
1-1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

1. INTRODUCTION

LOOPS integrates several programming paradigms to facilitate the design of
artificial intelligence applications.

• Object-oriented programming, in which information is organized in terms of
objects. Every object belongs to a cass, and the classes are arranged in an
 inheritance lattice which allows complex objects to be described simply.
Objects communicate with each other by sending messages. When an
object receives a message, it performs some action, which can include
sending messages to other objects.

• Procedure-oriented programming, in which smaller subroutines build larger
procedures and in which data and instructions are kept separate.

• Access-oriented programming, in which accessing a value triggers an
action. This paradgm is useful to monitor certain values.

• Rule-oriented programming, in which programs are organized around
recursively composable sets of pattern-action rules. These rules provide a
convenient way to describe flexible responses to a wide range of events.
This part of LOOPS is included in the users’ modules.

As a new user of LOOPS, you first must become familiar with its terminology
and with the fundamental concepts described by that terminology. This
chapter presents the terminology and related concepts.

1.1 Introduction to Objects

This section shows the LOOPS hierarchy, called a lattice, in Figure 1-1, and
describes the key terms in separate subsections. Terms appear in order of
increasing complexity, with simpler terms described first and subsequent
terms building on these simpler terms.

1-2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

1.1 INTRODUCTION TO OBJECTS

Tofu

AnnotatedValue

Object

Window

InspectorClassIVs

IndexedObject

ActiveValue

Method

DestroyedObject

Class

LatticeBrowser

NonRectangularWindow

ClassBrowser

ReplaceMeAV

NotSetValue

LocalStateActiveValue

InheritingAV

IndirectVariable

MetaClass

InstanceBrowser

LoopsIcon

IconWindow

MetaBrowser

SupersBrowser

FileBrowser

FirstFetchAV

AppendSuperValue

NestedNotSetValue

TraceOnPut

BreakOnPut

LispWindowAV

NoUpdatePermittedAV

ExplicitFnActiveValue

AbstractClass

TraceOnPutOrGet

BreakOnPutOrGet

DestroyedClass

Figure 1-1. LOOPS Lattice

1.1.1 Object

As shown in Figure 1-2, an object is a structure consisting of data and a
pointer to functionality that can manipulate the data. In procedure-
oriented programming, data and functionality are considered as separate
entities.

Functionality

value1
value2

Data

field1
field2

.

.
.
.

Object

Figure 1-2. An Object
1.1 INTRODUCTION TO OBJECTS

1.1 INTRODUCTION TO OBJECTS

1-3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

1.1 INTRODUCTION TO OBJECTS

1.1.2 Message

Sending messages to objects provides an alternative to invoking procedures
or calling functions. An object responds to a message by computing a value to
be returned to the sender of the message, as shown in Figure 1-3. As a side
effect, the data within an object may change during the computation.
Messages contain a selector for the desired functionality. Messages may also
contain arguments, as do procedures.

Functionality

value1
value2

Data

field1
field2

.

.
.
.

Object

returned value

message

Figure 1-3. An Object Responding to a Message

1.1.3 Method

When an object receives a message, it determines what functionality it must
apply to the arguments of the message. This functionality is called a method
and is very similar to a procedure. A key concept that distinguishes methods
from procedures is that in procedure-oriented programming, the calling routine
determines which procedure to apply. In object-oriented programming, you
determine the message to send and the object receiving the message
determines the method to apply.

1.1.4 Selector

A message that is sent to an object contains a selector. The object uses the
selector to determine which method is appropriate to apply to the message
arguments. As shown in Figure 1-4, when an object receives a message with
a specific selector, the object searches a lookup table containing selectors and
methods to find the method associated with that particular selector.

Functionality

selector1
selector2

method1
method2

.

.
.
.

value1
value2

Data

field1
field2

.

.
.
.

Object

message containing
selector and arguments

returned value

Figure 1-4. A Message Containing a Selector

1-4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

1.1 INTRODUCTION TO OBJECTS

1.1.5 Class

A class describes objects that are similar; that is, objects containing the same
type of data fields and responding to the same messages, as shown in Figure
1-5. Think of the class that describes an object as being a template

1-5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

1.1 INTRODUCTION TO OBJECTS

for the functionality of its objects. When an object is sent a message, the
class that describes that object handles the message, not the object itself.
Different objects of the same class can respond to messages in the same way;
that is, they apply the same method in response to receiving the same
message.

