—

. R R R R R R R

THE NATURE OF THIS INTERLISP/LOOPS COURSE

Over the next five days, you will be learning some of the
features of both INTERLISP and of the AI programming tool, LOOPS.
The OSU AI Lab is a beta test site for the LOOPS language, and as
such, we have received approval from the LOOPS development team
at XEROX PARC to offer this course, and to reproduce some of the
LOOPS course materials as offered by XEROX.

You will find that both INTERLISP and LOOPS are extremely
flexible and will provide you with the capability build a tailor
made programming environment to suit vyour particular needs.
However it 1is also important to realize that in just five short
days, it is impossible to cover all of the extensive facilities
offered by INTERLISP and LOOPS. What we will do is to provide vou
with a starting point in your development of INTERLISP/LOOPS
proficiency.

THE CONTENTS OF THIS NOTEBOOK

The 0SU LOOPS class notebook contains the following materials.

1. three short papers concerning the INTERLISP
environment and the LOOPS language [Notebook Section
#II1,

2. a set of exercises we will be using throughout the
course LCNotebook Sections #III - #XIIIJ,

3. a set of descriptive materials about the TRUCKIN
knowledge engineering game [Notebook Section #XIV1,

4. samples of LOOPS gauges L[Notebook Section #XV1,

5. samples of LOOPS ClassBrowsers C[Notebook Section
#XVI1,

6. samples of TRUCKIN game boards [Notebook Section
#XVII1,

7. LOOPS summary and manual C[Notebook Section #XVIIII,
and

8. documentation for the SSI tool L[Notebook Section
#XIX].

1
COURSE TIMETABLE

Below 18 a tenative timetable for this course.

Tuesday, March 20

3:00 to 10:00 - meeting in CAE230
INTERLISP philosophy
INTERLISP specifics for getting started

10:00 to noon - introductory hands-on session for INTERLISP-D
the PA, the file system, DEdit, the INSPECTOR
CNOTEBOOK SECTION #III1

noon to 1:30 - 1lunch

1:30 to 2:00 question and answer period in CAE 230

2:00 to 5:00

continuation of morning exercises
CNOTEBOOK SECTION #III1,

08U turtle exercises

CNOTEBOOK SECTION #IV31

5:00 to 7:00 - dinner

7:30 to 11:00 - the machine room will be open for further work

Wednesday, March 21
9:00 to 10:00 - meeting in CAEZ30
Top Level LOOPS description,
object oriented programming

10:00 to noon - introductory hands-on session for LOOFS
CNOTEBOOK SECTION #V1

noon to 1:30 - 1lunch

1:30 to 2:30

question and answer period in CAE 230,
active values

2:30 to 5:00

continuation of morning exercises,
CNOTEBOOK SECTION #VI, #VII],
LOOPS turtle exercises

CLNOTEBOOK SECTION #VIII]

5:00 to 7:00 dinner

2

7:30 to 11:00 - the machine room will be open for further work

Thursday, March 22

9:00 to 10:00 - meeting in CAE230
topic - Managing the LOOPS environment,
Browsers

10:00 to noon - hands-on session for LOOPS Browsers,
building a Key Class Browser
CNOTEBQOK SECTION #IX1

noon to 1:30 lunch

1:30 to 3:00 meeting in CAE 230
chandra on 05U AIX

introduction to the Rule Language

3:00 to 5:00

knowledge engineering exercises
CNOTEBOOK SECTION #X1

5:00 to 7:00

dinner

7:30 to 11:00 - the machine room will be open for further work

Friday, March 23

9:00 to noon - continuation of knowledge engineering exercises
CNOTEBOOK SECTION #XI1

noon to 1:30 lunch

1:30 te 5:00 meeting at Battelle
5:00 to 7:00 - dinner

7:30 to 11:00 - the machine room will be open for further work

Saturday, March 24
9:00 to 9:30 - meeting in CAE230
one tool built on top of LOOPS: the SSI,
a system built on the SS5I, MDX/MYCIN

9:30 to noon - SSI exercises
ENOTEBOOK SECTION #XII]

noon to 1:30 - lunch

R

3

11:00 to noon - meeting in CAE230

a tool for expressing
Diagnostic Systems - CSRL

2:00 to 5:00 - CSRL exercisesa

5:30 to 7?77

CNOTEBOOK SECTION #XIII]

- wrap up session (ie party) at jon’s house
6000 Dublin Road
Dublin
(if lost call 885-2914)

AOO 94 —_

Further steps in the flight from time-sharing

The Interlisp-D group.

Abstract

One of the goals of the Interlisp-D effort has been to provide interlisp’s programming support
tools in a personal computing environment. This report outlines the current status of the
interlisp-D implementation, and describes some of the interactive programming tools that
have recently been added to the system.

BACKGROUND

The Interlisp-D project was formed to develop a personal machine implementation of Interlisp
for use as an environment for research in artificial intelligence and cognitive science [Burton
et al., 80b]. This note describes the principal developments since our last report almost a
year ago {Burton et al., 80al.

Principal characteristics of Interlisp-D

Interlisp-D is an implementation of the Interlisp programming environment [Teitelman &
Masinter, 81] for the Dolphin and Dorado personal computers. Both the Dolphin and Dorado
are microprogrammed personal computers, with 16-bit data paths and relatively large main
memories (~1 megabyte) and virtual address spaces (4M-16M 16 bit words). Both machines
have a medium sized local disk, Ethernet controller, a large raster scanned display and a
standard Alto keyboard and "mouse” pointing device.

Both the internal structure of Interlisp-D and an account of its development are presented in
[Burton et al, 80b]. Briefly, Interlisp-D uses a byte-coded instruction set, deep binding, cDR
encoding (in a 32 bit cons cell) and incremental, reference counted garbage collection. The
use of deep binding, together with a complete implementation of spaghetti stacks, allows
very rapid context switching for both system and user processes. Virtually all of the
Interlisp-D system is written in Lisp. A relatively small amount of microcode implements the
Interlisp-D instruction set and provides support for a small set of other performance critical
operations. The at one time quite large Bepl kernel has been all but completely absorbed

into Lisp, for the reasons outlined in [Burton et af, 80b].

Interlisp-D is completely upward compatible with the widely used PDP-10 version. All the
Interlisp system software documented in the Interlisp Reference Manual [Teitelman et al., 78]
runs under Interlisp-D, excepting only a few capabilities explicitly indicated in that manual as
applicable only to Interlisp-10. The completeness of the implementation has been
demonstrated by the fact that several very large, independently developed, application
systems, such as the KLONE knowledge representation language [Brachman, 78], have been

A version of this paper is to appear in SIGART Newsletter, No. 77, August 1981.

50 Papers on Interlisp-D

brought up in Interlisp-D with little or no modification. Interlisp-D is in active use by
researchers (other than its implementors) at both Xerox PARC and Stanford University and is
now approaching the level of stability and reliability of Interlisp-10.

CURRENT PERFORMANCE

The performance engineering of a large Lisp system is distinctly non-trivial. We have
invested considerable effort, including the development of several performance analysis
tools, on the performance of Interlisp-D and, as a result, seen its performance improve by
nearly a factor of five over the last year. Although relative performance estimates can be
misleading, because of variation due to choice of benchmarks and compilation strategy, the
overall performance of Interlisp-D on the Dolphin currently seems to be about twice that of
Interlisp-10 on an otherwise unloaded PDP KA-10. Although this level of performance makes
the Dolphin a comfortable personal working environment, we have identified a number of
improvements which we anticipate will further improve execution speed by 20% to 100%.

MACHINE INDEPENDENCE

Another major thrust has been to reduce the dependencies on specific features of the
present environment, so as to facilitate Interlisp-D’s implementation on other hardware.
Dependencies on the operating system have been removed by absorbing most of the higher
(generally machine independent) facilities provided by the operating system into Lisp code.
Gratuitous dependencies on attributes of the hardware, such as the 16-bit word size, have
been removed and inherent ones isolated. In addition to an abstract desire for
transportability, our sharing of code with other Interlisp implementation projects provides a
on-going motivation for this effort.

EXTENDED FUNCTIONALITY

The principal innovations in Interlisp-D, with respect to previous implementations of Interlisp,
involve the extensions required to aliow the Interlisp user access to a personal machine
computing environment.

Network facilities

While network access is a valuable facility in any computing environment, it is of particular
importance to the user of a personal machine, as it is the means by which the shared
resources of the community are accessed. Over the last year, Interlisp-D has incorporated
both low level Ethernet access and a collection of various higher level protocols used to
communicate with the printing and file servers in use at PARC. It is now straightforward to
conduct all file operations directly with remote file servers. This both allows the sharing of
common files (e.g., for multi-person projects, such as the construction of Interlisp-D itseif),
permits a user to move easily from one machine to another, and eliminates any constraints
of local disk size. We have also begun to investigate the possibility of paging from a remote
virtual memory elsewhere on the network. This would not only allow completely transparent

relocation of a user's environment from one machine to another, but would open up a variety
of interesting schemes for distributing a computation across a set of machines.

Further steps in the flight from time-sharing 51

High level graphics facilities

Interlisp-D has always had a complete set of raster scan graphics operations (documented in
[Burton, 80b]). More recent developments include a collection of higher level user graphics
facilities, akin to those found in other personal computing environments. The most important
of these is the Interlisp-D window package. This facility differs in spirit from most other
window systems in that, rather than imposing an elaborate structure on programs that use it,
it is a self consciously minimal collection of facilities which allow multiple programs to share
the_same display. Although some mechanism is necessary to adjudicate a harmonious
sharing of the display, we feel that higher level display structuring conventions are still an
open research question and therefore should not yet be incorporated into a mandatory
system facility. The window package does provide both interactive and programatic
constructs for creating, moving, reshaping, overlapping and destroying windows, in such a
way that a program can be embedded in a window in a completely transparent (to that
program) fashion. This allows existing programs to continue to be used without change,
while providing a base for experimentation with more complex window semantics in the
context of individual applications.

One such existing application is a display based, structural program editor. This editor, in
contrast to the character orientation of most modern display based program editors, is the
result of marrying display techniques (selection and command specification by pointing,
incremental reprinting, etc) with the structure orientation of the existing Interlisp editor.
indeed, the two editors are interfaced so that the considerable symbolic editing power of the
existing editor remains available under the display based one. Although our initial
experience has been positive, the user interface is under continued revision as we gain
further experience with this style of editing.

FUTURE PLANS

The area in which we anticipate most future development of Interlisp-D is the personal
computing facilities, such as graphics and networking, and their integration into Interlisp's
rich collection of programming support tools. While radical changes to the underlying
language structures are made difficult by our desire to preserve exact Interlisp compatibility,
we also expect some language extensions, including some form of object oriented procedure

invocation.

One of the great strengths of Interlisp has been the many contributions made by its active,
critical user community. We are hopeful that the recent commercial availability of Interlisp-D
. to other sites, and the consequent growth of its user community, will be a similar source of

long term_strength and, in _the short term, significantly accelerate the pace with which
Interlisp evolves away from its time-shared origins into a personal computing environment.

REFERENCES

Brachman, R. et al
KLONE Reference Manual. BBN Report No. 3848, 1978.

© o
bt

52 Papers on Interlisp-D

Burton, R. et al
Overview and status of DoradoLisp. Proceedings of the 1980 Lisp Conference,

Stanford, 1980a.

Burton, R. et al
Papers on Interlisp-D. Xerox PARC report, SSL-80-4, 1980h.

Teitelman, W. et al.
The Interlisp reference manual. Xerox PARC, 1978.

Teitelman, W. and Masinter, L.
The Interlisp programming environment. /EEE Computer, 14:4 April 1981, pp. 25-34.

The members of the Interlisp-D group are Beau Sheil, Bill van Melle, Alan Bell, Richard
Burton, Ron Kaplan and Larry Masinter.

IT B30 9O SHOITAQTUON. SALT TANTHIAN - TLT a0
% T U8 MEIA

*
AXAT WK

_.‘ﬂ:‘,‘.'ﬁ-:m-'.'c'l!. at i : ik ey AR
30080 onthljof XD O LS
sneetgtogqs v ssmls Twite hoa g €0 TOL cewmod 90kl

szﬁ'}:' 3
rpemed! B PG

sesunend ok e2iracadial ajsvoerl zsiarilAx{ bon f20p33 : o B i
Ita¥~sotinoy¥ eoavkof
47 .ewivon aidd w0l etkelupauedq odd (VO3 o} Sked wli aif? 1ed0H)

wlo0 ,codssion bam esaszeion ¥ol vlletds sxsd beulapst ek
slguta oo e} sxarl .soxwes akdl ol Iatyeliaw vog ef O rataif)
cubalvers & dwd YOV ot Iskwetaw iootdss sd7 Jo fmez sl 20 723
%o gntbasrexebay ne o3 Visoranse ol el pkds nk Isbiezen adi 1o
' (.lsryeisan epiwes =6l

fazeasn oft 02 sotiawhousal aqi sppwol bas vsuroal SIET)
eallotEegizol ,pmd2izogla 30 yaioert TUATTITT
. senkdost 53laiinl bee suil7}Y igolisdwgeol sydemklf BADID02

ataylach bas agles? ad? socollU Lus J3ozoqed .odd
pmi fvosfA t9apgmd o

gakbald ban groed? neldmrsedal toowwmydd

- atuod Lanksomsrdssil sooalsbonii

puft tpontA has akged egmdiuci S.I;ié‘,ﬂ'.;\‘&i
asmowsd isstiamertis) nasuoakd saadonsM bas yaldeoT AT
' sareiod zatcumcy o amaliedRiigyd & v WALALT

prnmd #a:d¥ A sokget Isatrdamelist agkddofl

goksognod slismosud buo emdilvonfd sdomdwmdfiaX
aubosi

golsndngmod e Tioerd tedowband bos brugstand

o ei) d3kw wellle} ed o2 bodnepm ouR ginebei® V0D EPTRTUNME IR
JI8AREILADM Bam tamasf lo avedqads xeo} JoriY adt ot Ialuadax
~ leppataeryad meigozT) 0.1 mei10s@ Io notiqasrs odt dikw
%o watves Yaizd » sbolont Lfdw TOV 20 desw Joiil asd Tavevoll
’ : . .olzod

wofaw sdi %o yarwe Yioiauborink e asbtvorg mesbon aldY 00
getivynos 1o mmaflzbeoo? Isslrevceds famisl ads ol siquomad
& 23 Jnehudn fone avig o2 ol wadwon 277 Qo jnednd auT
wnlqod pabwalled o2 %o doac Yo suslen adr Yo gathoadevebos
otasd mls vlqes i¥awaasy €2 ¢hitda vuadimaels am bog
anaknossey Isoigel 1ridfe oh 3midnict ailtde hos oxbsziwmud

Environments for exploratory prog ramming

Beau Sheil

Cognitive and Instructional Sciences
Xerox Pato Alto Research Center, Palo Alto, California 94304 (USA)

[A version of this papar Is to appear in Datamation, February 1983}

An oil company needs a system to monitor and control the increasingly complex and
frequently changing equipment used to operate an oil well. A electronic circuit designer
plans to augment a circuit layout program to incorporate a variety of vaguely stated "design
rules”. A newspaper wants a page layout system to assist editors in balancing the
interiocking constraints that govern the placement of stories and advertisments. A
government agency envisions a personal workstation that would provide a single, integrated
interface to a variety of large, evolving data base systems.

Applications like these are forcing the commercial deployment of a radically new kind of

‘programming system. First developed to support research in artificial intelligence and

interactive graphics, these new tools and techniques are based on the notion of exploratory
programming, the conscious intertwining of system design and implementation. Fueled by
dramatic changes in the cost of computing, such exploratory programming environments
have become, virtually overnight, a commercial reality. No fewer than four such systems
were displayed at NCC '82 and their numbers are likely to increase rapidly as their power
and range of application become more widely appreciated.

Exploration and implementation

Despite the diversity of subject matter, a common thread runs through our example
applications. They are, of course, all large, complex pragrams whose implementations will
require significant resources. Their more interesting similarity, however, is that it is
extremely difficult to give complete specifications for any of them. The reasons range from
sheer complexity (the circuit designer can’'t anticipate ail the ways in which ail the potential
design rules might interact), through continually changing requirements (the equipment in
the ail rig changes, as do the information bases that the government department is required
to consuit), to the subtle human factors issues which determine the effectiveness of an
interactive graphics interface.

Whatever the cause, a large programming project with uncertain or changing specifications
is a particularly deadly combination for conventional programming techniques. Virtuaily all of
modern programming methodology is predicated on the assumption that a programming
project is fundamentally a problem of implementation, rather than design. The design is
supposed to be decided on first, based on specifications provided by the client; the
implementation follows. This dichotomy is so important that it is standard practice to
recognize that a client may have only a partial understanding of his needs, so that extensive
consultations may be required to ensure a complete specification with which the client will
remain happy. This dialogue ensures a fixed specification which will form a stabie base for
an implementation.

2 Environments for exploratory programming

The vast bulk of existing programming practice and technology, such as structured design
methodology, is designed to ensure that the implementation does, -in fact, follow the
specification in a controlled fashion, rather than wander off in some unpredictable direction.
And for good reason. Modern programming methodology is a significant achievement that
has played a major role in preventing the kind of implementation disasters that often befell
large programming projects in the 1960s.

The implementation disasters of the 1960s, however, are slowly being succeeded by the
design disasters of the 1980s. The projects described above simply will not yield to
conventional methads. Any attempt to obtain an exact specification from the client is bound
to fail because, as we have seen, the client does not know and cannot anticipate exactly
what is required. Indeed, the most striking thing about these examples is that the clients’
statements of their problems are really aspirations, rather than specifications. And since the
client has no experience in which to ground these aspirations, it is only by exploring the
properties of some putative solutions that the client will find out what is really needed. No
amount of interrogation of the client or paper exercises will answer these questions; one just
has to try some designs to see what works.

The consequences of approaching problems like these as routine implementation exercises
are dramatic. First, the implementation team begins by pushing for an exact specification.
How long the client resists this coercion depends on how well he really understands the
limits of his own understanding of the problem. Sooner or later, however, with more or less
ill-feeling, the client accepts a specification and the impiementation team goes to work. The
implementors take the specification, partition it, define a module structure that reflects this
partitioning, freeze the interfaces between them, and repeat this process until the problem
has been divided into a large number of smalil, easily understood and easily implementable
pieces. Control over the implementation process is achieved by the imposition of structure
which is then enforced by a variety of management practices and programming tools.

Since the specification, and thus the module structuring, is considered fixed, cne of the most
effective methods for enforcing it is the use of redundant descriptions and consistency
checking. Thus the importance of techniques such as interface descriptions and static type
checking, which require multiple statements of various.aspects of the design in the program
text in order to allow mechanical consistency checks to ensure that each piece of the
system remains consistent with the rest. in a well executed conventional implementation
project, a great deal of internal rigidity is built into the system in this way in the interests of
ensuring its orderly development.

The problems emerge, usually at system acceptance time, when the client requests, not just
superficial, but radica/ changes, either as a result of examining the system, or for some
completely exogenous reason. From the point of view of conventional programming
practice, this indicates a failure at specification time. The software engineer should have
been more persistent in obtaining a fuller description of the problem, in invelving all the
effected parties, etc.. And this is often true. Many ordinary impiementation exercises are
brought to ruin by insufficient attention having been paid to getting the consequences of the
specification fully agreed to. But that's not the problem here. The oil company didn't know
about the new piece of equipment whose behavior is very different from the existing
equipment on which the specification was based. No one knew that the layout editors would
complain that it doesn’t "feel right" now that they can no longer physically handle the copy
(even in retrospect, it's unclear why they feel that way and what to do about it). Etc., etc.,
etc.. Neither would any amount of speculation by either client or software engineer have
helped. Rather, it would just have prompted an already nervous client to demand whoie
dimensions of flexibility that would not in fact be needed, leaving the system just as
unprepared for the ones that eventually turned out to matter.

