
1

5

Annotated Values and Active Values

In the previous chapters, IVs, CVs, and their properties have been treated as passive entities

without structure. Annotated values are a way of associating behavior and annotations with

variables. In keeping with the object oriented programming style of LOOPS, these annotations are

objects. Annotation objects are called active values. When a variable containing an annotated

value is accessed, a message is sent to the active value. This mechanism is dual to the notion of

messages: messages are a way of telling objects to perform operations, which can change their

variables as a side effect; active values are a way of accessing variables, which can send messages as

a side effect.

This chapter first describes the structure and implementation of annotated values. Functions for

explicitly dealing with annotated values are documented. Then the class ActiveValue is

introduced and the standard protocol for active values is described. Next, the standard subclasses of

ActiveValue are explained.

5.1. Annotated Values

LOOPS defines a new INTERLISP data type called annotatedValue. Each annotatedValue contains

a single field. This field contains an object, the annotated value’s active value. The standard

variable access functions described in previous chapters (GetValue, PutValue, GetClassValue,

PutClassValue) treat values that are annotated values specially. GetValue and GetClassValue

do not return the annotated value. Instead, they send the contained active value a message, and

return the result of that message. Similarly, if the current value of a variable is an annotated value,

PutValue and PutClassValue operate by sending the contained active value a message.

type? annotatedValue value [Macro]

Returns true if value is an annotated value, false otherwise. This is the standard way to test to see if

a value is an annotated value.

create annotatedValue annotatedValue ← object [Macro]

Creates a new annotated value with active value object. No checking of object is performed.

LOOPS2

fetch annotatedValue of value [Macro]

Returns the active value contained in the annotated value value. If value is not an annotated value,

generates an error.

replace annotatedValue of value with object [Macro]

Replaces the active value contained in the annotated value value with object. If value is not an

annotated value, generates an error. No checking of object is performed.

←AV av selector . args [Macro]

←AV is a message sending form that can be used with annotated values. (←AV av selector . args)

→ (← (fetch annotatedValue of av) selector . args) .

AnnotatedValue [Class]

Sometimes people forget to extract the active value from an annotated value, and they end up trying

to use an annotated value as an object. Using the LispDataType feature, LOOPS takes care of this

for you. Annotated values are considered to belong to the LOOPS class AnnotatedValue. If you

send a message to an annotated value, the behavior is found in the class AnnotatedValue. There,

the method for MessageNotUnderstood forwards the message off to the contained active value.

Similarly, if you attempt to get an IV from an annotated value, the get ends up happening to the

wrapped active value.

5.2. The Abstract Class ActiveValue

Active values follow a standard protocol that allow them to be used inside of annotated values.

In the description of methods for active values, the arguments containingObj, varName, propName,

and type are used to describe the variable containing the active value. type is one of IV, CV, or NIL :

a type of IV or NIL indicates that the variable is an instance variable or an instance variable

property of containingObj; a type of CV indicates a class variable or class variable property of

containingObj. If propName is NIL, the variable is either an IV or a CV, otherwise it is an IV or CV

property with name propName. containingObj is the instance or class that contains the variable.

ActiveValue [Abstract class]

The class ActiveValue captures the protocol followed by all active value objects. ActiveValue is

an abstract class, so you cannot make instances of ActiveValue. Specializations of ActiveValue

need to specialize the GetWrappedValueOnly and PutWrappedValueOnly methods. Methods that

you want to specialize include AVPrintSource, GetWrappedValue, PutWrappedValue,

WrappingPrecedence, and CopyActiveValue.

3

Annotated Values and Active Values

5.2.1 Displaying Annotated Values

← self AVPrintSource [ActiveValue method]

An annotated value determines how it will print out by sending the AVPrintSource message to the

its active value. This message returns a form suitable for use by the INTERLISP function DEFPRINT.

The result should be a pair of the form (item1 . item2). item1 will be printed using PRIN1, and

then item2 will be printed by PRIN2 (see the IRM description of DEFPRINT for more details).