To create new objects, send a message to a class requesting that a new
object be created. Classes respond to messages because they are also
objects.

Object2

Data

field1
field2

.

.
.
.

valueA
valueB

Functionality

selector1
selector2

method1
method2

.

.
.
.

SomeClass

Object1

value1
value2

Data

field1
field2

.

.
.
.

Figure 1-5. Class with Several Objects

1.1.6 Instance

An instance is an object described by a particular class. Every object within
LOOPS is an instance of exactly one class.

1.2 Storage of Data in Objects

The data associated with an object is called an object’s variables. Methods
can change the values of these variables.

1.2 STORAGE OF DATA IN OBJECTS
1.2 STORAGE OF DATA IN OBJECTS

1.2.1 Class Variables and Instance Variables

LOOPS supports two kinds of variables:

1-6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

1.1 INTRODUCTION TO OBJECTS

• Instance variables, often abbreviated IVs.

Instance variables contain the information specific to an instance.

• Class variables, often abbreviated CVs.

Class variables contain information shared by all instances of the class. A
class variable is typically used for information about a class taken as a
whole.

Both kinds of variables have names, values, and other properties. For
example, the class for Point could specify two instance variables, x and y, and
a class variable, lastPoint, used by methods associated with all points.

For any particular instance, you can access the values for the instance
variables specific to that instance. You can also access the values for the
class variables that are available to all instances of the same class.

Determining the value of a class variable requires a similar lookup procedure
to that occurring when searching for a method to execute. Instance variable
values are stored within the instances, and class variable values are stored
within the class.

A class describes the structure of its instances by specifying the names and
default values of instance variables, as shown in Figure 1-6. In this way, when
a message is sent to a class to create a new instance, LOOPS can determine
from the class description the number of instance variables for which it must
allocate space the the initial values for those variables.

Instance Variables

x
y

33
100

point1

Instance

Instance Variables

x
y

33
100

Instance

point2

Class

Point

Functionality

selector1
selector2

method1
method2

.

.
.
.

Class Variables

lastpoint point1

Figure 1-6. Class Variables and Instance Variables

1.2.2 Properties

LOOPS provides extensible property lists for classes, their variables, and their
methods. Property lists provide places for storing documentation and
additional kinds of information. For example, in a knowledge engineering

1-7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

1.1 INTRODUCTION TO OBJECTS

application, a property list for an instance variable could be used to store the
following information:

• Support (reasons for believing a value)

• Certainty factor (numeric assessments of degree of belie)

• Constraints on values

• Dependencies (relationships to other variables)

• Histories (previous values)
1.3 METACLASSES

1.3 METACLASSES

1.3 Metaclasses

Classes themselves are instances of some class. Metaclasses are classes
whose instances are classes. When a class is sent a message, its metaclass
determines the response. For example, instances of a class are created by
sending the class the message New. This message is handled by the class
that describes the class receiving the message. For most classes, this
method is provided by the standard metaclass for classes Class.

To create a new class, send a message to the class Class. The class that
handles this message is MetaClass. Instances of MetaClass are classes that
describe objects which are classes. Instances of Class are classes whose
instances are not classes. Figure 1-7 shows an instance of MetaClass, which
is a class named Class, and instances of Class, which are named Window
and Point.

Another class available in the system in AbstractClass. This is useful when
creating classes that implement general functionality, which must then be
specialized into instantiable classes. Instances of this class are classes that
are impossible to instantiate. An example of an AbstractClass is
ActiveValue, which is described in Chapter 5, Active Values.

Instances
of Window

Instances
of AbstractClass

Instances
of Class

Instances
of MetaClass

ActiveValue

point2

point1

window1

window2

Window

Point

Class

AbstractClass

MetaClass

Instances
of Point

Figure 1-7. A Metaclass and its Instances

1-8 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

1.1 INTRODUCTION TO OBJECTS

1.4 Introduction to Inheritance

Inheritance allows you to organize information in objects. With a few
incremental changes, you can use inheritance to create objects that are
almost like other objects. Inheritance allows you to avoid specifying redundant
information and simplifies updating, since information that is common to
several objects need be changed in only one place.