£

Environments for exploratory programming 3

Whatever the cause, the implementation team has to rework the system to satisfy a new, and
significantly different, specification. That puts them in a situation that conventional
programming methodology simply refuses to acknowledge (except as something to avoid).
As a result, their programming tools and methods are suddenly of limited effectiveness, if not
actually counterproductive. . The redundant descriptions and imposed structure that were so
effective in constraining the program to follow the old specification have lost none of their
efficacy - they still constrain the program to follow the old specification. And they're difficult
to change. The whole point of redundancy is to protect the design from a single
(unintentional) change. But it's equally well protected against a single intentional change.
Thus, ail the changes have to be made all over the place. (And, since this should never
happen, there's no methodology to guide or programming tools to assist this process.) Of
course, if the change is small (as it "should” be), there is no particular problem. But if it is
large, so that it cuts across the module structure, the impiementation team finds that they
literally have to fight their way out of their previous design.

Still no major probiem, if that's the end of the matter. But it rarely is. The new system will
suggest yet another change. And so on. And on. After a few iterations of this, not only are
the client and the implementation team not on speaking terms, but the repeated assauits on
the module structure have likely left it iooking like spaghetti. It still gets in the way (firewalls
are just as impenetrable if laid out at random as they are when laid out straight), but has
long ceased to be of any use to anyone except to remind them of the sorry history.
Increasingly, it is actively subverted (enter LOOPHOLES, UNSPECs, etc.) by programmers whose
patience is running thin. Even were the design suddenly to stabilize (uniikely in the present
atmosphere), all the seeds have now been sown for an implementation disaster as well.

Programming as exploration

The alternative to this kind of predictabie disaster is not to abandon structured design for
programming projects which are, or which can be made, well-defined. That would be a
fremendous step backwards. Instead, we should recognize that some applications are best
thought of as design problems, rather than implementation projects. These problems require
programming systems which allow the design to emerge from experimentation with the
program, so that design and program develop together. Environments in which this is.
possible were first developed in artificial intelligence and computer graphics, two research
areas which are paricularly prone to specification instability. '

At first sight, artificial intelligence might seem to be an unlikely source of programming
methodology. However, constructing programs, in particular, programs which carry out
some intelligent activity, is central to artificial intelligence. Since almost any intelligent
activity is likely to be poorly understood (once something becomes well understood we
usually no longer consider it "intelligent"), the artificial intelligence programmer invariably
has to restructure his program many, many times before it becomes reasonably proficient. In
addition, since intelligent activities are complex, the programs tend to be very large, yet they
are invariably built by very small teams (often a single researcher). Consequently, they are
usually at or beyond the manageable limits of complexity for their implementors. In
response, a variety of programming environments based on the Lisp procgramming language
have evoived to aid in the development of these large, rapidly changing systems.

The rapidly developing area of interactive graphics has encountered similar probiems.
Fueled by the rapid drop in the cost of computers capable of supporting interactive graphics,
there has been an equally rapid development of applications which make heavy use of
interactive graphics in their user interfaces. Not only was the design of such interfaces
almost completely virgin territory as little as ten years ago, but even now, when there are a
variety of known techniques (e.g., menus, windows, etc.) for exploiting this power, it is still

Xerox 1108 Interlisp-D system

An exploratory programming system designed to be installed in the user's office. Processor, main memory
(1.5 MBytes), rigid and flexible local disks, and Ethernet connection are all contained in the processor cabinet
at lower right. The "mouse" pointing device, which moves a cursor image over the display according to
sensed horizontal motion across the table, can be seen to the right of the keyboard, in front of the display.

Photo: Ken Beckman

Environments for explaratory programming 5

very difficult to determine how easy it will be to use a proposed user interface and how well
it will match the user’'s needs and expectations in particular situations. Conseguently,
complex interactive interfaces usually require extensive empirical testing to determine
whether they are really effective and considerable redesign to make them so. While
interface design has always required some amount of tuning, the vastly increased range of
possibilities available in a full graphics system has made the design space unmanageably
large to explore without extensive experimentation. In response, a variety of systems, of
which Smalitalk is the most well known, have been developed to facilitate this
experimentation by providing a wide range of built in graphical abstractions and methods of
modifying and combining them together into new forms.

Exploratory programming systems

in contrast to conventional programming technology, which restrains the programmer in the
interests of orderly development, exploratory programming systems must amplify the
programmer in the interests of maximizing his effectiveness. Expioration in the realm of
programming can require small numbers of programmers tc make essentially arbitrary
transformations to very large amounts of code. Such programmers need programming
power tools of considerable capacity or they will simply be buried in detail. So, like an
amplifier, their programming system must magnify their necessarily limited energy and
minimize extraneous activities that would otherwise compete for their attention.

One source of such power is the use of interactive graphics. Exploratory programming
systems have capitalized on recent developments in personal computing with extraordinary
speed. Consider, for example, the Xerox 1108 Interlisp-D system shown on the facing page.
The large format display and "mouse" pointing device allow very high bandwidth
communication with the user. Exploratory programming environments have been quick to
seize on the power of this combination to provide novel programming tools, as we shall see.

In addition to programming tools, these personal machine environments allow the standard
features of a professional workstation, such as text editing, file management and electronic
mail, to be provided within the programming environment itself. Not only are these facilities
just as effective in enhancing the productivity of programmers as they are for other
. professionals, but their integration into the programming environment allows them to be used
at any time during programming. Thus, a programmer who has encountered a bug can send
a message reporting it ‘while remaining within the debugger, perhaps including in the
message some information, like a backtrace, obtained from the dynamic context.

Another apparent source of power is to build the important abstract operations and objects

-of some given application area directly into the exploratory environment. All programming
systems do this to a certain extent; some have remarkably rich structures for certain
domains, for example, the graphics abstractions embedded within Smalitalk. If the
abstractions are well chosen, this approach can yield a powerful environment for exploration
within the chosen area, because the programmer can operate entirely in substantively
meaningful abstractions, taking advantage of the considerable amount of implementation and
design eaffort that they represent.

The limitations of this approach, however, are clear. Substantive abstractions are
necessarily effective only within'a particular topic area. Even for a given area, there is
generally more than one productive way to partition it. Embedding one set of abstractions
into the programming system encourages developments that “fit" within that view of the
worid at the expense of others. Further, if one enlarges one’s area of activity even slightly, a
set of abstractions that was once very effective may become much less so. In that situation,
uniless there are effective mechanisms for reshaping the buiit in abstractions to suit the

6 Environments for exploratory programming

changed domain, users are apt to persist with them, at the cost of distorting their programs.
Embedded abstractions, useful though they are, by themseives enable only exploration in the
smail, confined within the safe borders where the abstractions are known to be effective.
For exploration in the large, a more general source of programming power is needed.

Of course, the exact mechanisms which different exploratory systems propose as essential
sources of programming power vary widely, and these differences are hotly debated within
their respective communities. Nevertheless, despite strong surface differences, the systems
share some unusual characteristics at both the language and environment level.

Languages

The key property of the programming languages used in exploratory programming systems is
their emphasis on minimizing and deferring the constraints placed on the programmer, in the
interests of minimizing and deferring the cost of making large scale program changes. Thus,
not only are the conventional structuring mechanisms based on redundancy not used, but
the languages make extensive use of /ate binding, i.e., allowing the programmer to defer
commitments as long as possible.

The clearest example is that exploratory environments invariably provide dynamic storage
allocation with automatic reclamation (garbage collection). To do otherwise imposes an
intolerable burden on the programmer to keep track of all the paths through his program that
might access a particular piece of storage to ensure that none of them access or release it
prematurely (and that someone does reiease it eventually!). This can only be done either by
careful isolation of storage management or with considerable administrative effort. Both are
incompatible with rapid, unplanned development, so neither is acceptable. Storage
management must be provided by the environment itself.

Other examples of late binding include the dynamic typing of variables (associating data type
information with a variable at run-time, rather than in the program text) and the dynamic
binding of procedures. The freedom to defer deciding the type of a value until run-time is
important because it allows the programmer to experiment with the type structure itself.
Usually, the first few drafts of an exploratory program implement most data structures in
general, inefficient structures such as linked lists, discriminated (when necessary) on the
basis of their contents. As experience with the application evolves, the c¢ritical distinctions
which determine the type structure are themseives determined by experimentation, and may
be among the last, rather than the first, decisions to evolve. Dynamic typing makes it easy
for the programmer to write code which keeps these decisions as tacit as possible.

The dynamic binding of procedures is more than a simple load-time linkage. It allows the
programmer to change dynamically the subprocedures invoked by a given piece of code,
simply by changing the run-time context. The simpiest form of this is to allow procedures to
be used as arguments or as the value of variables. More sophisticated mechanisms allow
procedure values to be computed or even encapsulated inside the data values on which they
are to operate. This packaging of data and procedures into a single object, known as
"object oriented programming”, is a very powerful technique. For example, it provides an
elegant, modular solution to the probiem of generic procedures (i.e., every data object can
be thought of as providing its own definition for common actions, such as printing, which
can be invoked in a standard way by other procedures). For these reasons, object oriented
programming is a widely used technique in exploratory programming, and actuaily forms the
basic programming construct of the Smalltalk language.

The dynamic binding of procedures can be taken one step further when procedures are
represented as data structures which can be effectively manipuiated by other programs.

Environments for exploratory programming 7

While this is of course possible to a limited extent by reading and writing the text of program
source files, it is of much greater significance in systems that define an explicit
representation for programs as syntax trees or their equivalent. This, coupled with the
interpreter or incremental compiler provided by most exploratory programming systems, is an
extraordinarily powerful tool. its most dramatic application is in programs that construct
other programs that they later invoke. This technique is often used in artificial intelligence in
situations where the range of possible behaviors is too large to encode efficiently as data
structures but can easily be expressed as combinations of procedure fragments. An
example might be a system which "understands” instructions given in natural language by
analyzing each input as it is received, building a program which captures its "meaning”, and
then evaluating that program to achieve the requested effect.

Aside from such specialized applications, effective methods for mechanically manipulating

procedures enabie two other significant developments. . The first-is the technique of program
development by writing interpreters for special purpose fanguages. Once again, this is a
basic technique of artificial intelligence that has much wider applicability. The key idea is
that one develops an application by designing a special language in which the application is
relatively easy to state. Like any notation, such a language provides a concise
representation which suppresses common or uninteresting features in favor of whatever the
designer decides is more important. A simple example is the use of notations like context
free grammars (BNF) to "meta-program” the parsers for programming languages. Similar
techniques can be used to describe, among other things, user interfaces, transaction

. sequences, and data transformations. Application development in this framework is a
dialectic process of designing the application language and developing an interpreter for it,

since both the language and the interpreter will evolve during development. The simplest
way of doing this is to evolve the application language out of the base provided by the
development language. Simply by aliowing the application language interpreter to call the
development language interpreter, expressions from the development language can be used
wherever the application language currently has insufficient power. As one's understanding
of the problem develops, the application language becomes increasingly powerful and the
need to escape into the development language becomes less important.

Programming tools

The second result of having procedures be easily manipulated by other procedures is that it
becomes easy to write program manipulation subsystems. This in tum has two key
consequences. First, the exploratory programming language itself can grow. The
remarkable longevity of Lisp in the artificial intelligence community is in large part due to the
language having been repeatedly extended to include modern programming language syntax
and constructions. The vast majority of these extensions were accomplished by defining
source to source transformations which converted the new constructions into more
conventional Lisp expressions. The ease with which this can be done aliows each user, and
even each project, to extend the language to capture the idioms that are found to be locally
useful.

Second, the accessibility of procedures to mechanical manipulation facilitates the
development of programming support tools. All expioratory programming environments
boast a dazzling profusion of programming tools. To some exitent, this is a virtue of
necessity, as the flexibility necessary for exploration has been gained at considerabie
sacrifice in the ability to impose structure. That loss of structure could easily result in a
comensurate loss of control by the programmer. The programming tools of the exploratory
programming environment enable the programmer to reimpose the control that wouid be
provided by structure in conventional practice.

[Continued on page 10]

8 Environments for exploratory programming

The two screen images at right show some of the exploratory programming tools provided in
the Imerlisp-D environment. The screen is divided into several rectangular areas or
windows, each of which provides a view onto some data or process and which can be
reshapad and repositioned at will by the user. When they overlap, the occluded portion of
the lower window is automatically saved, so that it can be restored when the overlapping
window is removed. Since the display is bitmapped, each window can contain an arbitrary
mixture of text, lines, curves, and half-tone and solid area images.

In the typescript window (upper left), the user has defined a program F (factorial) and has
then immediately run it, giving an input of 4 and getting a resuit of 24. Next, he gueries the
state of his files, finding that one file has been changed (previously) and one function (F) has
been defined but not associated with any file yet. The user sets the value of DRAWBETWEEN to
0 in command 74, and the system notes that this is a change and adds DRAWBETWEEN to the
sat of "changed objects" that might need to be saved.

Then, the user runs the prograrn EDITTREE, giving it a parse tree for the sentence "My uncle's
story about the war will bore you to tears”. This opens up the big window on the right in
which the sentence diagram is drawn. Using the mouse, the user starts to move the NP
naode on the left (which is inverted to show that it is being moved). While the move is taking
place, the user intarrupts the tree editor, which suspends the computation and causes three
“break” windows to appear on top of the lower edge of the typescript. The smallest window
shows the dynamic state of the computation, which has been broken inside a subprogram
called FOLLOW/CURSOR. The "FOLLOW/CURSOR Frame" window to the right shows the value of
the local variables bound by FOLLOW/CURSOR. One of them has been selected (and so
appears inverted) and in response, its value has been shown in more detail in the window at
the lower left of the screen. The user has marked one of the component values as
suspicious by drawing on it using the mouse. In addition, he has asked to examine the
contents of the BITMAP component, which has opened up a bitmap edit window to the right.
This shows an enlarged copy of the actual NP image that is being moved by the tree sditor.

inside the largest break window, the user has asked some questions about FOLLOW/CURSOR,
and queried the value of DRAWBETWEEN (now 66). The SHOW PATHS command brought up the
horizontal tree diagram on the left, which shows which subprograms call each other, starting
&l FOLLOW/CURSOR. Each node in the call tree produced by the SHOW PATHS command is an
active element which will respond to the user’s selecting it with the mouse. In the second
image, the user has selected the SHOWNODE subprogram, which has caused ils code to be
retrieved from the file (<LISPYDEMOSLATTICER) on the remote file server (PHYLUM) where it was
stored and displayed in the "Browser printout window"” which has been opened at middle
right. User programs and extended Lisp forms (like for and do) are highlighted by system
generated font changes. By selacting nodas in the SHOW PATHS window, the user could aiso
have editead or obtained a summary description of any of the subprograms.

Instead, the user has asked (in the break typescript window) to edit wherever anyone calls
the DRAWBETWEEN program (which draws lines between two specified points). This request
causes the system to consult its (dynamically maintained) database of information about user
programs, wherein it finds that the subprogram SHOWLINK calls DRAWBETWEEN. It therefore
loads the code for SHOWLINK into an edit window which appears under the "Browser print out
window"”. The system then automatically finds and underlines the first {(and onily) call on
DRAWBETWEEN. On the previous line, DRAWBETWEEN is used as a variable (the one the user set
and interrogated earlier). The system, however, knows that this is not a subprogram call, so
it has been skipped. If the user makes any change to SHOWLINK in the editor, not only will
the change take effect immediately, but SHOWLINK will be marked as needing to be updated
in its file and the information about it in the program database will be updated. This, in turn,
will cause the SHOW PATHS window to be repainted, as its display may no longer be valid.

X P T T L

NIL Y
7%*(BEFlNEQ (F (A) (IF A LT 2 THEN 1 ELSE a*(F A-1] ’_____-r__..-n~'”§*::::?_--~___“~ 3
72+(F & :
: At NP AUX vp .
§73+FILES?] &
LATTICER.. .to be dumped.) :
{ ™\ ‘plus the functions: F DET - N PP ™ v NP PP i
3 it to say where the above go ? No ////,\\\\\ I //,\\\ 2
R 3
j:§74+(SETQ DRAVBETWEEN @)
éngiygggyggn reset)] FOLLOW/CURBOR P NP PRO P NP B
ND
76¢(EDITTREE (Pnnss My uncle's story | DS #5,137345 ,//\\\ l
3 DET DET N N

(FOLLOY/CURSOR broken)
77:. SHOW PATHS FRON FOLLOW/CURSOR

NIL .

78:. DOES FOLLOVW/CURSOR CALL DRAWBETWEEN SOMEHOW
T

79:. DOES FOLLOW/CURSOR CALL DRAWBETWEEN
B. ERRUDETUEEN

(U L] AON]

LNODEID
LNODEPOSITION
NODELABELBITHAP
550 NODEFRONPOS

{NP (DET &) (N &))
(232 . 183)

LNODEFONT

2 NODETOPOS (232 . 181)
LNOGDEYIOTH =
LNODEHE IGHT =
TOLNODES ET &) (N &))
FROMLNODES (PP &

FONTDESCRIPTUR}#i 115550

NODEL ABEL
BOXNOOEFLB NIL

LTS WU WT UeNOU .

NI

7éo(DEFINEQ (F (a) (IF A LT 2 THEN 1 ELSE A*(F a-1]

72+(F 8]

24

E473«FILES?]
LATTICER...to be dumped.

Pplus the functions: F
want to say where the above go ? No
EANIL

74+(SETQ ORAWBETWEEN 8]

E (URAHSETUEEN resst) FULLUU/BURSOR

: ND far
E 750(ED[TTREE (PARSE My uncle's story pS {0DISPLAYSTR Al #5,137346

1. DOES FOLLOW/CURSOR CALL DRAWBETYEEN SOMEHOW
T v iy i
79:. DOES FOLLOW/CURSOR CALL DRAWBETWEE|{from
NIL SHO
88 : DRAVBETWEEN
88

{PHYLUM}<LISP>DEMO>LATTICER. ; 18}

[LAMBDA (ND NODELST DS TOSONLY) (" ¢r% "7R-JAN-12 1HH47)
(* displeys a node and its links,
IF TOIOMLY |3 NON-NIL, DRAYS ONLY THE TO | INKS.]