The default method in ActiveValue returns the list

("#." $AV className avNames (ivName value propName value ...) (ivName ...)...)

which will cause the annotated value to print out as

#.($AV className avNames (ivName value propName value ...) (ivName ...)...).

className is the name of the class of the active value. avNames is a list of names of self; the last

element of avNames is the uid of self. The lists (ivName value propName value ...) describe the

state of the IVs of the active value. Note that the uid of the active value is included in the printed

form, so the identity of the active value object can be recovered. In this way, different annotated

values can share the same active value, and have this sharing maintained across a dump/load-up.

$AV className avNames . ivForms [Special Form]

$AV is used to reconstruct a dumped annotated value. It returns a new annotated value whose

active value is reconstructed from the avNames and ivForms.

5.2.2 Fetching and Replacing Wrapped Values

← self GetWrappedValue containingObj varName propName type [ActiveValue method]

The GetWrappedValue message provides a way to perform arbitrary actions when a variable is

read. When GetValue (or GetClassValue) finds an annotated value in an instance, it does not

return the annotated value. Instead, it sends the contained active value the GetWrappedValue

message and returns the result of this message.

The default method in ActiveValue sends the message GetWrappedValueOnly to self. If this

value is an annotated value, it is triggered by sending it the GetWrappedValue message, and the

result is returned; otherwise the value is returned with no further processing.

← self GetWrappedValueOnly [ActiveValue method]

Returns the immediate "local state" of the variable that is wrapped by the active value self. If this

local state is a nested active value, it is not triggered. The default implementation causes an error

by calling SubclassResponsibility.

LOOPS4

← self PutWrappedValue containingObj varName

 newValue propName type [ActiveValue method]

The PutWrappedValue message provides a way to perform arbitrary actions when a variable is set.

When PutValue (or PutClassValue) attempts to replace an annotated value, it instead sends the

contained active value the PutWrappedValue message.

The default method in ActiveValue checks to see if the current value is a nested active value by

sending the GetWrappedValueOnly message to self. If the result is an annotated value,

PutWrappedValue forwards the message on the the nested active value; otherwise it sends the

message PutWrappedValueOnly to self and returns the result.

← self PutWrappedValueOnly newValue [ActiveValue method]

Replaces the immediate "local state" of the variable that is wrapped by the active value self. The

current local state is replaced. If the current value is a nested active value, it is not triggered. The

default implementation causes an error by calling SubclassResponsibility.

5.2.3 Inheriting Active Values

Typical implementations of PutWrappedValue store the new value in the active value. However, if

the active value is shared among different instances all these instances would see this change. In

particular, if the active value is inherited from the class of the instance, all other instances of the

class would see this change. This behavior is usually not desired. The GetWrappedValue method of

active values is also free to alter the internal state of the active value, causing the same problem. To

get around this problem, the annotated value is first copied, and this copy is stored in the instance.

The CopyActiveValue method implements this copying. When GetValue or PutValue finds no

local value, it first checks to see if the current value is an annotated value inherited from the class.

If it is, it sends CopyActiveValue to the active value, and stores the result in the instance. The put

or get then proceeds.

← self CopyActiveValue annotatedValue [ActiveValue method]

annotatedValue is an annotated value that surrounds self. CopyActiveValue should return a copy

of annotatedValue, containing a copy of self. It is possible, and in some cases desirable, for an

implementation of CopyActiveValue to return annotatedValue.

The default behavior returns a new annotated value wrapped around a copy of self. IV values of self

are not copied, the values are shared with the copy, except that IVs of self that contain annotated

values are copied using the CopyActiveValue message.

5.2.4 Adding and Deleting Annotations

← self AddActiveValue containingObj varName

 propName type annotatedValue [ActiveValue method]

Adds the annotated value annotatedValue to the variable specified by containingObj, varName,

propName, and type. If annotatedValue is not specified or is NIL, annotatedValue defaults to a

newly created annotated value containing the active value self. If the variable is already an

annotated value, the AddActiveValue method uses the WrappingPrecedence message (below) to

5

Annotated Values and Active Values

determine if annotatedValue should be nested in the current annotated value or wrapped around it.