LOOPS objects exist in an inheritance network of classes. Figure 1-8 shows
an example in which a class 3DPoint is a subclass of another class Point.
Instances of 3DPoint contain instance variables that are defined in

1.4 INTRODUCTION TO INHERITANCE
1.4 INTRODUCTION TO INHERITANCE

Point as well as 3DPoint. Point is referred to as a superclass of 3DPoint.
When an instance of 3DPoint is created, the instance variables it contains and
the messages to which it responds are not limited to those instance variables
or methods as defined in the class 3DPoint. For example, the object pt2
contains three instance varriables; two of them are inherited from the class
Point and the other defined in the class 3DPoint. This instance can also
respond to three different messages containing one of the three different
selectors: selector1, selector2, or selector3.

All descriptions in a class are inherited by a subclass unless overridden in the
subclass. For methods and class variables, this is implemented by a runtime
search for the information, looking first in the class, and then at the
superclasses specified by its supers list. For instance variables, no search is
made at run time. Default values are cached in the class, and are updated if
any superclass is changed, thus maintaining the same semantics as the
search. Each class can specify inheritance of structure and behavior from any
number of superclasses.

1-9LOOPS REFERENCE MANUAL, MEDLEY RELEASE

1.1 INTRODUCTION TO OBJECTS

Class

Methods

CVs

IVs - default values

Class

Point

selector1
selector2

Methods

CVs

lastPoint NIL

IVs - default values

x
y

0
0

methodA
methodB

Instance Variables

Instance

x
y

33
100

pt1

3
10
50

Instance Variables

Instance

pt2

x
y
z

selector1
selector3

methodA1
methodC

z 0

3DPoint

instance-of

instance-of

subclass-of

Figure 1-8. A Sample Inheritance Network

1.4.1 Single Superclasses

In the simplest case, each class specifies only one superclass. If the class A
has the supers list (B), which is a one-element list containing B, then all of the
instance variables specified local to A are added to those specified for B,
recursively. That is, A gets all those instance variables described in B and all
of B’s supers. For example, in Figure 1-9, A has instance variables x, z, and
B1.

Any conflict of variable names is resolved by using the description closer to A
in traversing up the hierarchy to its top at the class Object. Method lookup
uses the same conflict resolutiion. The method to respond to a message is
obtained by first searching in A, and then searching recursively in A’s supers
list. For example, in Figure 1-9, the method selector2 uses methodA2 instead
of methodB2.

1-10 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

1.1 INTRODUCTION TO OBJECTS

methodB1
methodB2

selector1
selector2

Methods

CVs

IVs - default values

z
x

0
1

B

Methods

CVs

IVs - default values

z
x

0
1

selector2 methodA2

A

Figure 1-9. A Class with a Single Superclass

1.4.2 Multiple Superclasses

Classes in LOOPS can have more than one class specified on their supers
list. Multiple superclasses permit a modular programming style where the
following conditions hold:

• Methods and associated variables for implementing a particular feature are
placed in a single class.

• Objects requiring combinations of independent features inherit them from
multiple supers.

As in Figure 1-10, if A has the supers list (B C), first the description from A is
used, then the description from B and its supers is inherited, and finally the
description from C and its supers. In the simplest usage, the different features
have unique variable names and selectors in each super. In case of a name
conflict, LOOPS uses a depth first left-to-right precedence.

