
27LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

VIRTUAL COPIES

Description/Introduction

In many knowledge-based systems, it is useful to represent knowledge as
interconnected sets of instances. A virtual copy mechanism allows a network
of instances to be viewed as a prototype which can be copied. The copy of the
prototype is virtual in that the contents of each instance is not completely
copied at creation time. Instead, it inherits default values from the prototype
(also called the original), thus continuing to share the parts not modified in the
copy. The copied network is virtual also in the sense that only those instances
needed in the processing are copied.

A virtual copy of an object in the prototype network has the following
properties:

• It responds to at least the same set of messages as the prototype object
and in the same way; that is, a copy has the same procedural behavior that
is defined for the prototype.

• A copy inherits variables and their values from the prototype, and continues
to do so until an explicit change is made in the copy. At that point, the new
value is stored in the copy and it stops tracking the prototype for that
variable. A fetch operation on a value that is not stored locally either finds
or creates a virtual copy of the value obtained from the prototype.

Installation/Loading Instructions

The implementation of virtual copies is contained in the file
LOOPSVCOPY.LCOM. No other files are necessary.

Application /Module Functionality

A network of instances is tied together through the values of instance variables
within each of the instances. Assume an object A has an instance variable x,
the value of which is the object B. A virtual copy of A will also have an
instance variable named x. The value of x in the copy will point to B if B is a
shared object, or x may point to a copy of B if it is to be virtual. Changing the
value of x in the copy will not change the value in the original.

Overview of Operation

By default, virtual copies share instance variables. This means that changing
the value of an instance variable in the original will be tracked by the copy.

28 LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

VIRTUAL COPIES

Virtual copies are implemented with two additional classes:

• VirtualCopyMixin

The class VirtualCopyMixin is a subclass of Tofu which contains two
instance variables:

- % copyMap%
- % copyOf%

(These unusual names are used to avoid conflicts with any other instance
variable names users may create.) This class contains several methods,
most of which are required to implement virtual copies and are not used by
a programmer.

Printing a virtual copy instance is a specialization of how regular instances
are printed. All instances print as #,($& <class-name> UID). The class of a
virtual copy is a dynamic mixin of the class VirtualCopyMixin and the class
of the original object (see the LOOPS Reference Manual for more
information on mixins). The virtual copy print function adds the name or
unique identifier (UID) of the original object. For example,

#,($& (VirtualCopyMixin Container1) (JFW0.0X:.aF4.R>8 . 3) c1)

is a copy of the object named c1.

• VirtualCopyContext

The class VirtualCopyContext has no methods and only one instance
variable, copyMap. Instances are used as an argument for calls to
MakeVirtualMixin.

Since copies can be made of copies, you often need to determine the original
object of a chain of copies with the UltimateOriginal function.

Operands

This section describes the functions, methods, class variables, and instance
variables that operate on virtual copies.

VirtualIVs [Class Variable]

Purpose/Behavior: Helps specify a class whose instances may be made into virtual copies. The
value of this class variable should be either the symbol ALL, or a list of
instance variables contained within instances of the class. If the value is ALL,
all objects pointed to by any of the instance variables will be copied. If the
value is a list of instance variables, only the instance variables on this list will
have their values copied. Other instance variable values will be shared
between the copy and the original.

(MakeVirtualMixin x copyContextObj) [Function]

Purpose: Creates a virtual copy of an object.

Behavior: Creates a dynamic mixin class combining the classes VirtualCopyMixin and
the class of x. An instance of this resulting class is created and it is returned.

29LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

VIRTUAL COPIES

Arguments: x An object to be copied; must have the class variable VirtualIVs
as described above.

copyContextObj
Usually NIL; used internally by MakeVirtualMixin when it calls
itself. It can be an instance of VirtualCopyContext if you are
creating an instance that is intended to be part of a currently
existing network of copies starting from another entry point. See
description in Limitations below for a further explanation of this
point.

Returns: An object that is a copy of x.

Example: Refer to the section, "Example."

% copyMap% [Instance Variable of VirtualCopyMixin]

Purpose/Behavior: A mapping of original nodes (which are objects) in a network to the copied
nodes. This map is stored in an instance of the class VirtualCopyContext.

% copyOf% [Instance Variable of VirtualCopyMixin]

Purpose/Behavior: Within an instance that is a copy, the value of this instance variable is a
pointer to the object that was copied.

(← self VirtualCopy?) [Method of VirtualCopyMixin]

Purpose: Determines if an object is a virtual copy.

Returns: self

Categories: Object, VirtualCopyMixin

copyMap [Instance Variable of VirtualCopyContext]

Purpose/Behavior: The value of this instance variable is a list of dotted pairs. The CAR of each
pair is the original; the CDR, the copy.