(SHOW /MDDE /LABEL ND DS)
(for TONODEID in (TOLLINKS ND) do (SHOWLINK “DDS (NODDENDTOMODE TONGDEID MOOELST)

(OR TOSONLY (for FROMNOID in (FROMLLINKS ND) do (SHOWLINK (NODEN)
. NO 0S])

=B81:. EDIT WHERE AMY CALLS DRAWBETWEEN
SHOWLINK
DRAWBETWEEN (FROMPOS FRND) (TOPOS TOND

TOMODE FROMNDIL

R U 1 T LU

AR P 1IN

280881 S A L — TR

(* baf: " 7-0CT-02 t4r26™)
(* drawy in o nk from
‘FAND TO TOND)

FY

E (NP (DET &) (N &))
.DEPOSITION 232
. SELABELB I TMAP
NODEFRONPOS

NODETOPOS
LNODEWIDTH
LNODEHE I8H
TOLNODES
FROMLNOQES
LNODEFONT
NODELABEL
BOXNODEFLB

.1
(232 . 191)
; 2

ET &) (N &})

I Exit [4

&(PP & %))
:0NTDESCRIPTUR}#1,115595
N

NIL

{1 Interlisp-D

10 Environments for exploratory programming

Programming tools achieve their effectiveness in two quite different ways. Some tools are
simply effective viewers into the user's program and its state. Such tools permit one to find
information quickly, display it effectively, and modily it easily. A wide variety of tools of this
form can be seen in the two Interlisp-D screen images on the previous page, including data
value inspectors (which allow a user to look at and modify the internal structure of an
object), editors for code and data objects, and a variety of break and tracing packages.
Especially when coupled with a high bandwidth display, such viewers are very effective
programming tools.

The other type of programming tool is knowledge based. Viewer based tools, such as a
. program text editor, can operate effectively with a very limited "understanding” of the
material with which they deal. By contrast, knowledge based tools must know a significant
amount about the content of a user's program and the context in which it operates. Even a
very shallow analysis of a set of programs (e.g., which programs call which other ones) can
support a variety of effective programming tools. A program browser allows a programmer
to track the various dependencies between different parts of a program by presenting easy
to read summaries which can be further expanded interactively. Deeper analysis allows
more sophisticated facilities. The Interlisp program analyser (Masterscope) has a sufficiently
detailed knowiedge of Lisp programs that it can provide a complete static analysis of an
arbitrary Lisp program. A wide variety of tools have been constructed which use the
database provided by this analysis to answer complex queries (which may require significant
reasoning, such as computing the transitive closure of some property), to make systematic
changes under program control (such as making some transformation wherever a specified
set of properties hold), or to check for a variety of inconsistent usage errors.

Finally, integrated tools provide yet another level of power. The Interiisp system "notices”
whenever a program fragment is changed (by the editor, or by redefinition). The program
analyser is then informed that any existing analysis is invalid, so that incorrect answers are
not given on the basis of old information. The same mechanism is used to notify the
program management subsystem (and eventually the user, at session end) that the
corresponding file needs to be updated. In addition, the system will remember the previous
state of the program, so that at any subsequent time the programmer can undo the change
and retreat (in which case, of course, all the dependent changes and notifications will aiso
be undone). This level of cooperation between tools not only provides immense power to
the programmer, but it relieves him of a level of detail that he would otherwise have to
manage himself. The result is that more attention can be paid to exploring the design.

Contraction

A key, but often neglected, component of an exploratory programming system is a set of
facilities for program contraction. The development of a true exploratory program is "design
limited™, so that is where the effort has to go. Consequently, the program is often both
inefficient and inelegant when it first achieves functional acceptability. If the exploration is
an end in itself, this might be of limited concern. However, it is more often the case that a
program deveioped in an exploratory fashion must eventually be used in some real situation.
Sometimes, the time required to reimplement (using the prototype program as a
specification) is prohibitive. Other times, the choice of an exploratory system was made to
aliow for expected future upheaval, so it is essential to preserve design flexibility. In either
event, it is necessary to be able to take the functionally adequate program and transform it
into a program whose efficiency is comparable to the best program one could have written,
in any language, had only one known what one was doing when one started.

The importance of being able to make this post hoc optimization cannot be overemphasized.
Without it, one’s exploratory programs will aiways be considered "toys"; the pressure to

]

Environments for exploratory programming 11

abandon the exploratory environment and start impiementing in a "real” one will be
overwhelming; and, once that move is made (and it is a/ways made too soon), exploration
will come to an end. The requirement for efficient implementation places two burdens on an
exploratory programming system. First, the architecture has to permit efficient
implementations. Thus, for example, the obligatory automatic storage manager must either
be so efficient that it imposes negligible overhead, or it must allow the user to circumvent it
(e.g., to allocate storage statically) when and where the design has stabilized enough to
make this optimization possible.

Second, as the performance engineering of a large system is almost as difficult as its initial
construction, the environment must provide performance engineering tools, just like it
provides design tools. These include good instrumentation, a first class optimizing compiler,
program manipulation toois (including, at the very least, full functionality compiler macros),
and the ability to add declarative information where necessary to guide the program
transformation. Note that, usually, performance engineering takes place not as a single
"post functionality optimization phase”, but as a continuous activity throughout the
development, as different parts of the system reach design stability and are observed to be
performance critical. This is the method of "progressive constraint”, the incremental
addition of constraints as and when they are discovered and found important, and is a key
methodology for exploratory davelopment.

Both of these concerns can be most clearly seen in the various Lisp based systems. While,
like all exploratory environments, they are often used to write code very quickly without any

concern for efficiency, they are also used to write artificial intelligence programs whose

applications to real problems are very large computations. . Thus, the ability to make these
programs efficient has long been of concern, because without it they wouid never be run on
any interesting problems. More recently, the architectures of the new, personal Lisp
machines like the 1108 have enabled fast techniques for many of the operations that are
relatively slow in a traditional implementation. Systems like interlisp-D, which is implemented
entirely in Lisp, including all of the performance critical system code such as the operating
system, display software, device handlers, etc., show the level of efficiency which is now
possible within an exploratory language. -

Prospects

The increasing importance of applications which are very poorly understood, both by their
clients and by their would-be implementors, will make exploratory development a key
technique for the 1980s. Radical changes in the cost of computing power have aiready
made exploratory development systems cost effective vehicles for the delivery of application
systems in many areas. As recently as five years ago, the tools and language features we
have discussed required the computational power of a large mainframe (~$500K). Two
years ago, equivalent facilities became available on a personal machine for ~$100K. A year
later, ~$50K. Now, a full scale exploratory development system can be had for ~$25K. For
many applications, the incremental cost has become so small over that required to support
conventional technology that the benefits of exploratory development (and redevelopmentt)
are now decisive.

One consequence of this revolutionary change in the cost-effectiveness of exploratory
systems is that our notion of "exploratory problem" is going to change. Exploratory
programming was developed originally in contexts where change was the dominant factor.
There is, however, clearly a spectrum of specification instability. Traditionally, the cost of
exploratory programming systems, both in terms of the computing power required and the
run-time inefficiencies incurred, confined their use to only the most voiatile applications.
Thus, the spectrum was arbitrarily dichotomized into "exploratory” (very few) and "standard”

12 : Environments for exploratory programming

{the vast majority). Unfortunately, the reality is that unexpected change is far more common
in “standard” applications than we have been willing to admit. Conventional programming
techniques strive to preserve a stabiiity that is only too often a fiction. Since exploratory
programming systems provide tools that are better adapted to this uncertainty, many
applications, such as office information systems, which are now being treated as "standard”
but which in fact seem to require moderate levels of ongoing experimentation, may turn out
to be more effectively developed in an exploratory environment.

We can also expect to see a slow infusion of expioratory development techniques into

conventional practice. Many of the programming tools of an expioratory programming
system (in particular, the information gathering and viewing toois) do not depend on the
more exploratory attributes of either language or environment and could thus be adapted to
support programming in conventional languages like FORTRAN and coBoL. Along with these
tools will come the seeds of the exploratory perspective on language and system design,
which will gradually be incorporated into existing programming languages and systems,
loosening some of the bonds with which these systems so needlessly restrict the
programmer.

To those accustomed to the precise, structured methods of conventional system
development, .exploratory development techniques may seem messy, inelegant and
unsatisfying. But it's a question of congruence: Precision and inflexibility may be just as
disfunctional in novel, uncertain situations as procrastination and vacillation are in familiar,
well-defined ones. Those who admire the massive, rigid bone structures of dinosaurs should
‘ramember that jellyfish still enjoy their very secure ecological niche.

Acknowledgement

Many of these ideas were first developed, and later much polished, in discussions with John
Seely Brown and other colleagues in Cognitive and Instructional Sciences at Xerox PARC.

)

KNOWLEDGE
PROGRAMMING IN LOOPS:

Report on an Experimental Course

Mark Stefik, Daniel G. Bobrow,
Sanjay Mittal, and Lynn Conway*

Knowledge Systems Area
Xeroz Palo Alte Research Center
Palo Alte, CA 94304

Abstract

Early this year fifty people took an experimentai course at Xerox PARC
on knowledge programming in Loops. During the course, they ex-
tended and debugged small knowledge systems in a sinulated economics
domain called Truckin. Evervone learned how to use the lLoops en-

- vironment., formulated the knowledge for their own program. and rep-

resented it in Loops. At the end of the course a knowledge competition
was run so that the strategies used in the different systems could be
compared. The punchline to this story is that almost everyone learned
enough about Loops to complete a small knowledge svstem in only
three days. Although one must exercise caution in extrapolating from
small experiments, the results suggest that there is substantial power
in.integrating multiple programming paradigms.

KNOWLEDGE PROGRAMMING is concerned with the tech-
niques for representing knowledge in computer programs. It
js important in many applications of Al, where the problems

INow with the Defense Advanced Research Projects Agency (DARPA).
Copyvright © 1983 by Xerox Corporation

Thanks to Johan de Kleer, Richard Fikes and John McDermott for
their reviews and comments on earlier drafts of this paper. We ex-
tend our special thanks to the course participants from Applied Exper:
Systems, Daisy Systems, ESL, Fairchild AT Lab. Lawrence-Livermore
Laboratories, Schlumberger-Dall Research Laboratory, SRI Interna-
tional, Stanford University, Teknowledge, and Xerox Corporation.
Their participation and feedback are vital to the ongoing experimental
process for simplifying the techniques of knowledge programming. We
enjoved and will long remember their spirited involvernent.

are messy. As in many situations in life, pat solutions and
simple mathematical models just aren't good enough. Things
break. Information is missing. Assumptions lail. Situations
are complicated. To cope with messiness, Al researchers have
found that large amounts of problem-specific knowledge are

- usually needed. This places a premium on the use of powerful

techniques for representing and testing knowledge in com-
puter programs.

Very few people have been trained to build knowledge
systems. This is a eritical bottleneck that limits the scope
and impact of knowledge engineering. It limits the number
of things that can be tried. the number of good ideas that
are propagated. and the number of successful applications
that influence the way that others perceive the field.

A few numbers may serve to put this in perspective.
About one computer science researcher in ten does some
work in AL and perhaps a fifth of those work in knowledge
engineering. In 1980. approximately 265 people graduated
with Ph.D.’s in Computer Science, according to the “Snow-
bird Report”™ (Denning, et al.. 1981). Fewer than a half
dozen doctoral theses appear each year on some aspect of
building knowledge systems. An estimate in a brochure by
Teknowledge, Inc.. indicates that there are only about sixty
people in the world with high level expertise in the design
and development of knowledge systems. Although precise
figures for these populations are difficult to obtain. all the
evidence suggests that the community is tiny. indeed.

THE Al MAGAZINE Fall 1983 3

Training in knowledge engineering usually requires several
vears of study at one of a handful of universities. A group of
us in the Knowledge Systems Area at Nerox PARC is trving
to shorten this training time. Our goal is to increase the
impact and scale of knowledge engineering by simplifying
the methods of knowledge programming and making them
more widely accessible. In doing this we have developed an
experimental knowledge programming system called LOOPS
(Bobrow & Stefik 1981: Stefik. et al.. 1983a). Feedback about
the adequacy of LOOPS is collected from beta-test sites which
are using it to build knowledge systems. Feedback about
the learnability of LOOPS is collected from participants in
experimental courses.

Integration and Paradigms

An important principle of knowledge programming is
that different paradigms are appropriate for different pur-
poses. This contrasts with the use of a single program-
ming paradigm for everything, be it logic programming as
in Prolog (Clocksin & Mellish 1981), procedure-oriented pro-
gramming as in Lisp {Winston & Horn 1978), object-oriented
programming as in Smalltalk {Goldberg & Robson 1983), or
whatever.

There are various metrics of cost for applying a program-
ming paradigm across a spectrum of applications. Examples
of metrics are the cost ol learning, the cost of modifying,
the cost of debugging, and the cost of running. These costs
vary across paradigms and applications because different
programming paradigms provide different ways of organiz-
ing information in programs. For a given metric and ap-
plication, some programming paradigms can be more cost-
effective than others. By allowing for choice and combina-

Figure 1.
The LOOPS Logo. Illustrating the different paradigms in
the current version of LOOPS procedure-oriented, object-
oriented, access-oriented, and rule-oriented. The ring is
intended to suggest that LOOPS integrates the paradigms.
They are not just complementary. but are designed to be
used together in building knowledge systems.

4 THE Al MAGAZINE Fall 1983

tion of paradigms, a knowledge programming system enables
various costs to be lowered. For example, we attribute much
of our success in the experimental courses to the low costs for
learning and applying LOOPS. For each of the things that the
course participants needed to represent in their knowledge
svstems, there was some paradigm in LooPs in which the
expression of the knowledge was conecise and the learning
cost was low. Although there is room for much more work on
programming paradigms and their applications. the principle
seems clear: it is expensive to use one simple programming,
paradigm for everything.

As indicated in the LOOPS logo in Figure L. LOOPS
currently integrates four programming paradigms:

Procedure-ortented programming: In this paradigm. large
procedures are built from small ones by the use of
subroutines. Data and programs are kept separate.
Most computer languages are like this. The procedure-
oriented part of LOOPS is INTERLISP-D (Teitelman
1978, Xerox 1982). INTERLISP-D is shown at the base
of the LOOPS logo to suggest that it provides the solid
foundation on which the rest of LOOPS is built.

Object-oriented programming: In this paradigm, informa-
tion is organized in terms of objects, which combine both
instructions and data. Large objects are built up from
smaller objects. Objects communicate with each other
by sending messages. The conventions for communicat-
ing with an object by using messages constitute mes-
sage protocols. Standardized protocols enable different
classes of objects to respond to the same kinds of mes-
sages. Inheritance in a class lattice enables the specializa-
tion of objects.

Access-oriented programming: This paradigm is useful for
programs that monitor other programs. Its basic mech-
anism is a structure called an active value. which has
procedures that are invoked when variables are accessed.
A useful way to think of active values is as probes that
can be placed on the object variables of a LOOPS pro-
gram. These probes can trigger additional computations
when data are changed or read. For example, they can
drive gauges that display the values of variables graphi-
cally.

Rule-oviented programming: This paradigm is specialized
for representing the decision-making knowledge in a pro-
gram. In LOOPS, rules are organized into rulesets which
specify the rules, a control structure, and other descrip-
tions of the ruies. Two key features of the rule language
are that it provides techniques for factoring control
information from the rules, and also dependeney-trail
Facilities. which provide mechanisms for “explanation”
and beliel revision.

These different organizational methods determine the way
that information is factored and shared. Each paradigm
provides a vocabulary and a set of composition methods for
organizing information in a program.

Procedure composition: The composition methods of INTER-
LISP-D are forms of familiar control statements for
iteration. recursion. and procedure call.

PLANNER

LISP

Figure 2.
Combining paradigms: The perch approach.

List
Operations

Figure 3.
Combining paradigms: The patch approach.

Spice Machine

Figure 4.
Combining paradigms: The bridge approach.

Object composition: This paradigm provides several com-
position methods (shown in figure 6). The simplest is
the specialization of methods and variables of a super-
class. Special classes called Mixins are used to impart a
specific set of behaviors to a number of subclasses. The
term “mixin” is borrowed from Flavors — (Weinreb &
Moon 1981). Mixins exploit the multiple inheritance lat-
tice by allowing inheritance to be factored. Composite
objects extend the notion of objeets to be recursive in
structure so that multiple objects can be instantiated
and linked together. Finally, perspectives in LOOPS are
groupings of objects into a higher level object, such that
each component is a view (or perspective) of the whole.
Perspectives provide for the forwarding of messages to
the appropriate view.

Aecess composition: Composition in this paradigm is done
by nesting of active values, Analogous to the use of mul-
tiple probes in measuring a circuit, this composition as-
sumes that the “probes” are for independent instruments
and do not interfere with each other.

Rule composition: The LOOPS rule-oriented paradigm
provides for the sharing of rules among rulesets. It make=
use of the other paradigms for organizing the interac-
tions between the rules. Thus rules can call Tulesets
directly (bsing the procedural orientation). or invoke
rulesets by sending messages (using the object orienta-
tion). or invoke rulesets by changing data (using the ac-
cess orientation).

Integration has two major themes in LOOPS: integration
to allow the paradigms to be used together in building a
knowledge system; and integration of a programming en-
vironment for creating and debugging knowledge systems.

Some examples illustrate the integration ol paradigms
in LOOPS: the “workspace” of a ruleset is an object. rules
are objeets, and so are rulesets. Methods in classes can be
either Lisp functions or rulesets. The procedures in active
values can be LISP functions. rulesets, or calls on methods.
The ring in the LOOPS logo reflects the fact that LOOPS not
only contains the different paradigms, but integrates them.
The paradigms are designed not only to complement each
other. but also to be used together in combination.

Some examples from other systems illustrate the non-
integration of programming paradigins. For example. Figure
2 shows the connection between PLANNER and LISP. PLAN-
NER was implemented in LISP. but a programmer could riot
easilv intermix PLANNER and LISP procedures, A simple
mistake by a “naive” programmer could easily crash the
whole svstem. Figure 3 shows the connection of list apera-
tions 1o PROLOG, reflecting the fact that list operations
were added late to PROLOG, after the initial design. Figure
4 illustrates another approach, illustrated perhaps by the
Spice Machine. In this example LISP and PASCAL communi-
cate over a narrow bridge, making mutual use awkward and
costly.

The second theme of integration is the integration with
the programming environment. For example. LOOPS extends
to other paradigms many of the facilities of INTERLISP-D.

THIE Al MAGAZINE Fall 1983 5

such as the display-oriented break package, editors, and in-
spectors. In LOOPS, this integration has led to the same
symergy that is exploited in using muitiple paradigms for ap-
plication programs. For example, the notion of “breaking”
on access to a function is extended to breaking on access to a
variable by using active values to invoke the break package;
the notion of tracing is extended to the notion of having
gauges that can monitor the values of variables.

Getting Ready for the First Course

On January B, we began to plan the first LOOPS course
that would be offered on January 31 to our beta-test sites.
We made a preliminary course outline, but we knew that
we needed some way to draw the participants into program-
ming in LOOPS. The idea of a video game was suggested, say
rocket ships with LOOPS programs controlling the thrust and
phasers. This idea was rejected as being both too frivolous,
and computationally too expensive. Another suggestion was
a game for placing tiles. We knew from Malone (1980) that
there were principles for making games motivating. Our
course participants would be computing and other profes-
sionals drawn from research organizations and Al start-up
firms. who were interested in using LOOPS for building ex-
pert systems. We needed something that they would find
useful and appealing.

As brainstorming continued, some pedagogical principles
began to emerge. The game should draw on the real world
knowledge of our students. Rocket ships and tiles were
wrong, because people didn’t have experience with such
things from their everyday lives. A board game like Monop-
oly was considered, and then our first concept of Truckin’
emerged. It would be a board game with road stops (see Fig.
5). The players would drive trucks around buying and selling
commodities. Their job would be to plan a route and make a
profit. There would be various hazards along the way, places
where goods and profits could be lost. Players would need
to buy gas occasionally.