The method returns annotatedValue.

← self WrappingPrecedence [ActiveValue method]

Specifies where an annotated value containing self should be added to an existing annotated value.

T means that this active value must go on the outside of any other annotated values. NIL means it

must go on the inside. A number specifies a precedence: active values with larger

WrappingPrecedence values go outside ones with smaller WrappingPrecedence values. If two

active values have the same (numeric) WrappingPrecedence, the order is not determined. The

default implementation of WrappingPrecedence returns 100.

← self DeleteActiveValue containingObj varName propName type [ActiveValue method]

Finds the first annotated value on the variable specified by containingObj, varName, propName, and

type that has self as its active value and deletes it from that variable. Returns that annotated value

if one was found, NIL otherwise.

← self ReplaceActiveValue newVal containingObj

 varName propName type [ActiveValue method]

It is sometimes desirable to replace an annotated value in a variable with some new value. (← self

ReplaceActiveValue newVal containingObj varName propName type) replaces the annotated

value containing self in the variable described by containingObj, varName, propName, and type with

the new value newVal.

5.2.4 Manipulating Active Values

Some programs need to explicitly test and trigger active values. The following functions can be used

to access IVs and CVs without triggering active values.

GetValueOnly object varName propName [Function]

GetValueOnly is the same as GetValue, except that GetValueOnly does not trigger any active

values. GetValueOnly returns the immediate value of the variable. If this is not an annotated

value, GetValueOnly returns the same value as GetValue. If there is no local value, the inherited

value is returned. See also the function GetIVHere.

GetClassValueOnly object varName propName [Function]

GetClassValueOnly is the same as GetClassValue, except that GetClassValueOnly does not

trigger any active values. GetClassValueOnly returns the immediate value of the variable. If this

is not an annotated value, GetClassValueOnly returns the same value as GetClassValue. object

can be either an instance or a class.

ObjRealValue object varName value propName type [Macro]

If value is not an annotated value returns value, otherwise returns the value of (←AV

GetWrappedValue object varName propName type). This macro is used by GetValue and

LOOPS6

GetClassValue to trigger active values, and can be used by programs that explicitly test for active

values.

PutValueOnly object varName newValue propName [Function]

PutValueOnly is the same as PutValue, except that PutValueOnly does not trigger any active

values. PutValueOnly replaces the immediate value of the variable with newValue, even if the old

value is an annotated value.

PutClassValueOnly object varName newValue propName [Function]

PutClassValueOnly is the same as PutClassValue, except that PutClassValueOnly does not

trigger any active values. PutClassValueOnly replaces the immediate value of the variable with

newValue, even if the old value is an annotated value. object can be either an instance or a class.

← self HasAV? av [ActiveValue method]

Returns true if the active value (or annotated value) av is nested inside in the active value self.

5.3. Specializations of ActiveValue

ActiveValue

AppendSuperValue

BreakOnPut BreakOnPutOrGet

ExplicitFnActiveValue

FirstFetchAV

IndirectVariable

InheritingAV

LocalStateActiveValue
NoUpdatePermittedAV

NotSetValue

ReplaceMeAV

TraceOnPut TraceOnPutOrGet

The ActiveValue Class Hierarchy

5.3.1 NotSetValue and Variable Inheritance

NotSetValue [Variable]

LOOPS uses annotated values to trigger IV inheritance. When an instance is created, its IVs are

initialized to contain (the value of) NotSetValue. NotSetValue is an annotated value whose active

value is the prototype instance of the class NotSetValue. The class NotSetValue specializes the

7

Annotated Values and Active Values

default ActiveValue protocol to trigger IV inheritance. In this way GetValue does not need to do

any special check to see if a value needs to be inherited — all it needs to do is see if the value is an

annotated value. Note that GetValueOnly does need to do a special check for NotSetValue, but

see the function GetIVHere.