For example, if any super of B had a method for selector3, then it would be
used instead of the method methodC3 from C. In every case, inheritance
from Object is only considered after all other classes on the recursively
defined supers list. The general rule is left-to-right, depth first, up to where the
separate branches of the hierarchy join together; that is, up to any class that
is repeated. Alternatively, consider the list as generated by listing all the

1-11LOOPS REFERENCE MANUAL, MEDLEY RELEASE

1.1 INTRODUCTION TO OBJECTS

superclasses in a depth first left-to-right order, eliminating all but the last
occurrence of a class in the list.

selector1
selector2

Methods Methods

CVs CVs

IVs - default values IVs - default values

methodB1
methodB2

B

Methods

CVs

IVs - default values

z
x

0
1

selector2 methodA2

A

selector1
selector3

methodC1
methodC3

C

C1 0
B1
x

0
0

Figure 1-10. A Class with Multiple Superclasses

1.5 Introduction to Access-Oriented Programming: Using Active Values

In access-oriented programming, you can specify a particular procedure to
invoke for reqad or write access of any variable of an object. LOOPS checks
every object variable access to determine whether the value is marked as an
active value. An active value is a LOOPS object. If a variable is marked as an
active value, then aa message is sent to the active value object whenever the
variable is read or set. This mechanism is dual to the notion of sending
messages. Messages are a way of telling objects to perform operations,
which can change their variables as a side effect. Active values are a way of
accessing variables, which can send messages as a side effect.

The messages sent to the active value object will depend on the type of
access If you try to read a variable, the message GettingWrapped Value is
sent to the active value object. If you try to set a variable, the message
Putting Wrapped Value is sent. The object receiving the message may or
may not trigger side effects as the result of receiving these messages. In this
way, you have control over the side effects that may occur as a result of
accessing data.

1-12 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

1.1 INTRODUCTION TO OBJECTS

Active values enable one process to monitor another one. For example,
LOOPS has debugging tools that use active values to trace and trap
references to object variables. A graphics module updates views of particular
objects on a display when their variables are changed. In both cases, the
monitoring process is invisible to, and isolated from, the monitored process.
No changes to the code of the monitored object are necessary to enable
monitoring.

Active values can also be used to maintain constraints among data in a
system. As one piece of data changes, the active value associated with that
data can contain functionality that updates other data within the system.
Examples of this are spreadsheets or electric circuit modeling.

A powerful feature of active values is that they can be nested to yield a
natural composition of the access functions.

1.6 Introduction to the LOOPS User Interface

A key feature of LOOPS is its smooth integration with the Venue Medley
environment. Many of the tools within Medley have been extended to provide
the necessary functionality for manipulating objects. Among these tools are
the following:

• SEdit

• The inspector

• Masterscope

• The File Manager

• The Library Module Grapher

This section describes how LOOPS interfaces with each of these Medley
tools.

Another aspect of LOOPS is that objects have a name space that is separate
from the Lisp name space. LOOPS names are Interlisp symbols. Applying a
LOOPS function $ to a Medley symbol extracts a pointer to a LOOPS object.
Objects can also be pointed to as a Lisp value.

1.6.1 SEdit

Class structures are Lisp data types. To change a class structure, LOOPS
creates a list structure source for the class definition. This list can then be
edited easily by SEdit. Upon exiting SEdit, the list structure is converted back
to a data type. This process of converting to and from a list is hidden from
view.

1.6.2 Inspector

Inspector macros have been defined within LOOPS that allow you to view the
necessary class and instance data while hiding implementation details.
Inspectors opened on classes or instances also provide functionality for
changing the way one views an object. As an example, you can inspect a
class and see or not see information inherited from its superclasses.

1-13LOOPS REFERENCE MANUAL, MEDLEY RELEASE

1.1 INTRODUCTION TO OBJECTS

1.6.3 Masterscope

The Library Module Masterscope has been extended to a LOOPS Library
Module so that message sending and the use of instance and class variables
are understood. The functionality of CHECK has been extended to allow
consistency checking of LOOPS methods.

1.6.4 File Manager

Additional File Manager commands have been added to allow you to save
classes, instances, and methods on files.

1.6.5 Grapher Module

An important part of the LOOPS interface is its ability to show relationships
between objects and to enable the programmer to easily manipulate those
objects. Browsers of various kinds are in the system to allow you to
understand the relationships between classes and how those classes are
related to files. The browsers are built upon the Library module Grapher. You
can easily extend the built-in browsers to create views onto any object
relationship. An example of this is a decision tree where each node was an
object representing a particular state of a system.

1-14 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

1.1 INTRODUCTION TO OBJECTS

[This page intentionally left blank]