By mimicking real life, Truckin’would provide the kinds
of difficulties that knowledge engineers encounter in building
expert systems. We could create a rich and animated simula-
tion environment for the “independent truckers.” The stu-
dents would need to add knowledge to make their automated
players more powerful. The simulation environment would
draw on the student’s real-world knowledge, and be rich
enough to preclude a simple model. Much of the appeal
of this was that the “common experience’ character of
Truckin’ as a domain would enable us to side-step the usual
knowledge acquisition bottleneck. The knowledge engineer-
ing experience would be accelerated by immediate feedback
from the animated simulation. To help students get started,
we would provide them with a simple expert system for play-
ing Truckin’. We decided to teach students about knowledge
programming in LOOPS by giving them a small knowledge
system to extend.

At this point, we had less than a month to create the

6 THE Al MAGAZINE Fall 1983

course materials, lectures, and Truckin’ Sleep would become
a rare and precious commodity. The Truckin’ data base
began to take shape. The players would start at Union Hali.
and would try to be parked at Alice's Restaurant at the end
of the game. There would be various kinds of hazards along
the road. The player with the most cash at Alice’s at the
end of the game would win.

LOOPS was able to accommodate changes as our ideas
evolved. Initially, we thought of the hazards as being road
stops. This was probably a carry over of our childhood ex-
periences with board games. Then we added the idea of
“bandits” that could move around just like the independent
truckers. Bandits were represented as an inheritance con-
bination of plavers and consumers. We used active values
on variables of the road stops to update the display for com-
modity prices and inventories. This meant that we did not
need to find every place in the program where these things
could potentially be changed. in order to update the dis-
play. The features of LOOPS worked for us, providing con-
venient techniques for factoring the program. We became
experienced consumers of our own knowledge programming
system as we raced to get ready for the course.

The simulation was designed to cause goal conflicts. A
truck going quickly over a rough road would probably have
its fragile merchandise damaged. A truck going quickly past
a weigh station would probably get an extra fine, unless he
was lucky or the weigh station was busy. On the other
hand, a truck going slowly past a bandit would probably
get intercepted. There would be perishable goods and fragile
goods. We considered explosive goods and other such things.
but removed them when they [ailed to add anything new to
the game. Qur pedagogical style was to leave some things
out in order to keep it simple. A player could take only three
kinds of actions: buy, sell, and move.

To facilitate the “suspension of disbeliel” in watching the
animated simulation, artistic attention had to be given to the
appearances of things. leons for the various commodities,
hazards, and trucks were created. We experimented with
different configurations of the gameboard, moving away from
the outside edge configuration of most gameboards in order
to pack enough road stops on the display screen. Highways
were drawn next to the road stops, with a gray background
and little dashed white lines in the center. People looked at
intermediate versions of the gameboard and told us that the
abrupt motion of the trucks was startling. We modified the
code to simulate braking so that trucks would slow down as
they arrived at their destinations. The visual appearance of
Truckin’ became seductive. People were drawn into it.

Prior to this, we had used a simple gauge in our demo
to illustrate the application of active values. It was a crude
looking gauge and had little generality. We decided to ex-
tend the collection of gauges so that people could use them
for debugging and for monitoring their independent truck-
ers during the simulation. A family of gauges was designed
(see Figure 7). For further ideas on style, we collected
some professional catalogs of gauges, and sought advice from

A Lxecutmg ruie Z 1n Fuleyer
FindStoppingPlaceTravelerfiules

F wStation+(NaarestRoadStop (RoadStops $WeighStation .Rang

e1 direction Room))

(Distance wStation)<{{Distance destination)

THEN stoppingPlace«wStation;

L RUit D 1om Rule3el Find SLOpRInGRINcET ravarerfiules

adited by STEFIL on 11 -MAR-ET 17110:08

Sanlay pata LOta+ #T. (& 310U
Danny Mowves =10 (ma: 18) To
Expert Sys

Danny Selis 14 ser0-1188 units

Mark Mowves 10 [ma: 200 To: XEOS
Mark Buys 5 Fero«1189 unit:

sanjay Maves 7 (nax Z8: To: Alice’s
Oanny Mowes 10 (ma. 21 Ton: XEDS
Danny Buys 18 Xerox1188 urace

Mart Moves =4 fmav 01 To Sheik Gas
Mark Buys 126 Gasoline unit:
Saniay Moves =7 ima: 43; 1o

~InteractiveRlayer

~HignRol ler

= Fedd]

‘Weigh Here

Snita Farmy MinaYox U1 Scales Ahead Dithosd

o]
‘ o 102 3 .04

____..m,..m.__.._._w..__..m...__«_u

faen At Woark Teed's Truits

ue Honnaf shns Weigh Here Dirtylans Printinc

Home Gouds Daigesiionks Ciuck s Fqgs Oshbreann

Mary ‘s Hens Beid's Rty Graprtully

tAorgantikes

fine Food: Sre (Past Wankees

Kpilh e fas

HotITANI S

Sheik tias

Shirtless
o

486 & 10.5

Hb) Sam RrandX (lebsy Bmds Lat{in Dishes

At alMeral

Strawbarry

176 & 13.0

il 1 0ol Hol Hole

4@ 1.88 217 & 1.19

[y | §
BUMP !t Muni Buin q
Commodity | Vegetable

556 & ~.1 497 & 8.45(513 & .79

Figure 5.

The Loops gameboard — for a game played by competing knowledge systems that emulate “independent

truckers.” The board’s squares are road stops, connected by the highway drawn above. Roadstops can be producers,
consumers, rough roads, weigh stations. Roadstops with icons are producers, where players can buy. Those with
words (e.g., Clothing) are consumers, where players can sell. The trucks for the players are shown parked or moving
along the highway (e.g., Sanjay). To the right, a panoply of gauges monitors the status of various players. In the
upper left corner, a rule for one of the players is being traced.

Bruce Roberts on the Steamer project at BBN. The gauges
went through several design reviews. to make the gauges
simpler to use and medify. Because of the extensive use of
multiple inheritance and the interactions on the display be-
tween the paris of the hybrid gauges, a number of design
issues surfaced. During these reviews, we created names for
certain categories of design errors that we encountered. For
example, a grainsize error is a situation where the structural
parts of an object {usually methods) are factored too coarsely
for the fine control needed by its specializations. A replica-
tion error is a situation where almost the same structure is
repeated in parallel classes, instead of factoring it in a way
that would allow it to be shared. Such experiences gave us a
deeper understanding of the programming issues that people
would encounter in using the different paradigms.

About two weeks before the course would begin, we sent

out notices to our beta-test sites inviting people to sign up for
the course. We expected about a half dozen people. We ad-
vertised that our course wouid provide hands-on experience
in extending a “mini-expert system.” By word of mouth,
the story spread. Over fifty people called us. requesting to
get on the list. We split the list in half and scheduled the
second course for the end of February. We didn’t send out
any more advertisements. We had gone public and now we
had to make it work.

Suddenly it was the weekend before the course. We made
some guesses about the appropriate distribution of prices
and penalties. We created our first automated plaver, the
Traveler, which would just travel along the board between
Union Hall and Alice’s Restaurant. As the Traveler cruised
tirelessly around the game board, various bugs in the simula-
tion surfaced. Meanwhile, we started work on a plaver to

THE AT MAGAZINE Fall 1983 7

Specialization Mixins

bI b
&

b —fl—

A+ C

O S S

Figure 6. Object composition in Loops. The inheritance
The simplest form is specialization, that is. creating a su
When multiple superclas

inherited from the superclass.
attributes from the superclasses.

I

Perspectives
B
| I:
b
<

B +C

B

lattice enables many forms of structural sharing in Loops.
belass shat overrides and augments variables and methods
ses are used., the resplting subclass mixes together the
Perspectives provide a way of grouping objeets to act as views of a higher level

ohject. Perspectives automatically forward messages to the appropriate object.

specialize in luxury goods called HighRoller. We didn’t have
time to debug it very well before the course started. We
reasoned that the bugs were acceptable, since they would
provide things for the course participants to fix. We were
right. but in hindsight, we had a lot of gall.

The Courses as Experiments

We have now run two intensive knowledge programming
courses, and also repeated the second course to a small group
using videotape. By the time of publication of this article,
the course will have been run for over 100 people. The
courses are organized to alternate lectures and hands-on ex-
ercises (see Table 1). So far, everyone taking the course has
learned enough about the LOOPS knowledge programming
system to do some practice exercises (such as creating a new
kind of gauge) and to build an extended (smarter) Truckin’
player.

The most important aspect of the courses [or our pur-
poses is the opportunity that they provide for refining both
LOOPS and the course materials. For us, the courses are

8 THE Al MAGAZINE Fall 1983

experiments, from which we are discovering how to make
LoopPs and our teaching methods more effective. The basic
strueture of our experimental process is to run a course and
take some measurements (for example, of the performance
of students in terms of the problems that they complete, the
questions that they ask, and the results of questionaires that
they return). We then change some parameters and take the
measurements again during the next course. By examining
how the observations and measurements differ, we can form
hypotheses to guide subsequent iterations of the course.

e We substantially increased the emphasis on tools and
techniques for debugging, and formulated explieit
heuristics for programming in LOOPS. We taught
students to use tools for understanding the behavior
of a system. The second course led students to use
gauges for monitoring the values of variables, ex-
planation facilities (Fig. 8) for understanding which
rule made a particular decision, and breaking and
tracing facilities for discovering why some rules do
not fire.

e In some cases, we introduced intermediate problems
in the exercises, having hypothesized that some of the

Gauges -- Defined by Classes, Driven by Active Values

DigiMeter

a@ ? 1@ a
aa 18
o 48 €0 50 2@
=78 . 49 8 20
— 6B 70 30
=55 \ 78 34
—E5Q - 5@ Eh 4
—i5 _ 68, 48
==4i ‘
-3
—3a@)
=25 '
-_
%1@ 28

Gauge Inheritance Lattice

Instrument VR-:-undBc:Me En'ieﬂ
.-"FFF
Window —Bauge=<____ LoD S - Meter —__
- i — -.J. S

OigiMeter

R, _ —[0igiscale
" __se—=VYerticalicale

-

——

SHordizontalscale

Boundedh ¥ in-=——

Figure 7. Loops gauges. (Gauges are tools used to monitor the values of variables. They can be thought of as probes
inserted onto the variables of an arbitrary Loops program. Gauges are defined in Loops as classes, and driven by
active valnes the mechanism behind aceess-oriented programming in Loops. A hrowser at the hbottom of the figure
illustrates the relationships between the classes of gauges. From this ligure. we can see that the DigiMeter is a
combination of a Meter and an LCD.

steps between exereises were too diflicult to Lake all) more effective ways of making the right information
at once. visible.

e We fixed troublesome bugs in the rule compiler. Dur-
ing the first course, participants had to struggle with
a compiler that did not reliably keep the generated
LISE eode in correspondence with the rules.

e We lashioned a new siarting plaver for the second
course, called the Peddler, which did a better job
than HighRolier in factoring, the concerns of an inde-
pendent truecker. We hypothesized that restructur-

ing IlfighRoller was too difficult to do in a three day As 1 result of these changes, the participants in the
COUTsE. second course were dramatically more sucecessful than those
e We adjusted the commodity prices and risks fo in the first. In the first course, we had to slip the schedule
provide a greater reward and selection pressure for for the knowledge competition by 90 minutes. in order to let
more sophisticated and knowledgeable truckers. people finish preparing their players. In the second course.

people had players ready in about half of the allocated time,

e We improved the browsers. that is. our interactive o . .
and spent the remaining time exploring other aspects of the

graphics for “browsing” information in a knowledge

base (see Figure 9). We believed that we could systern and tuning their strategies, Furthermore. the weakest
reduece much of the cognitive load for restructur- plaver of the second course could easily dominate the best
ing objects and accessing information if we provided plaver {rom the first course,

THE AT MAGAZINE Fall 1983 9

¥ gasStations(FurthestRoadStop (RoadStops SGasStation .Range fWeigh Here
1 direction 'Room))
(Distance gasStation)<(Distance destination)

THEN stoppingPlace +gasStation;

L ORyLE DAram Rt et FIngSTOpR e aceT s diabuleg
dlted by ITEFIK Oh 11 MAR-ZT 121108

Mart Selis 40

DirtyDans

{nari Moves 4

R A L

Satedes

o Y 3 & % '

514 & .98

Xarax1108
Zanb

S | - ¢

780 & .88 | 500 & .79 114 & 6.88(772 & 2.92

W3ty s

y £
T e Hardware
358 & 1.1 a8 & .69 |23 & 6.01[331

Lt}

s

e ltoppingP lace
Tt topp | #5 ha 1 ThI
qoQTkeTurrbd e, by ttoppiogf

4 310 & 1.4

(" Dont run put of gas.)
If goal~a'SitTight
truck:fuel ¢ .25 * truck:MaxFuel
4 truck:cashBox>0
2 LuxeryGeeds *

Eotl
83 & 1.18 |48 & 5.71[320 & 1.55JTHEN stoppingPlace +gasStation:

egites bo ITEFB Cn tt-MAR-D Nz

B ke ﬁ re

;tED Aaven
i lotr §83372.24

#SMark nTerceptest!

San1yy Moves =4 1ma lE Too
Heospis. pata total wr Ta: $10.0
Hrar+ Moves =3 ima« L3 T3 Homeimp
[FLL DR

Moves Remaining: 140

fsariay Moves -7 imas 45 T2

tanrsy Buys 32 Gataling -

MITTaL qhd MArs TR

Clething
567 & .9 |63 & 11.6 471 & 3.88|94 & 1.04

Xerox1108 | Commedity -9

F g

¢ ficeSuppliesStereadystem) E’U
s.01581 & 3.02| 72 & 6.47 224 w 1.0[134 & 1.92] 1 & .92

gasStatione(NearestRoadStop (RoadStops $GasStation .Range 1 NIL ‘Aoom})

Bute 3 hom S00E0a SINgztaEp gl piednda srbueg

~IntaractrvePtavar

—A1ghRo1Ter i
—Faddlar

= Trgegler -

T
Keith’s Gas

] e
= Ak Freit .
42 & 7.74[370 & 1.18|

HE

Commodity & %
794 & 1.23] 41 & .88

5 >

Tomate Appliances
172 & 9.97|1162 & 4.75l
ey
Ltige

R SO GO P e - 2

592 & .99 | 14 & 9.78 1330 & 2.27

Figure 8 Seeing the knowledge behind a deeision. In this figure the game is interrupted. causing the Rule lixee
window to pop up over the gameboard. The user has asked why his truck picked a particular stopping place. and

Loops has displayed the ruje that made the decision.

People asked far fewer questions in the second course.
and were able to complete many more of the exercises. In
addition. the questionaires from the second course came
back with radically different advice from those from the
first. course. The general response from the first course was
“give us less on rules” and many people indicated substan-
tial concern with many of the fundamental aspects of that
paradigm. In the second course. the responses turned com-
pletety around. They said “give us more on rules and debug-
ging.”

We believe that in the first course the eombination of a
faulty rule compiler and lack of information on how to debug
programs in this paradigm undermined confidence. During
the second course. two members of a team were observed
staring at a display. One of them said, “Why is it buying
tomatoes?” and the other one elbowed him saying “Ask
why! Ask why!” - goading him into action at the LOOPS
kevboard. They had learned their lessons well.

This process of simplifving methods and tuning the
course in order to enhance learnability and propagatability

Fall 1983

10 THE Al MAGAZINE

reflects our interest in the engineering of knowledge (C'onway

1981, Stefik & Conway 1982). In this case we are engineering

languages and techniques for knowledge programming. The
courses provide a source of feedback on the eflects of changes
to the course materials, paradigms and programming en-
vironments. In time, we would like to extend our work to
provide a framework that would simplify the process of creat-
ing higher level organizations in expert systems {Stefik et al.
1982),

The Knowledge Competition

A very enjoyable thing about the LOOPS course is the
electric excitement that erupts during a knowledge competi-
tion. People seem to project themselves into the players that
they have created. They have put their player through many
simulations and many playing conditions. In a sense, they
have taught it everything. But during the competition there
is 2 moment of truth. The rules cannot be changed. Success

COMMODITY INHERITANCE LATTICE
_~Refrigerator

ComrnodityTransportability "
— Television

FragileCommodity

PerishableCommodity 2, — Fruit ——— Strawberry
‘ll.-"-’f"" 1"" » \>'<_ ';::-"\"'v\ﬂ
fog” e T - Apple
i - N
/ Apphances ,;; :‘}{ig% E""“--..__hh \ﬁrape
¥ .-__: \:'_'-%q- M-"'\-_._
/ -Groceries £ ™ — ~—=Vegetable ——=Tormato
‘I‘\ T “ "~ Carrot
Comrnodity —LuxuryGoods %*9- StereoSystem
%N Dishes . Gold
“Hardware Hapmrner L
4 *Diarnond
-Saw

“ “Gasoline .
: _—~ArtSupplies

\\:‘ OfficeSupplies <———Book
".\'\ ~--Xerox 1100
, "SportingGoods ~——___ BflseBall

Y - Bicycle

! CIuthing —r________——Pants
———--Shirt

' Figure 9. Class browser on commodities. Browsers are interactive programs used 1o browse through a knowledge
base. The lines seen in a class browser indicate superclass relationships. For example, in this figure, a StereoNystem
is'a LuxuryGoed, an Appliance. and a FragileCommodity. Browsers can be ereated to show other relationships too,
and by selecting nodes in a browser. a user can access such further information.

in the short run is affected by chance. but on average. the
most knowledgeable players will win.

The randomly generated game board comes up. As the
simulation begins. there is a great deal of commentary and
jibes as people compare their players. Who's ahead” Who
just got robbed? In Truckin’ the silliness of the ill-fated
move is something that all the observers appreciate almost
immediately. For example.

e A plaver may be racing to Alice’s Restaurant. One
move before the game ends it is unable to resist
a business “opportunity” and doesnt make it to
Alice’s, ‘

e A player may go to the closest place 1o sell some
goods. even if it happens to be the City Dump. which
unfortunately pays a “negative price.”

e A plaver may become focused on a tight producer/con-
sumer loop, making money faster than any other
plaver on the board. Il it is programmed to onkv
buy fuel from stations along its route. but there ix
no gas station in the tight loop. the team will watch
anxiously as the fuel gauge drops lower and lower.

s A plaver may try to park next ta Alice’s Restaurant
near the end of the game, even il that happens to
be the Union Hall. which eentiseates all goods and
cash.

In our experience so far. these oversights happen in
the best of plavers. They provide a source of merriment
during the competition. and an illustration of just how
much knowledge is really needed to be powerful. even in an
artificial environment.

The knowledge competition also serves as a source of
examples and metaphors about the nature of knowledge.
One example drawn from the first LOOPS course illustrates
the interplay between knowledge and environment. For the
first knowledge competition. two teams prepared players by
simply fixing some of the bugs in the HighRoller. They had
a private plavofl just before the competition. and discovered
that when both plavers were in the same game. the inventory
of luxury goods on the game board became exhausted before
the end of play. Neither player was able to cope with this
situation. One of the heuristics that we now offer to teams

THE Al MAGAZINE Tall 1983 11

preparing for a knowledge competition is to test rules with
many copies of the same player competing at once.

This interplay between knowledge and environment brings
to mind the example of the ant on the beach (Simon 1981),
in which the apparently complex movement of the ant is at-
tributed to the complexity of the beach environment rather
than the complexity of the ant. In Truckin’ the “ants”
are mechanical and programmable. We have observed that
even the complexity of the Truckin’ environment creates a
substantial selection pressure for resourceful and knowledge-
able plavers. To win. the designers of the players must
pit knowledge against complexity. Knowledge provides the
adaptability needed for mastering the situations in the game.