NotSetValue form [Macro]

Returns true if form evaluates to NotSetValue, otherwise false. (NotSetValue form) → (EQ form

’NotSetValue). This is the approved way of testing a value to see if it is NotSetValue.

← self AVPrintSource [NotSetValue method]

Returns the pair ("#." . NotSetValue). This causes (the value of) NotSetValue to print out as

#.NotSetValue. This will be read in as the value of the variable NotSetValue.

← self GetWrappedValue containingObj varName propName type [NotSetValue method]

If type is NIL or IV, this evaluates (← containingObj IVValueMissing varName propName

’GetValue) and returns the result; if type is CV, evaluates (← class CVValueMissing varName

propName ’GetValue) (where class is the class of containingObj if containingObj is an instance,

else containingObj if it is a class) and returns the result; otherwise an error is generated. See the

methods IVValueMissing and CVValueMissing on the class Object.

← self PutWrappedValue containingObj varName

 newValue propName type [NotSetValue method]

If type is NIL or IV, this evaluates (← containingObj IVValueMissing varName propName

’PutValue newValue) and returns the result; if type is CV, evaluates (← class CVValueMissing

varName propName ’PutValue newValue) (where class is the class of containingObj if

containingObj is an instance, else containingObj if it is a class) and returns the result; otherwise an

error is generated. See the methods IVValueMissing and CVValueMissing on the class Object.

← self CopyActiveValue annotatedValue [NotSetValue method]

Returns #.NotSetValue. There is only one NotSetValue.

← self WrappingPrecedence [NotSetValue method]

Returns NIL. #.NotSetValue must always be on the inside of any sequence of nested active values.

GetIVHere object varName propName [Function]

If propName is NIL and there is a local value for the IV varName in the instance object, that value is

returned. If propName is not NIL and there is a local value for the IV property propName of the IV

varName in the instance object, that value is returned. Otherwise, if propName is NIL GetIVHere

returns #.NotSetValue, and if propName is not NIL GetIVHere returns (the value of)

NoValueFound.

LOOPS8

GetCVHere object varName propName [Function]

object must be a class. Returns the value of the class variable that is found in the class object. If

none is found, then returns #.NotSetValue.

GetClassIV class varName propName [Function]

Returns the default value or property value of the instance variable varName in the class class.

PutClassIV class varName newValue propName [Function]

Stores newValue as the default value or property value of teh instance variable varName in the class

class. If varName is not already local to the class, this will cause an error. Returns newValue.

5.3.2. Indirect Variables

In some applications it is important to be able to access values indirectly from other instances. For

example, Steele [Steele80] has recommended this as an approach for implementing equality

constraints.

IndirectVariable [Class]

Mumble.

5.3.3. ReplaceMeAV

The active value mixin ReplaceMeAV can be used when an active value should be replaced when a

variable is first set.

ReplaceMeAV [Abstract class]

Mumble.

5.3.4. LocalStateActiveValue

Many kinds of active values explicitly store the "real" value of the variable in an IV of the active

value.

LocalStateActiveValue [Abstract class]

Mumble.

5.3.5. InheritingAV

Some kinds of active values want to compute a value based on what would have been inherited if the

active value had not been present. For example, it might be desired to append items onto an

inherited value (see the class AppendSuperValue).

InheritingAV [Abstract class]

Mumble.

9

Annotated Values and Active Values

5.3.6. FirstFetchAV

Mumble.

FirstFetchAV [Class]

Mumble.

5.3.7. Breaking and Tracing Variable Access

Mumble.

BreakOnPut [Class]

Mumble.

BreakOnPutOrGet [Class]

Mumble.

TraceOnPut [Class]

Mumble.

TraceOnPutOrGet [Class]

Mumble.

UnBreakIt self varName propName type [Class]

Mumble.

5.3.8. NoUpdatePermittedAV

The active value class NoUpdatePermittedAV can be used to prevent a value from being updated.

