECTLOC as the region for
the inspector window if it is given.

Arguments: self A pointer to an instance.

INSPECTLOC
The region for the inspector window. If NIL, the system prompts
you to place the window.

Returns: The Lisp window used by the inspector.

Categories: Object

Example: The following command inspects an instance ($ window1)

88←(← ($ window1) Inspect)

This results in the following inspector window:

(← self ListAttribute type name) [Method of Object]

Purpose: Determines instance variable or instance variable property names contained in
an instance.

Behavior: Converts type into uppercase on entry. The remaining behavior varies
according to the arguments.

• If type is one of IV, IVPROPS, or NIL, and name is the name of an instance
variable of self, this returns a list of property names of name that have
property values locally stored in the instance.

2-23LOOPS REFERENCE MANUAL, MEDLEY RELEASE

• If type is IVS, this returns a list of the instance variable names of self,
whether or not the values for the instance variables are locally stored.

• If type is none of the above, this evaluates (← (Class self) ListAttribute
type name).

Note: Using a type of SUPERS or SUPERCLASSES returns a list of the
names of the super classes.

Arguments: self A pointer to an instance.

type See Behavior.

name If type is one of IV, IVPROPS, or NIL, then name is an instance
variable of self; else it is NIL.

Returns: Value depends on the arguments; see Behavior.

Categories: Object

Specializations: Class

Example: Given that

90←(← ($ Window) New ’w1)
#,($& Window (NEW0.1Y%:.;h.eN6 . 515))

then

91←(← ($ w1) ListAttribute ’IVS)
(left bottom width height title menus)

92←(← ($ w1) ListAttribute ’IV ’menus)
NIL

After opening ($ w1), positioning the cursor anywhere on the window,
and pressing the left and right mouse buttons to create some menus, then

93←(← ($ w1) ListAttribute ’IV ’menus)
(LeftButtonItems RightButtonItems)

(← self ListAttribute! type name verboseFlg) [Method of Object]

Purpose: Provides a recursive form of ListAttribute. Omits inheritance from the
classes Object and Tofu unless verboseFlg is T.

Behavior: Converts type into uppercase on entry. The remaining behavior varies
according to the arguments.

• If type is IVS, this is the same as ListAttribute.

• If type is one of IV, IVPROPS, or NIL, and name is the name of an instance
variable of self, this returns a list of property names of name.

• If type is none of the above, this evaluates (← (Class self) ListAttribute!
type name).

Note: Using a type of SUPERS or SUPERCLASSES returns a list of the
names of the super classes.

Arguments: self A pointer to an instance.

type See Behavior.

name If type is one of IV, PROPS, or NIL, then name is an instance
variable of self; else it is NIL.

2-24 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.6 DESTROYING INSTANCES

verboseFlg T or NIL; if T, inheritance from object and Tofu are included. If
NIL, they are omitted.

Returns: Value depends on the arguments; see Behavior.

Categories: Object

Specializations: Class

Example: Given that

95←(← ($ Window) New ’w1)
#,($& Window (NEW0.1Y%:.;h.eN6 . 515))

then

96←(← ($ w1) ListAttribute! ’IV ’menus)
(RightButtonItems doc TitleItems ...)

2-25LOOPS REFERENCE MANUAL, MEDLEY RELEASE

(← self WhereIs name type propName) [Method of Object]

Purpose: Searches supers hierarchy to find class where name is defined.

Behavior: Performs the method Class.ListAttribute for self and for each super class of
self, checking to see if name (or propName as appropriate) is a member of the
list returned. The value returned is the class where name (or propName) is
first found.

The type argument is changed to uppercase and then coerced to a valued
type argument for ListAttribute.

• If type is one of METHOD, METHODS, NIL, or T, it becomes METHODS.
WhereIs then looks for a method with the name name.

• If type is one of IVPROP or IVPROPS, it becomes IVPROPS. WhereIs
then looks for an instance variable property with the name name.

• If type is one of IV or IVS, it becomes IVS. WhereIs then looks for an
instance variable with the name name.

• If type is one of CV or CVS, it becomes CVS. WhereIs then looks for a
class variable with the name name.

Arguments: self A pointer to an instance.

type See Behavior.

name The name of an object attribute being searched for.

propName Property name for instance variable name.

Returns: The class where name or propName is first found.

Categories: Object

Example: The command

97←(← (← ($ LatticeBrowser) New) WhereIs ’left ’IV)

returns

#,($C Window)
2.10 OTHER INSTANCE ITEMS

2.10 OTHER INSTANCE ITEMS

2.10 Other Instance Items

This section describes other items involved with instances.

NoValueFound [Variable]

Purpose/Behavior: Returned as a result of various accesses; initially set to NIL. When developing
code, rebind this to the symbol NoValueFound to assist in debugging.

(NoValueFound arg) [Macro]

Purpose/Behavior: Returns value of (EQ NoValueFound arg).

Arguments: arg Any value.

2-26 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.6 DESTROYING INSTANCES

Returns: T or NIL.

(ValueFound arg) [Macro]

Purpose/Behavior: Returns value of (NEQ NoValueFound arg).

Arguments: arg Any value.

Returns: T or NIL.

2-27LOOPS REFERENCE MANUAL, MEDLEY RELEASE

[This page intentionally left blank]