The name “knowledge competition” was inspired by
the observation that it is truly the knowledge of players
that is competing, and the most adaptable player wins.
Recently in connection with the interest in fifth generation
computers, Feigenbaum and MeCorduck (1983) have charac-
terized knowledge as the new “wealth of nations.” In the
knowledge competition and Truckin’, the competitive ad-
vantages of knowledge in a player is conerete and observable
in short experiments. .

The success of the knowledge competition in motivat-
ing participation has led us to speculate on ways of alleviat-
ing the knowledge aecquisition bottleneck. One idea is for
a community of experts to interact through knowledge serv-
ers. which accept knowledge over a computer network and
make themselves available for solving problems. Here again
there would be a “competition” between different bodies of
knowledge from the experts, competing to solve the problems
that are posed.

Implications

Sometimes the effects of a technological change ean be
surprising and widespread. Although our research and ex-
perimentation with LOOPS has not run its full course, there
have been a few expert systems started at our beta-test sites:
three systems that perform parts of VLSI design, a program
for playing Bridge, an investment advisor, a program for
expressing specifications of parallel programs, a tester for
LOOPS.

We sense that a technological change is emerging from
such research on knowledge programming, a change in the
infrastructure for building knowledge systems. The shift will
have leveraging power in two ways: (1) the freeing of existing
knowledge engineers from spending a year or two building
the bottom of their knowledge representation systems, and
(2) a measurable acceleration in the progress of the field if the
simplified methods trigger an increase in numbers of prac-
titioners from 100 to 1000 or more. Knowledge engineering
can then begin to have a noticeable effect in many areas of
our lives. :

12 THE AI MAGAZINE Fall 1983

LooPs COURSE OUTLINE

FIRST DAY:

9:00-9:15 Introduction.

9:15-10:15 Object-Oriented Programming: Classes Objects
_ Variables - Methods — Inheritance - Documenta-
tion.

10:15-11:00 LooPs Environment (Demonstration): Defining

Methods - Editing - Printing - Inspecting Brows-
ing - Gauges.

11:00-12:00 Exercise 1- Introduetory hands-on session: Sending
Messages - Browsing - Editing Inspecting.

12:00- 1:00 Lunch,

1:00-2:00 Access-Oriented Programming: Active Values
FirstFetch - NamedObjects - AtCreation - Nested
Active Values - The LOOPS Break Package.

2:00--4:060 Exercise 2 - GGauges hands-on session: Specializing
Classes - Instantiation - Using Gauges.

4:00-4:30 The Truckin’ mini-Expert System,

4:30-5:00 Discussion.

SECOND DAY:

9:00-9:15
9:15-10:15

Introduetion.
Rule-Oriented Programming: RuleSets
Structures Recording Rule Invocations.

Control

L0:15-12:00 Exercise 3 - Rules hands-on session: Editing RuleSets
- Debugging RuleSets. :

12:00-1:00 Lunch.

1:00-2:00 Knowledge Representation Examples from Truckin'.

2:00-4:30 Exercise 4 - Knowledge programming hands-on
session: Rule-Oriented Programming - multiple
paradigm programming.

4:30-5:00 Discussion.

THIRD DAY:

9:00-9:15 Introduction.

9:15-11:00 Initial Development of your player: hands-on ses-
slon.

11:00-12:00 Advanced LOOPS Features: Composite Objects -

Perspectives vs. Mixins - Meta Classes - System
Mixins - Knowledge Bases.

12:00-1:00 Lunch.

1:00-3:00 Final tuning of your player: hands-on Session.

3:00-4:00 The Truckin’ Knowledge Competition.

4:00-4:30 LooPSs Environment: LOOPS Tester - Facilities for
Bug Reporting.

4:30-5:00 Wrap-up: LOOPS support - User Packages — Future

Directions.

Table 1.

References

Bobrow. D. G. & Stefik, M. (1981) The LOOPS Menual. Tech.
Rep, KB-VLSI-81-13. Knowledge Systems Area, Xerox Palo
Alto Research Center (PARC).

Clocksin, W.F. & Mellish. C.S. (1981) Programming in Prolog. Ber-
lin: Springer-Verlag.

Conway. L. (1981) The MPC adventures: Experiences with the
generation of VLSI design and implementation methodologies.
Proc. of the Second Caltech Conference on Very Large Scale Integra-
tion, H-28.

Denning. P. J.. Feigenbaum, E.. Gilmore, P.. Hearn, A.. Ritchie.
R.W., & Traub, J. (1981) The Snowbird Report: A discipline in
crisis. Communications of the ACM, 24:370-374.

Feigenbaum. E.. & MecCorduck. P. {1983) The fifth generation:
Artificial Intelligence and Japan’s Challenge to the World. Reading.
MA: Addison-Wesley.

Goldberg. A.. & Robson, D. (1983} Smalltalk-80: The language and
its implementation. Reading, MA: Addison-Wesley.

Malone, T. W. {1980) What makes things fun fo learn? A study of
intrinsically motivating computer games. Technical Report CIS-7
(SSL-80-11), Xerox PARC.

Simon. H. A, (1981) The sciences of the artificial. Cambridge, MA:
The MIT Press.

Stefik. M., Bobrow, D., & Mittal. 8. (1983) Knowledge programmang
in LOOPS: Highlights from an ezperimental course. Video Report
KS8A-83-1, Xerox PARC.

Stefik, M.. Bell. A. G., & Bobrow. D. . {1983) Rule-oriented pro-
gramming n LOOPS. Tech. Rep. KB-VLSI-82-23. Knowledge
Systems Area. Xerox PARC. '

Stefik, M.. & Conway. L. (1982) The principled engineering of
knowledge. Al Magazine 3(3):4-16.

Stefik. M.. Aikins. J.. Balzer. R.. Benoit. J.. Birnbaum, L.. Haves
Roth. F.. & Sacerdoti. E. (1982) The organization of expert
svstemns: A tutorial. Artificial Intelligence 18:135-173.

Teitelman. W. (197R} Interlisp Reference Manual. Technical Report.
Xerox PARC.

Weinreb, D). & Moon. D. {1981} Lisp Machine Manual. CCambridge.
MA: MIT Artifieial Intelligenee Laboratory.

Winston. P. & Horn. B. (1981) Lisp. Reading. MA: Addison-
Wesley.

Xerox Corporation (1982) INTERLISP-D users guide. Pasadena.
CA: Xerox Special Information Systeins.

Note

LOOPS is available 1o selected Nerox customers desig-
nated a= beta-test sites. The Knowledge Svstems Area at
Nerox PARC offers the intensive LOOPS course to selected
applicants periodically for its rescarch purposes.

Exciting new books
from Harper & Row...

“This is the finest introduction to LISP ever uritten.”
— Daniel L. Weinreb, Symbolics, Inc.

David S. Touretzky
LISP

A Gentle Introduction to Symbolic Computation

CONTENTS: Getting Acquainted. Functions and Data.
Lists. EVAL Notation. Meet the Computer. Conditionals.
Global variables and Side Effects. List Data Structures.
Applicative Operators. Recursion. Elementary Input/
Output. Iteration. Property Lists. Appendix A—Recom-
mended Further Reading, Appendix B—Dialects of
LISP. Appendix C—Extensions to LISP. Appendix D—
Answers to Exercises.

Marc Eisenstadt & Tim O'Shea
ARTIFICIAL INTELLIGENCE

Tools, Techniques, and Applications

CONTENTS: TOOLS: An Introduction to Prolog, by
William ¥ Clocksin, An Introduction to LISP. by Tony
Hasemer. Advanced LISP Programming, by Joachim
Laubusch. A New Software Environment for List-Pro-
cessing and Prolog Programming, by Steve Hardy:
TECHNIQUES: How to Get a Ph.D. in Al by Alan
Bundy. Benedict du Boulay, Jim Howe, and Gordon
Plotkin. Cognitive Science Research, by Jon Slack.
Robot Control Systems. by Steve Hardy: Kinematic and
Geometric Structure in Robot Svstems, by Joe Rooney.
implementing Natural Language Parsers, by Henry
Thompson and Graeme Ritchie. APPLICATIONS: Com-
puter Vision, by John Mavhew and Henry Thompson.
Industrial Robaotics, by William E Clocksin and Peter
Davey. Text Processing, by Paul Lefrere. Planning and
Operations Research, by Leslev Daniel.

ORDER TODAY.

Send this coupon o M. Gonsky, Suite 1) Harper & Row. 10 East 33d
street, New York, NY 10022

Please indicitte number of copies desired

O —— LISP: A Gentle Introduction o Symbolic Computation
@ %1795

O —_ ARTIFICIAL NTELLIGENCE: Tools, Technigues, and Ap-
plications @ $21.50

Postage und handling: (Please include §1.50 for the first book, S0¢

for each additonal copy.)

Applicable sales taxi Toul:

] Enclosed is myv checkimoney order.

{1 Please churge my 3 VISA O MasterCard T American Express
Exp. dite Card #
Sgnature
Name:
Address
Cin/State/Zip

——— e e o b .

e e e " e e RS |

:

GETTING USED TO INTERLISP-D

WELCOME - to INTERLISP-D and to LOOPS!

INTERLISP-D presents an incredibly flexible and wuseful
environment for the system builder and the casual user as well.
As a 1lisp wuser coming from another dialect, you will find that
certain features of INTERLISP-D take some "getting used to". But
once mastered, you will find that INTERLISP-D is indeed a useful
tool.

LOOPS is a powerful AI system building 1language incorporating
object oriented and other paradigms of building AI systems that
have proven to be extremely useful both for quick prototyping of
systems as well as final system development.

As a caveat, let me emphasize WE ARE NOT COVERING ALL OF
INTERLISP OR OF LOOPS in this class, rather only those parts
which will give you some ability to get started, and to realize
some of the capabilities of the system.

Before going further in this discussion, we must describe how
to get INTERLISP-D up on the DLion volume which your team has
been assigned.

LogingIn on the DLion

Here are the instructions for starting INTERLISP-D on your
machine. First, you need to know one term: Volume. For the
DLions, "volume" designates one of three possible user areas on
the DLion hard disk. These volumes are (currently) completely
independent. So that, for example, one team may use Volume 1 on a
certain machine in the day time, while another team uses Volume 2
on the same machine in the evenings, with no interaction of
things stored on the two Volumes.

To log in on the Machine/Volume to which you are assigned,
first find the machine you have been assigned then do the
following:

- (you’ll see the machine with a box containing some
instructions bouncing from place to place on the screen
- we call this (not too originally) the bouncing box)

i

- depress the left mouse button (this brings the LISP
Install tool)

- get the arrow into the Install tool window (you do this
by moving the mouse around - ie the mouse controls the
position of the arrow)

- put the arrow at the end of the line that reads:
"Volume: Lisp"

- button the 1left mouse button (this will bring a
triangular character after "Lisp")

- Now input the number of the LISP volume you have been
assigned.

- Now left button the "Start Lisp Volume" item that is a
little farther down the window.

- Now you’ll see a confirmation icon. Button the left
button again. (Now your INTERLISP volume will load.
HWhat this really means is that you are restarting an
existing INTERLISP virtual memory.)

- When INTERLISP comes up, the first thing it will do is
ask you for your machines "PUP Number". You’'ll see what
it thinks the PUP number is right after. In your case,
just give INTERLISP a carriage return. (The PUP Number
is the number by which other machines c¢an "talk" to
your machine over the ETHERNET.)

This completes the 1loadup procedure that you’ll be using. Of
course there are other ways of starting up LISP, but during the
course, you'll only be returning to your volume as per the above
procedure.

The INTERLISP Philosophy

INTERLISP has grown up over many vears and has had the benefit
of many gifted people. The INTERLISP philosophy dis (in a
nutshell) to provide a system that "helps” the user and at the
same time can be tailored to make a programming environment that
suits individual preferences. The custom tailoring of INTERLISP
is accomplished through the setting of MANY individual variables.
These environment setting variables all have "reasonable" default
values that are intended to give the casual user an environment
that she will find useful.

2

There are two distinct classes of users that INTERLISP is easy
for. First there are the users that have used it over some period
of time. This group has become familiar with most of the
"environment setting" variables that are included in INTERLISP,
and have developed an environment that is "comfortable" for them.

The second class is made up of casual users that really don't
want to bother with figuring out all the variables to get "just
the right" environment for them.

That leaves most of you - users who are not yet familiar with
all the environment variables, but still (will) feel irrated that
they cannot set the action of INTERLISP just the way they want.
The best advise is - be patient. Soon you will become familiar
enough to begin building your own INTERLISP environment. In the
mean time, you’ll still find INTERLISP to be pretty "neat".

The Programmer’s Assistant

The first thing that you’ll see once you enter the PUP number,
is a number followed by <(leftArrow> [sorry, i don’‘t have a
(leftArrow> character]l. This means that the INTERLISP top level
is waiting for you to enter something.

The INTERLISP Top Level

The INTERLISP top 1level (the Programmer’'s Assistant - PA) is
much more flexible than top levels in other dialects. As a design
goal, the top level of INTERLISP was made to allow the user both
different forms of specifying input to INTERLISP and many ways of
manipulating what instructions she has already issued.

For purposes here we will say that the top level of INTERLISP
comes in three flavors: the atom eval flavor, the expression eval
flavor, and the expression apply flavor.

The atom eval flavor you are used to. Typing an atom name
followed by <cr> causes the atom to be evaled and the result
printed on the screen.

The expression eval form you are almost used to. Typing a
non-atomic s-exp causes the expression to be evaled assuming the
CAR of the list is a function. The only difference is that when

3

you close the final paren, INTERLISP takes the s3s-exp
automatically - that is you don‘t type a <{cr>).

The expression apply flavor will be unfamiliar. Typing the name
of a function, immediately followed by a (leftParen>, a 1list of
arguments, then a <(rightParen?> causes INTERLISP to APPLY the
function to the arguments WITHOUT EVALing the arguments.

EX: LIST(a b c)

This facility is overall handy. Just be careful how you use it.
For example, do

EX: SET(a (x vy z))
SET(b a)
blcr>

The TTYIN Editor

At the top level, you are actually in an editor <called TTYIN.
In TTYIN you have available editing operations on the current
line of code you are constructing.

By depressing the (leftArrow> key you obtain the
deleteCharacter function.

In addition to this mundane capability, the mouse is also
active for TTYIN. To insert a character, you simply mouse the
left bhutton, move the cursor to the desired location, let up on
the mouse button, then make the insertion you want. Note this
just amounts to moving the cursor location via the mouse.

To make deletions in the current line, you can mouse the right
button to move the cursor to the place . for the deletion (note
that the area from the first mouse position to the last one
becomes inverted), then let up on the mouse. Everything in the
inverted part of the line will be removed.

EX: do SET{(a (x y 2z}
Cnote exp is not completedl]
now change the a to b

now change the (x y ..)
to (xy ..)

complete the line

practise this a little to get a feel for TTYIN

There are other capabilities provided by TTYIN. You might want to
check them out in the manual.

REDO, FIX, UNDO

The PA has the notion of "history lists". These lists store
what you have done in previous instructions. This enables the PA
to give you the facility to act on selected (by you) previous
instructions. Three of the most important of the actions you can
request of the PA are REDO, FIX, and UNDO.

The action of REDO is pretty easy to understand.

EX: 41<(leftArrow> SET(a (x y z))
Cthe 41 is just for ex]
Cnotice the PA told you that a is reset]
42¢(leftArrow> SET(a (u v w))
43(leftArrow> REDO 41 <cr>
44{leftArrow> a (cr>

FIX is also easy to understand. With FIX, the command referred
to will be brought back for you to be altered as desired wusing
TTYIN.

X FIiX 41
[now fix line 41
to do SET(b (x y z))1

UNDO 1is another very useful PA instruction. The name is self
explanatory.

EX: 41(leftArrow> SET(a (x y z2})
42(leftArrow> SET{a (u y})
43¢(leftArrow> SET(y q)

5

44¢leftArrow> UNDO 42 <cr>
45¢leftArrow> a {cr>

In the examples above, we have used UNDO, FIX, and REDO by
referencing commands by their line number. You can also reference
commands symbolically.

EX: SET(a x)
SET(a (u 1i))
(LIST ‘x a))
UNDO SET <cr>
a {(cr>

The PA includes many additional facilities for referencing
groups of commands, for changing one item is a command, and so
on. See the manual for further details.

The HISTORY List

In addition to the facilities directly offered by the PA, there
is an additional overlay available in our LOOPS 1locad wup: the
active history icon. This provides a direct history list which is
an active window (active window are windows in which the mouse
has some defined functionality).

EX: put the arrow into the history window icon
mouse the right button
select EXPAND

Now you have an active history list which you can manipulate.

EX: SET(a (t r w))
SET(a (i o u))

now to "refresh" the memory list
point the cursor at the title
bar of the history window
mouse the right button
select UpDate

In the active history list you can select the operations we

6

have talked about by mouse actions. Mousing the left button over
an item in the active history list causes that item to be REDOne.
Mousing the middle button over an item causes a menu to pop up
that will let you choose what to do to the selected item.

EX: get used to the active history window
when you feel comfortable with it, then
select the title item SHRINK, and the
active window will disappear, and the
history icon will come back

DEdit

In our work we will make use chiefly of two of the available
editors: TIYIN (which you already know about) and DEdit. In this
section, we’'ll explore DEdit.

A Stack Based Screen Editor

DEdit is a screen based LISP-structure editor. After you get
familiar with it, you’ll find DEdit to be very useful for
operating on LISP structures. DEdit knows about the structure of
LISP expression. The starting point for using DEdit is to select
some s-exp (done by pointing the arrow at the object and
buttoning the left button). If the object you want to select is
an atom, then pointing to any place in the atom will do. If the
s-exp 1is a 1list, then you select it by buttoning its enclosing
paren (either the cne at the start or the one at the end).

When you select an s-exp using DEdit, what you are really doing
is pushing that s-exp onto a stack. DEdit will indicate to you
what s-exp 1is on top of the stack by placing a heavy underline
under that s-exp. The second item on the stack will be shown to
you by a dotted underline.

The basic logic of using DEdit is to think of yourself as using
a post-fix notation for the operations you want to carry out. Eg,
when you want to replace one s-exp with another, then first
select the s-exp you want to replace. Next select the s-exp you
want to insert. Then select REPLACE from the EditOps. The
EditOps 1live in a small window just to the right of the main
DEdit window.

So the overall operation could be described as

7

select Target - select Source - select Operation

DF and DV

The function to invoke from top level to edit a function is DF,
to edit a variable use DV.

EX: SET(a (x vy z))
DV(a)
Cthis will throw you to DEdit
change the wvalue of a to be (x z)
exit DEdit by selecting the EditOps EXIT
with the left mouse buttonl]

The Edit Buffer

So far wyou know how to use DEdit to change the existing
structure of an s-exp. Suppose you want to add something to the
existing structure. While in DEdit if you start entering
information from the keyboard, then an "Edit Buffer" will wake
up., This Edit Buffer is another example of TTYIN, so you know how
to handle it.

EX: there is a function called
factorial that is defined
in your loadup. PrettyPrint
the current definition.
Notice the error in it.

Now do
DF(factorial)
1
and fix the error

Defining Functions

So far you know how to edit functions, but not how to define
them. In this section we’ll cover that.