NoUpdatePermittedAV [Class]

Mumble.

5.3.9. AppendSuperValue

The active value class AppendSuperValue can be used to append data to inherited values.

AppendSuperValue [Class]

Mumble.

LOOPS10

5.3.10. ExplicitFnActiveValue

ExplicitFnActiveValue [Class]

ExplicitFnActiveValue explicitly store functions that will be triggered when the variable is

fetched or replaced. They have three IVs: localState, getFn,and putFn. The localState is the

"real" value of the variable (possibly a nested active value), the getFn and putFn are names of

functions that are applied with standard arguments by the GetWrappedValue and

PutWrappedValue methods. The getFn and putFn are called with arguments containingObj,

varName, oldOrNewValue, propName, activeValue, and type. ExplicitFnActiveValue active

values print out as #.($A localState getFn putFn), where the localState, getFn, and putFn are the

values of the corresponding IVs of the active value.

5.4. Compatibility with older versions

The following existed in older versions of LOOPS, which had a different implementation of active

values. They are provided for compatibility purposes only. New programs should not use them.

They are not fully supported, and will not exist in future releases. The current implementations of

these use the new active values. They are fully compatible with the older versions except where

noted.

5.4.1. Old Style Active Values

LOOPS used to combine the notion of annotated value and active value. Variable annotations were

instances of the INTERLISP datatype activeValue.

activeValue [Record]

In this version of LOOPS, the record activeValue is an access record that converts the three fields of

the old active values to appropriate functions for accessing annotated values. Forms like (type?

activeValue form) and (fetch localState of activeValue) will do the right thing. Reading

in old style active values automatically converts them to annotated values wrapping an instance of

the class ExplicitFnActiveValue.

GetLocalState av self varName propName type [Function]

Works just like in the old LOOPS.

PutLocalState av newValue self varName propName type [Function]

Works just like in the old LOOPS.

GetLocalStateOnly av [Function]

Works just like in the old LOOPS.

11

Annotated Values and Active Values

PutLocalStateOnly av newValue [Function]

Works just like in the old LOOPS.

ReplaceActiveValue av newVal self varName propName type [Function]

Works just like in the old LOOPS.

MakeActiveValue self varOrSelector newGetFn newPutFn

 newLocalSt propName type [Function]

Works just like in the old LOOPS, except that the interpretation of newLocalSt is different.

MakeActiveValue ignores the value of newLocalSt, and always creates a new active value. This is

the behavior that the old MakeActiveValue produced when newLocalSt was Embed.

5.4.2. GetFns and PutFns

DefAVP fnName putFlg [Function]

Works just like in the old LOOPS.

NoUpdatePermitted self varname oldOrNewValue propName activeValue type [Function]

Works just like in the old LOOPS.

FirstFetch self varname oldOrNewValue propName activeValue type [Function]

Works just like in the old LOOPS.

GetIndirect self varname oldOrNewValue propName activeValue type [Function]

Works just like in the old LOOPS.

PutIndirect self varname oldOrNewValue propName activeValue type [Function]

Works just like in the old LOOPS.

ReplaceMe self varname oldOrNewValue propName activeValue type [Function]

Works just like in the old LOOPS.

AtCreation self varname oldOrNewValue propName activeValue type [Function]

No longer works. Instead, you can use either the FirstFetch function, or the :initForm property

of IVs.

LOOPS12

5.5. Summary of Variable Access Functions

The following tables summarizes the available functions for variable access.

Inherit/Trigger Inherit/Don’t Trigger Don’t Inherit/Don’t Trigger

from instances

IV GetValue GetValueOnly GetIVHere

PutValue PutValueOnly

CV GetClassValue GetClassValueOnly <n.a.>

PutClassValue PutClassValueOnly <n.a.>

from classes

IV <n.a.> GetClassIV GetClassIVHere

<n.a.> PutCIVHere PutClassIV

CV GetClassValue GetClassValueOnly GetCVHere

PutClassValue PutClassValueOnly PutCVHere