(UltimateOriginal self) [Function]

Purpose: Determines what an object is ultimately copying.

Behavior: If self is not a virtual copy, self is returned.

If self is a virtual copy, this recurses through the value of the instance variable
% copyOf% until it finds the original and returns it.

Arguments: self A LOOPS object.

Returns: self or what is at the top of self’s copy chain.

30 LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

VIRTUAL COPIES

Example

Create a class called test and edit it as shown.

44←(←($ Class) New ’test)
#,($C test)

45←(ED ’test)

Create an instance called t0 of this class and inspect it.

46←(←($ test) New ’t0)

#,($& test (N↑W0.1Y%:.;h.Lh9 . 556))

47←(← ($ test)
NewWithValues
(BQUOTE ((atom 1)

(atomCopy 2)
(list (a b c))
(listCopy (A B (\, (← ($ test) New (QUOTE t1)))))
(obj (\, (← ($ test) New (QUOTE t2))))
(objCopy (\, (← ($ test) New (QUOTE t3)))))))

#,($& test (N↑W0.1Y%:.;h.Lh9 . 560))

48←(← IT SetName ’t0)

#,($& test (N↑W0.1Y%:.;h.Lh9 . 560))

49←(INSPECT IT]
{WINDOW}#52,51234

Make a copy called t0copy and inspect it.

57←(← (MakeVirtualMixin ($ t0))
 SetName
 (QUOTE t0copy))

#,($& (VirtualCopyMixin test) N↑W0.1Y%:.;h.Lh9 . 562)

31LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

VIRTUAL COPIES

58←(INSPECT IT)
{WINDOW}#53,10150

Make the following changes to t0 and then reinspect t0copy.

60←(for iv in ’(atom atomCopy list listCopy obj objCopy)
as val in (LIST 11 22 ’(a b c d) ’(A B C) ($ t3) ($ t1))
do (PutValue ($ t0) iv val]
NIL

61← (INSPECT IT)
{WINDOW}#53,10152

The copied instance variables have not changed since they do not track changes in the original object.

Limitations

Some subtle issues are involved in building and using prototype structures so
that the structure is preserved in the copied network. These involve how the
network is typically traversed.

A general constraint is that all the links to any shared node in the prototype
either all be marked as virtual variables, or none of them are. If they are all
marked, then a single copy will be made and used. If none are, then the
original object from the prototype will be used. Sharing with the prototype can
be useful if this object is a repository for standard information that is
independent of context. However, if this constraint is violated, the topology of
the virtual copy will be different from that of the prototype.

In the simplest situation the network has a single entry node. In this case, a
copy-map (see the section "Operands") can be created when the entry node
object is first copied. After that all values are copied using this copy-map. The
mechanism works well in this situation, even if there is sharing and there are
cycles within the network.

At the other extreme, networks can have arbitrary connectivity, including
multiple entries from outside the network, for example, from other networks or

32 LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

VIRTUAL COPIES

non-objects. In this case, the following constraints are necessary to ensure
correctness of the virtual copy mechanism.

The first constraint states that all access to the network must start through a
copy of one of the nodes in the prototype. This condition is necessary because
the criteria for copying are contained in the links from one object to another,
not in the objects themselves, and a shared node could not specify a link to a
node to be copied. This constraint ensures that all accesses from the outside
will be copied if and only if that object would have been copied because of an
internal link. Otherwise, an analogous situation would occur in which you could
either reach a copy or the original node of the prototype itself depending upon
which path you follow when the paths lead to the same node in the prototype.

The final constraint requires that all entries to the network should be passed
the same copy-map if they are to share structure. The underlying concern in
imposing these constraints is that a network be always copied the same way
to maintain its topology regardless of where you start.

Suppose you want to make a virtual copy of a virtual copy, that is, to use a
virtual copy of a network as a prototype itself. This is very useful if you are
using a network to hold the state of a partial design and you want to try two
alternative continuations of the design. Some hidden costs are associated
with such multiple-level virtual copies.

Suppose further that a network N1 is used as a prototype and you make a
virtual copy, N1-VC. Furthermore, N1-VC-VC is defined to be a copy of N1-
VC. Values missing from N1-VC-VC are found in the corresponding object of
N1-VC. If the value is missing there, the process recurs, and N1 is examined.
If the value is to be a virtual copy, then this process will add a virtual copy in
N1-VC, and then a second level copy in N1-VC-VC. This is necessary to
preserve the semantics presented, but implies that many levels of virtual copy
cannot easily do inexpensive incremental searches of a network.

References

Mittal, S. , Bobrow, D. G., and Kahn, K. Virtual Copies, Between Classes and
Instances. ACM OOPLSA-86 Conference Proceedings, Portland, Oregon,
1986.