1
HINT: INTERLISP is case sensitive.

Functional Forms in INTERLISP

In ELISP (for example) we have available different functions to
define functions of different sorts; eg EXPRs and FEXPRs. In
INTERLISP, we use the same function, but put different forms
inside the function to obtain different effects.

4 Kinds Of Functions

For purposes here, we will think of there being four different
kinds of INTERLISP functions.

1. LAMBDA-SPREAD Functions

In defining these functions, we specify an argument 1list; the
arguments for a LAMBDA-SPREAD function are evaluated.
(LAMBDA~-SPREADs are like EXPRs in ELISP.)

EX: pp{exampleLlambdaSpread)
(exampleLambdaSpread ‘a 'b ‘c ‘d)

2. LAMBDA-NOSPREAD Functions

LAMBDA-NOSPREAD functions are specified by having there be an
atomic argument for the function. However many arguments the
function is called with are evaluated. And the arguments are
accessed within the function by using the auxiliary function ARG.
Inside a LAMBDA-NOSPREAD with an argument N, the first argument
can be accessed by (ARG N 1). The binding of N itself is the
number of arguments that have been specified. (LAMBDA-NOSPREADs
are like LEXPRs in ELISP.)

EX: pp({exampleLambdaNoSpread)
{exampleLambdaNcSpread ‘a ‘b ‘c 'd)
Esee the manual to find more

about the useful output function
PRINTOUT2

3. NLAMBDA-SPREAD Functions

NLAMBDA-SPREAD functions behave just 1ike LAMBDA-SPREADs do,
EXCEPT the arguments are not evaluated. (There is no functional
ELISP equivalent.)

EX: pp(exampleNLambdaSpread)
(exampleNLambdaSpread a b ¢ d)

4. NLAMBDA-NOSPREAD Functions

NLAMBDA-NOSPREAD functions do NOT behave like LAMBDA-NOSPREADSs.
The form is the same: these functions take a single argument. But
here the single argument is bound to a list of the unevaluated
arguments that the function is called with. (NLAMBDA-NOSPREADSs
are like FEXPRs from ELISP.)

EX: pp(exampleNLambdaNoSpread)
(exampleNLambdaNoSpread a b c d)

DEFINEQ

At this point, you know the various functional forms for
INTERLISP, but now how to define a function. The easiest way is
to wuse DEFINEQ. DEFINEQ itself is an NLAMBDA function that can
be used to define any number of functions in one fell swoop. The
way to use DEFINEQ is

(DEFINEQ (<{(nameOfFunctionl}
{({functionForml> argsl bodyl))
{(nameOfFunction2>
({functionForm2> args2 body2))
» v)

where the functionForms are LAMBDA or NLAMBDA.
The <(functionForm)> parts default to LAMBDA if not supplied.

EX: define a function with no arguments,
and no body called sillyIncrement
then DF sillyIncrement
and make it to be a LAMBDA-SPREAD
function of 1 argument, whose action
is to just increment the argument.

EX: make a function called reasonableDefine

10

that takes one argument, a litAtom,

makes a function named <(litAtom), puts

you into DEdit to create the definition

of (litAtom>, and prints the message
(1itAtom> defined

on exit.

The File Package

Near the beginning of this set of notes, the INTERLISP
philosophy was stated as (in part) making things easy for the
user. One of the best examples of this can be seen in the file
package.

The Idea of the File Package

The File Package is a system that attempts to free the user
from most concerns about where his various functions and values
are stored. In most other dialects of LISP, the user must keep

2

track of his functions and variables himself. In addition, in
most other dialects, the general mode of "editing/testing” can be
thought of as a loop first going to the source file, then loading
the (changed) source, then testing. In INTERLISP, there is no
real idea of a text file for the source that is to be accessed by
the wuser. Rather, you think of your functions as running AND
being edited directly in INTERLISP, then 1let the file system
worry about where they should be stored.

Telling The File Package Where To Store Things

5. FILES?

One way to tell the file system where to store things is by
using the function FILES?{(). Suppose you have created a function
{as you just did above) and now want to let the file system know
where to store it. Simply say FILES?() and INTERLISP will let
you declare where the new function is to be stored.

2
ELISP provides some overlays that mitigate this.

11

EX: do FILES?{()
and inform the file system
that you want to save reasonableDefine
in a file called LOOPSCLASSUTIL

6. xxxCOMS

EX: pp{LOOPSCLASSUTILCOMS)
and note the contents of that
variable

The file package '"works" by keeping a variable named xxxCOMS
(if the file name is xxx) and storing in that wvariable all the
information about what is supposed to be in file xxx, and actions
to take on storing or loading file xxx. FNS and VARS are just two
file package commands; there are MANY others to allow you to
specify things like special actions on 1loading or saving the
file, 1initializing wvalues for variables, and so on. See the
manual for details.

7. Saving Your Work

You’ll want to save your work from time to time in permanent
form. There are two directories you can use right now: the hard

disk {DSK3} and the floppy disk {FLOPPY3}. You can connect to
whichever one you want by doing, for example

CONN {FLOPPY}

Once you are connected to your directory of choice AND you have
informed the file system of what you want in a given file {(note:
you only have to inform it once. Ie, if you have a new function
F0O, and do FILES?(), then the file system will let you tell it
where to put F00. If you now do FILES?() a second time, then you
will not be asked about F00 again.) then you can use
MAKEFILE{<(fileName>) to store away to the current directory your
file.

3

NOTE: the permanent disk is not truly permanent now - someone
may come along and get rid of whatever you want to save. It is
recommended to do your "permanent" saves to {FLOPPY}

12

EX: insert your new floppy into the machine.

FLOPPY.FORMAT(class)
this will format the floppy.
Do this ONCE. This function
destroys anything currently
on the floppy.

CONN {FLOPPY3}

MAKEFILE(LOOPSCLASSUTIL)
now you've saved the file
LOOPSCLASSUTIL

dir()
this will show you the
contents of the currently
connected directory.

To reload the file, use the function LOAD, eg
LOAD{LOOPSCLASSUTIL)

Once you load a file at the beginning of a session, the file
system will keep track of any changes that are made to that file.
Then you can simply use the function CLEANUP() at the end of the
session. CLEANUP forces the rewriting of any files whose
contents have changed. Note that in part the action of CLEANUP is
controlled by the setting of CLEANUPOTIONS. You might check this
out if you're going to be a serious user.

INTERLISP TURTLE EXERCISES

In this exercise, you will bring together some of the things
you have learned about INTERLISP-D, as well as see some of
the capabilities of the DLion display (but not very much).

the

We have at our disposal a wonderfully dutiful critter, a TURTLE

named ART.

ART. Among them

CENTER - brings up ART in the middle of a special
TURTLE cage (read, WINDOW)

TCLEAR - (alas) sacks ART (ie clears the TURTLE cage)

FORWARD(<(distanceToTravel)) - tells ART to move forward
by a specified amount, leaving a trail of wasted
linebackers in his wake.

JUMP(<{distanceToJump>) - instructs ART to jump by the
specified amount like H to avoid the rush

POINT(<{absoluteDirectionToPoint?) - tells ART to turn
to a specified direction.

TURN((relativeTurningAngle>) - tells ART to turn a
specified number of degrees from his current direction.

DrawTurtle, EraseTurtle, ComputeTurtleArraylndex
- these are the base functions that the others rely on.

CENTER()
CLEAR()
CENTER()
FORWARD(50)
TURN(90)
JUMP(80)

ART is really an instance of a record called TURTLE. You
look directly at the record for ART by using an INTERLISP display
facility call the INSPECTOR.

EX:

(INSPECT ART)H
first you get a menu.
select AsRecord with the left button.

And we have a number of instructions we can issue to

can

1

Now you’ll have another menu to
specify what kind of record ART is.
Button TURTLE.

You then get a small little square next
to your cursor.

At this point INTERLISP is waiting for
you to place the "window" for the
inspector of ART.

(i think it may be an NFL inspector)
Anyway, you should mouse

the left button where ever you

want this inspect window to come up.

The inspector is handy, because it permits you to look at
various INTERLISP constructs in a structured way, and also allows
you to set parameters in the object you display.

EX: Change the CURRENTX field of ART.
mouse CURRENTX with the left button.
mouse CURRENTX with the middle button,
then select SET. This will get you
a mouse window in which you can set
a new CURRENTX.

Close the mouse window and the inspect
window by mousing the windows with the
right button and selecting CLOSE.

DrawTurtle()
note that ART hopes over to the
new CURRENTX.

EX: Get used to the basic
functions that ART has.

Now we’'ll make ART a 1little smarter.

EX: ‘construct a function
called BACK that will
make ART go backwards
by a specified amount.
{after all, there may be some
big suckers on the other side

1
of that line!)

Now lets give ART some other interesting patterns to run.

EX: make a function called SQUARE that
takes one argument and makes ART
draw a square in the TURTLE CAGE
with the length on one side being
the argument we provide.

Finally, lets give ART some company.

EX: (SETQ BROCK (CREATE TURTLE))
this creates another TURTLE
named BROCK

(SETQ turtleWindow
(fetch WINDOW of ART))
this gives you the actual
TURTLE CAGE that ART is using

use the inspector to set the
window that BROCK uses
to be the same as ART's
window

What we want to do now is to make our turtle functions be
applicable to two turtles.

EX: modify all the turtle functions
to take as the first argument
the name of the turtle to which we
apply the function. Instead of just
altering the functions we already have,
make new functions and perform the
alterations on the new functions.
Call the new functions the same name

i)

Make life easy for yourself. Think about the relation of BACK
to the existing function FORWARD.

3

but with the prefix osu. Use the
function MOVD to initially create
the new function, then edit the
new one.

MOVD(FORWARD o0SuFORWARD T)

The T is a copy flag, see the manual for the meaning.

DF(osuFORWARD)

Now we have a set of turtle functions that can be apply to
arbitrary turtles.

EX:

make a function osuSquareDance that will
cause ART to draw a square around
the center of the screen, while
his partner BROCK does the
same thing, just 180 degrees
2
out of phase with ART

save all of your
TURTLE functions

2

The width of your turtle cage is 550, the height is 630.

e s

B R

e

GETTING USED TO LOOPS

Yesterday, you learned the basics of using INTERLISP-D. Today,
we’'ll begin to learn LOOPS. LOOPS is a language designed to offer
a number of the different paradigms for system construction which
have been found useful for building AI systems.

Introduction

Programming Paradigms In LOOPS

I
LOOPS offers (currently) four different Programming paradigms:

l. procedure oriented programming - the "normal" way of
building programs out of procedures which can "call”
each other,

2. object oriented programming - a way of conceptualizing
a program to be number of interacting "objects" which
get work done by passing (locally understood) messages
to each other,

3. data oriented programming - the data driven style of
programming, and

4. rule oriented programming - the view of a program as a
knowledge base collection of rule groups which are
interpreted by some external interpreter.

At its current stage of development, one approach for
understanding LOOPS is to view systems that are constructed in
LOOPS as being object oriented, with the other modes of

expression being submodes. This will become more clear a little
later.

1 .
One possibility for the future that is being considered by the

LOOPS development team 1is a constraint style of program
construction.

Display Oriented Tools

One of the most important aspects of LOOPS from a system
building perspective is the wealth of display oriented tools that
INTERLISP/LOOPS offers. These include

- DEdit facility,
- the Inspector,

- inbuilt "browsers" for displaying LOOPS the relations
between LOOPS objects, and most importantly

- the ability to customize your own "browsers".

As we’ll see, the browser notion is a powerful system building
tool.

Brief Introduction To The ClassBrowser

In todays class, we will be mainly 1learning about LOOPS
classes, but in order to manipulate the classes we will be using,
you need some familiarity with the LOOPS ClassBrowser. In a later
class, we’'ll see how browsers work and will build a browser. But
for now, we‘ll just view the browser as a tool.

Bringing Up A Browser on a LOQOPS Class

LOOPS classes are LOOPS objects which are related to each other
2

by their location in a class hierarchy. The ClassBrowser is a
tool to bring up a graphical lattice structure showing the class
hierarchy. A ClassBrowser 1is brought up by specifying the
"StartingList" of the part of the class lattice that we want to
see. Suppose we have a LOOPS class called osuCSProfessor, and we
want to view osuCSProfessor. We do this by sending a New message
to the LOOPS class ClassBrowser. (Hold on, you’ll learn about
messages and message passing below.)

2
We’ll see what this means later today.

2

EX: ({leftArrow>New $ClassBrowser Show ‘(osuCSProfessor))

Once we have a LOOPS class displayed in the browser there are
many actions we can take to let us either display what is in the
class or to change what is there, both using the ClassBrowser. In
general, the left mouse operations in a ClassBrowser are display
operations while the middle mouse operations are edit operations.
When you hold the arrow on an class in the class browser, and
select a mouse button, a menu will appear that will offer
options. If a menu item has a star at its end, then there is a
submenu that may be popped by selecting that class with the
middle mouse button.

EX: left mouse the class osuCSProfessor
select PP* with the middle mouse button
select PP with the left mouse button

In the exercise above, you can see that the browser will give
you access to the "innards" of an class, but the power of a
browser goes much beyond that.

EX: close the current ClassBrowser by mousing the right
button anywhere inside its window and selecting CLOSE

({leftArrow>New $ClassBrowser Show ‘' (Person))

Now we are looking at a part of the LOOPS class hierarchy that is
currently loaded. Note that you can understand by simply looking
at this graphic that, for example, osuCSProfessor is somehow
related to Person. You don’‘t now really know all the “methods”
(read for now functions) that any of the classes knows about, but
you can see some kind of relation between the classes.

The above illustrates the real power of the browser idea from a
system building viewpoint. When you set out to create a system in
LOOPS, a good starting point is to consider all the classes you
are going to be concerned with, and structure the inter-relations
between these classes using a browser. After these top level
inter-relations are expressed, then the time comes for filling in
the details, ie the "innards" of the classes.

3

Now that you have a little idea of what the browser 1s used
for, we'll go on to describe the nature of LOOPS classes.

LOOPS Classes

LOOPS classes from a conceptual view may be considered as
active agents which have both local storage and which understand
messages. They correspond to the construct of "data abstraction”

3
from the programming language community , but you should always
view them as active agents.

They also should be thought of as a the holder of “typical
instance" type information, similar to a frame-like idea.

LOOPS classes may be instantiated, a process that yields an
"instance" of the class (not too surprisingly).

Storage

The local storage of a LOOPS class comes in two flavors:

- CVs (Class Variables) and

- IVs (Instance Variables).

CVs are LOOPS class variables which are declared and exist in

the class and which may be accessed by all instances of the
class.

IVs are LOOPS class variables which are declared in LOOPS
classes, but which can exist in either the class or any instance
of the class.

3

minus the idea of import and export variables and procedures,
but plus the idea of instantiation and inheritance

1. Basic Operations On IVs

As with any kind of storage facility, IVs have fetch and store
operations. The fetch operation for IVs is

(GetValue (loopsName|variable) <(variableHoldingCVName))

Here <{(loopsName> is the LOOPS name {(read POINTER) for a LOOPS
class. For example, there is a LOOPS <class we call
osuCSProfessor. LOOPS maintains a pointer to the internal
structure for that class. To get that pointer we do

{$ osuCSProfessor)
or just
4
$osuCSProfessor

S0 in the above to get the IV named ‘salary for the LOOPS class
osuCSProfessor, we would do

EX: (GetValue gosuCSProfessor ’‘salary)

Alternatively, we could have set some variable to be that pointer
then used the variable in the GetValue form.

EX: (SETQ currentLOOPSclass $osuCSProfessor)
(GetValue currentLOOPSclass ‘salary)

Note that we are fetching the value of an IV from a class.

4
$ is both a function and a read macro.

EX: mouse the left button on osuCSProfessor
and select PP

We can also set the value for the salary IV in osuCSProfessor.

EX: (PutValue sosuCSProfessor ’‘salary 30000)
Lthe state ran out of money!3
(GetValue $osuCSProfessor ’‘salary)

So far we’'ve looked at fetching or setting IVs in classes. Now
let’s consider instances. Instances can be either "named" or
"unnamed", depending on somethings you’ll understand a little
later. Our first exposure to instances here will be of the named
variety. You have an instance in your loadUp of $osuCSProfessor
named $jones. Right now the 1local state of &jones for the
variable salary is not set. But you will still get a value for
salary if you fetch it from $jones. Can you guess what it‘’ll be
and why?

EX: (GetValue $jones ‘salary)

The salary IV that is set in the class that $jones is an instance
of (ie $osuCSProfessor) is returned unless there is a local

setting in $jones. The value in the IV at the class 1level then
acts as a default value for all instances in the class.

On the other hand, setting the value in $jones will not effect
any other members of the class.

EX: (PutValue gjones ’‘salary 41000)
(GetValue gosuCSProfessor ‘salary)
(GetValue $smith ’'salary)

[$smith is another instance of
the same class. He has no
local state for salary.l

2. Basic Operations On CVs

CVs have the same two kinds of operations, but the action is a
littlie different. Remember, CVs do not exist in instances at all,
only in classes. Suppose we have a declared cv in
SosuCSProfessors called maxSalary.

EX: look at the PP for
osuCSProfessor
again to locate
the CV maxSalary.

Note its wvalue.

(GetClassValue SosuCSProfessor ‘maxSalary)
(GetClassValue $jones ‘maxSalary)

(PutClassValue $jones ‘maxSalary 50000)
get a fresh PP of SosuCSProfessor

(GetClassValue $smith ‘maxSalary)

CVs (which only exist in at the class level) ARE SETTABLE from
the instance level. And once reset, the effect is felt in all
instances of the class.

3. Inheriting CVs and IVs

CVs and 1IVs may be inherited from higher levels in the class
structure (as shown in the browser). The easiest way to find out
where in the hierarchy various CVs and IVs live is to use the
left browser menu item WHEREIS.

EX: select WHEREIS on
osuCSProfessor
then the subitem
CV, and find out
where all the CVs
live

do the same for the
IVs of osuCSProfessor

The action of CVs as holders of data for all instances (or for

7

the c¢lass itself) and of IVs as actual storage locations for
instances and default value in classes remains unchanged.

EX: (GetClassValue $jones 'maximumAge)
(PutClassValue $jones 'maximumAge 99)

(GetClassValue Sprofessor ’‘maximumAge)
(GetClassValue SMrT ’‘maximumAge)
LsMrT is an instance of
scitProfessorl]

To generalize: the setting of the CV takes place in the class in
which it resides.

There 1is one important thing to point out regarding how CV are
to be used when they are inherited. Note from the about that
maximumAge is a CV that is declared in $professor.

EX: what do you suppose will happen if vou do
(PutClassValue $citProfessor ’‘maximumAge 22)

try it and see

CVs that are inherited to INSTANCES of an class through the class
hierarchy can be set in classes in which they do not live! Try to

figure out why this is a reasonable design feature for a language
like LOOPS.

There are other ways of fetching and storing the values of CVs
and IVs. For example, you can fetch the local state only of an
5
IV. See the manual for details.

Further, we have talked about the "values" of CVs and IVs, but
in reality, both CVs and IVs have property lists. Look back at

5
If it is not defined locally, LOOPS will return a ?. You can
change this to something else if you don’t like it.

B

the PP of some c¢lass. Note the form for an IV or CV will look
like

EX: ((nameOfVar> {(valForVar) doc {(someDocumentation>)

The "doc" is just one example of a property. You can define your
own properties for any CV or IV. Again, see the manual for
details.

4, Adding And Deleting IVs and CVs

The easiest way to add either a new IV or a new CV is to use
the middle mouse menu item Addx.

Similarly, you can use the middle mouse selection Delete to get
rid of some unwanted IV or CV.

Messages

Now that we have some idea of IVs and CVs, we’'ll move right
along and talk about LOOPS "methods". Methods are the means by
which a LOOPS class knows how to respond to a message that is
sent to it. The way to send a message to a LOOPS class is by the
form

({leftArrow?> <(loopsClass> (methodName)> <argl)> <{arg2> ...)

EX: ({leftArrow> S$jones setSalary 35000)

lock at setSalary with PPMethod

The first argument in ANY method is self. This self refers to
the current class to which ydu have sent the message. The binding
of self to the class to which the message is sent will be
important a little later.

9

Look back at the PPMethod for setSalary and see what else
should have been potentially set by the method.

EX: (GetClassValue gprofessor ‘maxSalary)
({leftArrow> $jones setSalary 39000)
(GetClassValue gprofessor ‘maxSalary)

Methods that are to be understood by instances reside in LOOPS
in

- either the class that the instances are instantiated
from or

- some class that is up the class hierarchy from the
instantiating class (in LOOPS parlance - on the supers
list of the class).

THIS IS A VERY IMPORTANT NOTION. YOU'LL DO YOURSELF A BIG FAVOR

IF YOU REREAD IT SEVERAL TIMES AND MAKE SURE YOU UNDERSTAND WHAT
IS BEING SAID.

To create a LOOPS method, we can use the Add* middle mouse menu
selection, then the DefineMethod sub selection.

EX: create a new method to reside in
Sprofessor whose action will
be to set the age IV and up date
the maxAge CV. Call this new method
setAge

On what LOOPS entities will setAge operate on?

EX: ({(leftArrow)> $jones setAge 39)
(<(leftArrow> SMrT setAge 65)

The method you have created will be available in ¢$professor AND
in all instances of LOOPS classes under $professor in the class
hierarchy. The method is inherited. This is one reason why the

10

self argument is so important. self sets the context for
evaluation, even for a method which is not locally present.

One thing should be bothering you at this point:

if methods that reside in LOOPS classes are
understood by the (possibly indirect)
instances of those classes, then how does
one write a method that will be understood
by the LOOPS class itself?

One example of a message that you need to send to a class
rather than to an instance, is the message that requests a new
instance to be built.

EX: {SETQ moorthy
((leftArrow> $o0suCSProfessor New))
({leftArrow> moorthy SetName ‘moorthy)

Cthe important part is
the sending of the New
messagel

Where does this new method reside? Not in SosuCSProfessor, nor on
any class on its supers list. The answer involves a different
kind of LOOPS class called a meta-class. The base distinction
between a class and a meta-class is that instantiations of any
meta-class are themselves classes. In a sense then, meta-classes
are "higher up" in an analogous way that normal classes are
"higher up" than instances.

Although this may be a 1little confusing right now, the
operational way to understand this is that if you want some class
itself to understand some method, then the cleansest way to
proceed 1is to put that method into the meta class of the one you
are dealing with.

The way that you can alter the meta-class of some class is

1. be SURE that you have the meta-class defined FIRST

11
2. select Edit* with the left mouse button

3. change the entry for MetaClass that is near the top of
the definition of the class 5

The Notion Of SPECIALIZATION In LOOPS

In the above, we saw that both variable (in either the IV
flavor or the CV flavor) and methods are inherited in LOOPS. But
this important feature of the language is lost unless we also
have in hand the concept of Specialization.

In LOOPS, a new class may be "tacked on" to some existing class
in the class hierarchy (as shown in the browser) by

EX: middle mouse SosuPrefessor
select Add#
select Specialize
give the name
osuHistoryProfessor

do a PP on $osuHistoryProfessor

select WHEREIS on
$osuHistoryProfessor
and see what CVs are
known

Note that SosuHistoryProfessor was created, and in fact it was
empty. BUT CVs were known to it. That was through the
inheritance mechanisms of LOOPS. The important idea is that in
LOOPS, classes can be Specialized from existing classes, and only
NEW 1IVs, CVs, or Methods that do not exist in the classes on the
supers list of the new class need concern us.

The importance of specialization cannot be overempahsized.
We’'ll be doing an exercise later in the course on making a

browser in which we will use the notion of specialization quite
heavily.

IT4RT0 %0 WOTTL T m.%m

B WMITTUA

REAT !ﬂ‘o‘

Tﬂ sethlisl WD 5 <18
denednloqge «f esls 1ediq g £~8 ART rgwead s PR80

%

ILI

Tedognd nb anbiaseldisl’ sistoell cy9deiflAsM hmm JausdlB
LIsS%-enizoesS scmmiol

IsteneT oy i sobisvhonal A fnawel Dus vosdsal
hanfio¥-s ol swltraagld %o yvaoeedT

eoctdam)s sdlail«el Lew s2imiY icalisldemmal sglcald

aleyland bas agleeT adT asaliU See loxsgull (ofA
el Frogfi asjugmed e

galtbod has yzosdll saldswielsl (sosaddh

akged Ianidumsdial 1nos{shesil

=MRIowr3t innllameriindi sastoeh’ uaduunt! bee ealdamT
oooeind Tsduonod ol o tesllgel dikw -

serrnd 2a7iT A satpol [sartaaedoei! :glddall

hdoemall sljammIuvd ban emdsileagfs trosdomidheT
nasnikdasdf

aokindegend 30 veoedY uedowbennd bae hagabend
oy dite millhe® od 09 bodseges oo winelaol .YOD -

JrembiiAsM bos taans® %o wuesgado uwe? 10viY ad ol labtvedas
,(msegiseayd mvgor™) 2.1 sorissf Yo aptigecme ads didw
huu!w.mtmm»mm&w.su;‘

sotom 84 e ysviva vrafsvhorint nn sablvowg svwgd ebdT
ipalypewcn 15 ssulisbopo? festimmoefly faavsd afs nl etgstigon
aa nshute doms svig o2 al sazrca w43 %o Joosanl ofT

zolgos au-u,n ed? Yo doas Yo sivizn wi? Juo gnthoaderskoo
stend ods tiqra vlzvsyves oF vititds gataeasls :m bes
cdnkooness Imginad tdoes o2 sakiolex aiflfde bas oglhslivosd

Vg

- l‘" P Jmﬁ "“*

teuod of¥%0

w:

21 .ewapes aidl ol satpluposetg ods LSO 303 2xmd ol o) widl :m

wat potandon bon somarsloy ol viYeirdd oued bLotlupss al g

slgnte og et e3ssT . agivon 2003 20k [alwedna weg ol & dedew

saboiwoni & 3wd {0 wt Ialysdmm dpofder i3 Jo 2atx odi zal f¥a3
io gelbasigvsbon ns 53 vzmmnanen i toad aleds nk Jalwadew edld To
Llatyedea suvtes arfd

stored on [indigoK Loops>loopscourse>F serciseGettingFamiliar. bravo
Copyright (¢) 1983 Xcrox Corporation)
Last [dited; MJS November 10, 1983 4:07 PM

Getting Familiar with Loops

Prepared by the LOOPS DesignTeam

Danny Bobrow, Sanjay Mittal, and Mark Stefik

Purpose of these Exercises

These ecxercises provide an iniroduction to the [oops programming environment. They
introduce the Loops Browser and [nspector, which are important tools for dcfining and editing
classes. Notation for accessing variables, and invoking methods is explained. The exercises also
provide examples of the use of tools for understanding and debugging programs -- such as gauges
and the object break facility.

Netation

In the dialogs below, regular font is used to show what the system types, and bold font is used to
show what the user types.

Preliminaries

Go to your workstation for the course and LOGIN according to the instructions in the handout
titled "How to Start Loops”.

Part A. Browsing through the class lattice.

(1) Display the class browser starting at the class Comumodity as follows:

{+New S$ClassBrowser Show '(CommodityTransportability
Commodity))

Position the browser by moving the cursor (the cursor moves by moving the mouse) and
clicking the left mouse key when you have placed the browser window in the desired position
on the screen. A recommended position is the lower right hand side of the screen.

(2) Scrolling and shaping the Browser.

If the lattice is two big to fit in the window, scroll bars can be used to shift the part of the
lattice that appears.

To shift the lattice horizontally, slide the cursor through the Browser slowly past the bottom of
the window. A horizontal scroll bar will appear and the cursor will turn into a double-headed
arrow. Holding down the left mouse button in the scroll bar causcs the lattice to shift to the
left. Holding down the right mouse button causes the lattice to shift to the right. The middle
button is uscd to indicate a proportional space in the lattice for positioning it in the window.
For cxample, holding and releasing the button in the middle of the scroll bar causes the middle
of the lattice to be displayed in the window. -

On a Dandelion with a2 two-button mouse, the CENTER key on the keyboard is used in place of the middle mouse
button.

(EX) Use the scroll bar in the Commodity class lattice to familiarize yourself with the control
of scrolling.

To shift the lattice verically, move the cursor into the Browser and slide it slowly past the left
cdge of the window. A vertical bar scroll bar will appear.

(EX) The vertical scrolling commands are analogous. Discover them by trying the different
mouse buttons.

(EX) Reshape the browser using the right mouse button.

(3) Printing and cditing selected objects. Here’s a summary of using the mouse to interact with a
browser. Sclection takes place on the wupward transition of the mouse button.

At the Top Level of a Browser

Left button Brings up a menu of Printing options
Middle button Brings up a menu of [Lditing options
Right button Brings up a menu of Window options

To get a description of an option, keep a button depressed over the menu option for a
few seconds and watch the black prompt window.

In a Browser Menu

Left button Default option
Middle button SubOptions -- spawns a menu of suboptions.
Mcnu items followed by an asterisk (c.g.. Doc*) have suboptions.

(EX) Move the cursor in the Browser to Apple, and click with the left mouse button. A menu
of print options will appcar next to the cursor. Select the Print* option with the left key.

(EX) Try out PrintSununary and PP in the Print* sub-menu, and Doc* in the Method sub-
menu.

(EX) Use the browser to Inspect a class, (Hint: [nspect is a suboption of [Ldir*).

(EX) The Doc* option makes it convenient to browse documentation in the classes.

Experiment with the Doc* option. On the class Apple, what is the documentation of the
SetPrice method? What is the documentation on the gty, pr, and price instance variables?
What is the difference between pr and price, according to the documentation? What is the
default documentation that you get when you sclect Doc* with the left button, without looking
at suboptions?

Part B. Seeing where variables and methods are inherited from.

In Loops, variables and mcthods are inherited through the class lattice. The PrintSummary option
and PP! options show things that are inherited from above. PP! (pronounced "pretty print bang™)
prints out all of the inherited information.

(EX) Select PP! (suboption of Print*) on Groceries in the browser.

The method names are a clue to where they are inherited from. Each mcthod appears in the listing
as

(selector methodName doc (* some comment))

The namnes of the incthods are ClassName.Selector by convention in Loops. Several of the methods
of Grocery are inherited.

The Wherels option (suboption of Print*) is a good way to find out where a particular instance
variable, class variable, or method is inherited from. Wherels brings up another menu, offering 1Vs,
CVs, and Methods. Selecting any of these (by moving the cursor and clicking with the left mouse
key) will offer a menu of the names of 1Vs, CVs, etc. The browser will flash the class from which
the variable or method is inherited.

(EX) Select the Wherels option on Strawberry. Use it to find out where several of the instance
variables and methods come from.

The menu of Vs, CVs, or Methods will still be around after the first selection - just select another
item to see where it is. To make this menu disappear, move the cursor outside this menu and click
the left button.

If nothing flashes in the browser, look in the black prompt window at the top of the screen for a
message. The node from which the selected 1V, CV or Method is inherited may not be visible in
the Browser.

(EX) Try to see where all the different parts of Strawberry class are inherited from.

Part C. Creating Instances.

(1) Create an instance of Apple

(+ $Apple New 'MyApple)

This creates an Apple and gives it the F.oops name MyApple. Instances with names can be accessed
by preceding the name with a dollar sign.

(2) Print its structure

e

(+ $MyAppiec PP)

(EX) Create instances of other classes. You can give them names as in C(1) above or save a
pointer to the instance in a Lisp variable as follows:

(SETQ appl (+ S$Appic New))

In this example, the instance is not given a name but it can be referenced by using the Lisp variable
appl.

(EX) Print out the second apple.
(+ appl PP)

Some classes cannot be instantiated. For example, the class LuxuryGoods is an abstract class which
docs not describe a particular kind of thing that can be instantiated.

(EX) See what happen when you try to instantiate LuxuryGoods. Print out LuxuryGoods to see
how the "abstract” class is specified. (Hint: look at the meta class.)

Part D. Setting values of variables.

(1) To retrieve the value of an instance variable in Loops, the function GetValue can be used, or its
shorthand &. For example,

(GetValue SMyApple ’price)
(@ S$MyApple price)
(@ uappl price)

Use this to get the value of somc instance variables of $MyApple or appi.
(2) To set a variable in Loops, the function PutValue is called as follows:
(PutValue S$SMyApple ‘price 60)
A shorthand for putting values is:
(+@ $MyApple price 60)

(EX) Sct the instance variable gty of $MyApple to 30. Use the GetValue @-shorthand to verify
that the value was changed. Also try sending a PP message to $MyApple. Looking at the
printout, how can you tell which values are sct locally, and which are inherited?

Part E. Invoking a method on an instance.

(1) In Loops, the syntax for scnding messages is
(< object Selector argl arg2 arg3...) -

The leading left arrow means send a message. :

(EX) For cxample, send a Display mcssage to $AlyApple to display its icon as follows:

(< SiviyApple Display)

(EX) Send a SctPrice mmessage to MyApple to set its price

(+ $MyApple SctPrice 30)

Use the browser to see the name of the function that implements the SetPrice method.

Part F. Inspecting an object

(1) To inspect an object’s structure, send it an /nspect message |

(+ $iyApple Inspect)

The same message for inspecting that works above for instances, also works for classes, Classes can also
be inspected through the class browser.

(2) Changing the value of an instance variable
Select the IV name by moving the cursor over its name in the inspect window and clicking the
left mouse key. Next, press the middie key over the same sclection to bring up a command
menu. Sclecting PutValue from this menu will allow you to enter a2 new value for the IV in the
prompt window.

(EX) Using the inspector, change the variables pr and qiy of $AyApple.
(3) Inspecting value structure and properties.

Selecting the TV value (using the right column, not the IV name!) allows operations on the
values and properties of the [V. Select a value with the left key and bring up a command
menu with the middle key.

(EX) Try Inspect and Properties on some sclected values of $MyApple.

(4) Commands in the title bar of the Inspect window.
Other operations are possible on the inspected object by pointing the cursor in the dark title
region of the inspect window and holding the middle key. Move the cursor over the desired
operation with the middle key pressed. To see a description of an operation, hold it over the
option for the section and look in the prompt window. Releasing the key executes the selected
command.

(EX) Get a description of IVs, and [LocalValues.

(EX) Try Redisplay, IVs, Class, LocalValues. Try going back and forth between the LocalValues and
AllValues,

(EX) Using the @ notation, change the pr again. Notice (sigh), that the inspector does not update
its display automatically. To make sure that the displayed values are current, use the Redisplay
option in the menu from the title bar.

Part G. Monitoring changes via active values.

(1) Inspector windows are only “refreshed” with new values when they are first drawn, or when a
Redisplay option is selected. This means that they can appear on the screen with outdated
values. A way of maintaining up to date data on the screen is to use gauges. Unlike inspector
windows, gauges arc automatically updated when Loops variables change. The following code
attaches a .VerticalScale (a kind of gauge) to the price instance variable of AfyApple.

(+*New $VerticalScale Attach $MyApple ’‘price)

Suggestion: Before you type the closing right parens, move the cursor out of the typescript window.
If you can’t find the gauge, it may be under the typescript window. Move the typescript
window to get it,

(2) Change the value of price as in part D and see the gauge change.

(EX) Creatc a Browser for the class Gauge. Using the Browser, use the ClassDoc option (suboption
of Print®) to get information about the different gauge classes.

(EX) Attach a different gauge such as Dial, Meter, or Digibfeter instead of VerticalScale to the IV
qiy of MydApple. Test the gauge by changing the value using parts D.

(3) Gauges are attached through active values. These active valucs appear in the value of Loops
variables, and have a structure that can be examined.

(EX) Inspect the value of price using the inspect facility described in part E. Scc that the form of
the value has changed. [nspect it down to the actual value. What is the PutFn and Geti'n for
the active value that drives the VFerticalScale?

Part H. Debugging via active values.

(1) A perplexing problem in many programming systems is finding out what part of a large program
smashed the value of a particular variable. In Loops, active values enable the system to enter a
Break whenever the value of particular variable is changed. For example,

+(Breaklt SMyApple ’price)
will causc a brecak when the price variable of Mydpple is changed,

(EX) Put a variable break on MyApple as above. Change the value of the variable. Reacquaint
yourself with the Break package commands,

(EX) Change the variable price using the SetPrice message, and verify that it enters the break again.
What arc the arguments to Apple.SetPrice?

(2) To remove a break, use the UnBreaklt function as follows:

(UnBreaklt $MyApple ’price)
(EX) Change the value of price again, and verify that you no longer cnger a break.
(EX) Put a variable break on gty verify that it breaks when you change the value.

(EX) Inspect the gty of MyApple now that it is broken. Examine the active value that causcs the

Break. Again inspect down to the actual valucs.

Part 1. Editing an object.

Any object can be edited using the Lisp editor by sending the object Edit message. For cditing a
class, if you have the class in a browser, you can use one of the Edit commands in the middle menu
(sce Step A for using the browser). Eg.

(« SApple Edit) will allow you to edit class Apple
(+ SMyApple Edit) will allow the same for instance MyApple.

(EX) Edit MyApple to change value of pr.

(EX) Add a new instance variable growln to $MyApple with valuc Washingion.

(EX) Add a description for a new instance variable color to the class Apple, and give it the default
value Red. Now use the @-shorthand to get the value of color for the instance $A/yApple.

HAPPY LISPing, LOOPing, RULing and TRUCKINg!!

If you need any help contact one of the course instructors.

L ' 1{1;‘* 7
5 1

r!;'_ l‘i T

% —
5 pvai=
CYRERAR O GRS OTW0 X
FOREIO0 WA TR SREDGC o e

It 8Y0 %0 WI"' il T LD
“,“1 "L

] @ 98°7,

po

mramloyd callilMW RORRITLT
AMOTALEE 2Bl Wi D VIR
swapfatoges vd soald tsdic bop gg £-5 AL fpwaad =11

HEGANS
sermnadl =8 i

odugmnd nk eoliomsdiall avensedd . yatariliaN tvim Jaondl R
IlgHean Ligary ao0uiaf
:!I Jouti0g sids 3ol sdlistupsseng st YOX wol feer wft al abd) (plof)

wlad .ocobInson han eomevalsy ot ylletils susd Beslupan al
ﬂm o al e L oeupes alfs wol Iakysiak weg ol 3 radwand
sgheiwomi & dud TOT o Lakxetem doobive oS T *m i yoi 2xe3
3o gathastgusbou as ol (yssnsacs ai txod wbd? ol falzedom ad? 34
- mam soauna witd

Zerzaftal aifr o3 oolispboutal gi (o Bus vosroatt SIHT)
 beaffol-tiuol amidirogia %o crosd? THATEYLTT
sanliriosh sakalinl Sem s2kodY ioolindugml I¢deali ATAVOL

atoglsmh hos aglesd sd? assild hom 23cingod ,odd
repis Myogld sazupd Lo

gutbod b yrosdi solismxelel oomeTdl

akzol Isalzomedigil :eoninbosh

paiigapiA hos okgad :epsdiuald SJIALTAVA
somsowsss Laslisvediol sravoatl :iadomni b valimesT AT
stealol taiumD o2 amolisoliqefh &9 tw Y AT

 pee® dauif A inipet Iaskiomeeisall sgldddof

snbtpd sljamodul Ltma amdiluoglA soudand s
Bszkrinali

solanduaeod So voad? redevtasd bos bxentewd

sty Maky wetilus? ad ol Batpsqmes oun gumeinmB NOD WrIeTEpReaR
L163abblAoM Bos dpamad 2o wresgads moo? 1av0) adt nd Intzsdan
_ {aneasssrnd worgox®) 3.1 sobicel %o noliqeors el Miv
%o walves Yetad & chuionl I[Idw TOU %o doew demll sdi vavswoll
Slael

woiss ﬁﬂ %o wwryun yrodoubsrind sn cablvaty seiwes ebdT THERR
«sut3oguns Yo asaizadesol Imstivoeds [awrel add ol a?pramed
s Susluan dean svis o7 af samms oS 3o Seednd T
polysy gabwelln® od1 Yo dans To e383aa Wit To Judhzsrzuehou
shand mlz viquas elrossias o WIKINAN gusdnaslic ow hog
o toaReY ,p.:aal siions oo guisalss ailllle bas sgbefwoad

Filed on {INDIGO¥KI.cops>LoopstCoursed>lixerciseGauges.bravo
Iidited: MIS November 10, 1983 4:58 PM

Class Specialization and Mixins
(The "gauges" exercise.)

by the Loops Design Team
Daniel Bobrow, Sanjay Mittal. and Mark Stefik

copyright (¢) 1983 by Xerox Corporation
Purpose of these Exercises

These excrcises provide some practice in object-oriented programming, in specializing and
combining classes. The examples are drawn from the "gauges” that arc part of Loops. Gauges arc
objects used to create dynamic graphical images of values of Loops variables. Every one should be
able to complete parts 1 through 4. Part 5 is for thosec who finish quickly and want to try
somcthing harder, more on their own.

Notation

[n the dialogs below, regular font is used to show what the system types, and bold font is used to
show what the user types.

Preliminaries

Go to your workstation for the course and LOGIN according to the instructions in the handout
titled "How to Start loops”.

Part 1. Making A SubClass {a blinking L.CD)

Step 1. The idea of this exercise is to make a new gauge which blinks each time it receives the
message Ser. [t should blink once if the value has gone down, four times if the value has gone up,
and not at all if the value is unchanged. It should display its current value as is done by an LCD.
Since it's behavior is identical to LCD except for its response to the message Set, a good first step is
to make a new subclass of LCD. Put up a browser on the set of classes for gauges by typing:

(Browse GAUGESCLASSES)

A small square will appear to allow you to place the browser down where you want it. Hold
down the left mouse button until the outline of the browser is positioned properly, and then release
the button. It will probably be convenient to place the browser in the lower Ieft arca of the screen.

Step 2. Use the Browser to make a subclass of LCD. This can be done by using the
Specialize suboption of Add* After you select Specialize in the menu of suboptions, you will be
prompted in the prompt window (the small black window in the upper left hand corner) for the
name of the new class. [t will look like:

Class Name: BlinkLCD

Step 3. Document the new class. This can be done by editing the Blinkl.C'D class definition.
Using the browser, select Edir* with the left button. This will invoke the Lisp cditor on the class
definition,

Adding documentation requires adding both a doc property name, and its value -- a comment.
Usc the gauge browser to sec the documentation on Boundeddlixin for an example. 'This example
illustrates an editing idiom that is uscful in cases where two items need to be inserted, Sclect the
atom FEdited in the MetaClass partof the Blink LCD source. Then type a list like the following into
the edit buffer:

(doc (* BIinkLLCD is a blinks when it changes value.))

Then click Before in the edit commands. This inserts the list containing the property name and the
value into the right part of the definition. Finally, use the (ows) command to rcmove the
parcntheses around the list. Exit DEDIT when you are finished..

Step 4. Study the definition of LCD. Decide which methods and variables that you think will
need to be specialized.

Hint. Tt should be enough to specialize just the Ser message. Consider using «Super together
with the message Blink inherited from Window. The Blink can be invoked with (« self Blink 3) to
make the window blink 3 timcs).

Step 5. The next step is to define a Ser method for BlinkLCD. This code should check the
current value of the [V reading, do its blinking, and then send reading to the Set method of the
Super class. One way to dcfine a method is to use the DAY suboption of Add*. This will place you
into DEDIT with a functional template for the method. Edit the template to look something like:

{(LAMBDA (self reading)
(* Comment describing what the Set niethod does.)
[COND
((IGREATERP (@ reading) rcading))
(* Blink once if the value has gonc down)
(+ self Blink 1))
(T (* otherwise ..)]

(«Super sclf Set rcading]

After leaving the editor on the function, go back and look at the class definition of Blink[.CD
again, and see how the documentation that you cntered was automatically included in the class.

Step 6. Create an instance of BlinkLCD and display it on the screen. (Hint: The new gauge
will be created next to the cursor. Move the cursor so that the gauge will not be buried beneath
the typescript window.)

(SETQ wink (¢ (§ BlinkLCD) Ncw))
(+ wink Updatc) this is necessary to make the ILCD appear

Step 7. Now try out your BlinkLCD by sending Ser messages to it, to see whether it performs
as you cxpected.

(< wink Set 10)
(« wink Set 55)
(+ wink Set 35)

(+ wink Set 35)

Part 2. Defining and Using A Mixin Class

The idea of blinking is a "modification” that could be made to any of the gauges in [oops.
"The previous exercise did this by specializing a particular gauge. in this cxercise, we define a Mixin
class that can be combined with any of the gauges to convert it into a blinking gauge.

Stepi. The first step is to define the Mixin class, BlinkMixin. We will want this class to have
Object as its only superclass. Since Object does not appear in any browser on the screen at this
point, we can not use the Specialize option as before. Instead, we use a procedural way of defining
the class as follows:

DC (BlinkMixin)
The super class of BlinkMixin will be defaulted to Ohjecr. Document this mixin as in Part 1.,

Look at the browser. RlinkMixin will not appear there. To make it appear in the browser. add il via the AddRoot
option in (he title region menu. Remember to look up in the prompt window in the upper left

Step 2. Now definc a Ser message using DM as in part 1. The same code should work for Set.
You can copy the code from Blinkl.CD by typing:

(+ (5 BlinkLCD) CopyMecthod ‘Set “BlinkMixin Set)

Edit the method to change the comment, and switch the number of blinks done on lowering
and raising. To cdit the method use the EM suboption in the browser.

Question: What does «Super in this mcthod do?

Step 3. The next step is to use the mixin in the definition of a new class, BlinkMeter.
BlinkMeter should take the blinking behavior that we defined previously for LCD, and combine it
with the behavior for Afeter. Define a BlinkMeter as follows:

DC(BlinkMeter (BlinkMixin Meter))

Use the editor to document this class as usual.

Step 4 Now make an instance of an BlinkMeter and test it as bcfore.

(SETQ bm1 (+ ($ BlinkMecter) New))

(+ bm1 Update) this is necessary to make the gauge appear on the screen
{(+« bnl Set 13)

Part 3. Using gauges to monitor internal state of an object

“Now let us look at the internal working of bm/ by using another gauge to monitor instance
variables of bmil. Create a vertical scale gauge and attach it to the reading of bml.

{+ $VerticalScale New "VS1)
(+ $VS1 Attach bml ’reading)

Note that when the reading of bml gets above 100, the vertical scale gauge pins at the top, and
a 77 is shown in the upper left corner. Change the scale of ¥S/ to encompass a larger range:

(+ $VS1 SetScale 0 1000)
Now create an instance of LCD and attach it also to the IV reading. Attach another instance of

LCD to displayVal in bml. Watch what happens to each of these LCD’s as you send VSi Set
messages. Click the middle button over one of the LCD’, and try Attached? and Detach.

Part4. Defining A DigiDial

The DigiMeter in the Gauges file is a combination of a Mefer and an LCD. In this exercise,
we will define a DigiDial which will be a combination of a Dial and an LCD.

Stepl. Study the definition of a DigiMeter. Look at at the definitions of its mcthods:
ComputeScale, Set, SetParameters, ShowSetting, and Update. 'These methods combine the behaviors
of a Meter and an LCD so that a DigiMeter cxhibits the “sum" of the behaviors.

Hint: The invocation of DoMethod in DigiMeter.SetParameters may be an cxample of bad
programming style. Could this be replaced by a «Super 7 [f yes, what would be the advantage?

Step2. Define a class for DigiDial with supers as follows:
DC (DigiDial (Dial LCD))

Document this class as in Part 1.

Step 3. Now definc methods for DigiDial to combine the behaviors of a Dial and an LCD
analogous to those in DigiMeter. Document these methods as usual.

Step 4. Instantiate and test the DigiDial, and show it off to usH!
Part 5.Making Yet Another Subclass (a counter example)

Step 1. The idea of this excrcise is to make CounterLCD, a new "counting gauge” which
counts the number of times it reccives the message [ncrement. Define this as a new subclass of
LCD. Define the /ncrement message in terms of the Set message. Create an instance ¢/ and test

1L,

Step 2. Attach this gauge to bml. Since in this case we want to have the message [ncrement
sent instead of Sel, we must type: '

(+ cl Attach bml ‘reading "Increment)

This will cause cl to be called with the message lncrement every time bml is Set. Try this out.

Step 3. If you have time, definc and create a Reset message, which resets a counter to zero.
Try making a Counter mixin.

—
—

P

e Jardet

Fited on {INDIGUO K Loops>LoopsCourse> ExerciseObject Turtle.bravo
Fditcd: MIS August 3, 1983 7:21 PM

- Using Procedures and Objects

copyright (¢) 1983 by Xerox Corporation
Purpose of these Exercises

This exercise illustrates some techniques for combining procedure-oriented programming with
object-oriented programming, We will again use the Turtle Graphics domain for this ¢xercise,
Instead of using records to represent turtles, we will create a Turtle class and instantiate it. The
cxercise will give you an opportunity to compare the characteristics of the Turtle programs
implemented as records and as objects. It will also provide an cxample of cxploiting specialization
in the object reprcsentation, to creatc a modified turtle program.

Notation

In the dialogs below, regular font is used to show what the system types, and bold font is used to
show what the uscr types.

Preliminaries

Go to your workstation for the course and LOGIN according to the instructions in the handout
titled "How to Start Loops”.

Part I. Using Programs as Data

This part of the excrcise uses a recursive lisp program to help in translating the record-based Turtle

Graphics program into an object-based program.

Step 1. Create a Turtle class.

First define the Turtle class using the function DC as shown bclow.

(DC 'Turtle).

Having created the Turtle class, you next nced to add to it some class and instance variables

corresponding to the record variables in the original Turtle Graphics program.

Create a browser for Turtle, and then use the cditor to add the following instance variables to

Turtle:

CURRENTX CURRENTY HEADING and ERASED?

O

3

EX: poke around in $LatticeBrowser
and sClassBrowser to see
how the CVs for left and
middle button items look

LocalCommands

The CV LocalCommands tells the browser processing mechanism
whether the method associated with a menu item is wunderstood by
the browser itself or by the object you have buttoned. If a
method name is contained in the CV LocalCommands, then when you
button a menu item, the message associated with that menu item
will be sent to the browser itself with two arguments

l. obj - a binding to the object that you have buttoned
in the browser (ie binding to the POINTER toc the LOOPS

object) and

2. objName - a binding to the name of the object you have
buttoned.

In addition self is bound to the instance of the browser you are
working in.

If on the other hand the menu item you chose is NOT contained
in LocalCommands, then the browser mechanism will send the
associated message to the LOOPS object you have buttoned, with
self bound to the LOOPS pointer for that object.

EX: poke around in the
LocalCommands of
sClassBrowser

From the above you can see that if a browser item is a local
command, then the method that responds must be of two arguments:
ocbj and objName.

EX: look at the local
command GetSubs of
$ClassBrowser

l. When To Make Something Local

Although not something that LOOPS imposes on you, I find the
following programming disipline useful when constructing
browsers.

In addition to any other considerations,
make any menu item which interacts with
the user be a local browser command. Make
methods which run in the objects themselves
do no interactive operations.

If you follow this disipline, then you will factor cleanly any

LOOPS system you build into "program control component" and "user

interactive component". I find such a factoring useful especially
2

for debugging purposes.

GetSubs

The GetSubs method of a browser does just what the name
implies, it finds the "sub objects” of the current object. Note
"sub objects" can be defined however you want to define it.

ClassBrowser - look down the class hierarchy

SupersBrowser - look up the class hierarchy

|

MetaBrowser - look along the meta link

- etec.

2

There are special considerations when you want to interact
with LOOPS under a mouse process. See the INTERLISP manual, or
talk to me about this if you want to someday build “interactive"
operations under from a browser.

5

The important point is that $LatticeBrowser has methods which
send a GetSubs message to self. The methods in $LatticeBrowser do
a lot of the work of any browser. But they use a method that we
may easily specialize for our own purposes.

EX: do WHEREIS
on &ClassBrowser
and find how many of its
methods are up higher
in LatticeBrowser

try to find an example
of GetSubs being used

in some method in
slatticeBrowser

Building A KeyClassBrowser

Suppose we have a very large set of LOOPS classes that is hard
to view all at one time in a browser.

EX: ((leftArrow>New $ClassBrowser Show ‘Object)

Now that you believe that you really do sometime have TO0 many
LOOPS classes for getting a gestalt view, lets decide how to
build a browser to help us.

Here is one possibility to accomplish what we want.

- a browser that will only show those LOOPS classes which
we have designated as "Key Classes"

- but will allow us to "expand" the view to show a normal

class browser starting from any key class we choose in
our KeyClassBrowser

Designation of KevClass

The first thing we have to do is decide how we are going to
mark, or keep track of key classes.

EX: add a new CV to
$0bject called
KeyClasses

Now make three new methods for $Class:

EX: MakeKeyClass
makes self be a
key class by
using PutClassValue

UnMakeKeyClass
removes self
from the list
of KeyClasses

KeyClass?
a predicate function

to test if self is
a key class

Now lets make some of the objects in the class hierarchy to be
on the list of KeyClasses using the functions we just made.

EX: pp{KeyClasses)
this is a list i have

provided. You are to

make each Class on the
3

list into a key class

Now lets make a specialization of ClassBrowser.

3
Remember that sending a message to Object for example doesn’'t

make sense. You can however send a message to the pointer
$0bject.

EX: specialize gClassBrowser
to a new Class called
$KeyClassBrowser

All that we have to do now to get our new browser to make an
instance and display in the way we want is to specialize the
method GetSubs from $ClassBrowser.

EX: copy the method
GetSubs from $ClassBrowser
to $KeyClassBrowser

look at the method and decide
what we have to do next

GetSubs in ¢ClassBrowser sends a message off to obj to fetch
4
the subs of obj. Lets simply change the name of the method that
goes to obj, then go back and create that method.

EX: do EM on GetSubs
in $KeyClassBrowser

change SubClasses
to SubKeyClasses

Now we have to make sure that obj will understand the method
SubKeyClasses. What we want is a method that will

- fetch 1its subs in the class hierarchy (it can do this
by issuing a SubClasses message to self)

- collect the subs that are KeyClasses

4
I think they should have called it "OBI-ONE".

Be

8

- for those subs that are
searching down the class hierarchy
classes, stopping when one is found

not Kkey classes, continue

helpful to draw pictures of the class hierarchy.

If you get just plain stuck in this, then look at the

DefMethod a new

method in sClass

called SubKeyClasses

to accomplish the above

test your method to
make sure it works

jonsClass.SubKeyClasses in your loadUP.

CONGRATULATIONS!

EX:

({leftArrow>New s$KeyClassBrowser Show ‘Object)

Now most of the battle is
things that are needed in our KeyClass browser.

make any instances of
$KeyClassBrowser come up
with "Key Class Browser"
in the title bar instead
of "Class Browser"

now add new

functicnality to

the g$KeyClassBrowser

by adding left button

functions:
MakeRegularClassBrowser
MakeSupersBrowser

done.

looking for

key

sure you understand what i am saying in this logic. It may be

function

But there are still a few

MakeMetaBrowser

this involves adding
things to LeftButtonltems
and creating new methods
for SKeyClassBrowser

Question: WHY was building this new browser such a "relatively"
easy operation using LOOPS?

Advanced Features For $KeyClassBrowser

In the regular notion of browsers, there is no real idea that
browsers can "cooperate" with each other to present a consistent
view of the LOOPS world to the user. In this section, i’'ll
suggest ways you might further develop your $KeyClassBrowser so
that you wuse it not only to get a gestalt view of all of the
LOOPS objects, but also to "manage" the view of LOOPS objects (as
shown in OTHER browsers) that is presented.

THIS SECTION IS OPTIONAL!

One basic problem with browsers is that you have to constantly
run about closing old browsers. The reason is that if you have
say two browsers up, and you alter one of them is some way (1
mean alter the «class hierarchy (eg)) in one of them, then you
could be in trouble if you try to use the other one. Suppose you
destroy a class in one, then try to specialize it in the other.

Solution: make your KeyClassBrowser a sort of index you use
into the others. Only pull wup a class browser by using the
KeyClassBrowser AND keep track of all the browsers “"spawned" from
the key class browser. Any time you generate a NEW ClassBrowser,
close the OLD one.

Further modification: Instead of just killing it, close it,
cash its pointer on a stack, and build some functionality that
will allow you to "pop back up" to it.

Another mild problem is doing WHEREIS using a ClassBrowser, and
the object that has the method you want to find is not IN the
current browser. Of course, the browser will let you know in the
PromptWindow where the object is, but sometime you want more.

10

Solution: specialize WHEREIS soc that if the object you want to
highlight is not in the current browser, that a SupersBrowser
will pop up AND blink the appropriate object for you.

This could go on and on. There are MANY useful things that
could be done to extend the notion of cooperative browsers. As
you think more about this, even if you don’t implement your idea,
please tell me about it.

| . ¥

YHIRAACLT & Peag: wa T
EANREING HOITAAROMPY, LR T D D W LU

=T

I1 812 0 SNOIDAUKICS SIEAE - UOU BED
el Ay
£ TEAT RN
nsaeiasinl asiift4 i ity

AR INET-083 gadBied a0 D UK
snsedglogns v saeld xedio Gos eg O W tewden eniTIO

0 SUAND
tevoir! o B30

sodmpnd nk aplisesdia)! wimgoell eyalelilAsl! bon Ja.asB wE?
E Ligh=galirori sour=l03
21 _eemwes wili 70t sitalupmiuta add (N0 w0t med =l sk wldl oded)

winD _sefdsdon bos sdecisior w9 ot pusdl bewtupay bl
. olente oo &t swsdl .serens el del dakEsion wea vl 0 TASa
subsiungd & 3ud S0 o) lakrsrem loepdus Sl 3o dwez wld 38) Czed
1o gnilosagveboy me o3 Cissersan al ssad Akdt al Jsissdw 203 o
{ fatycdng soywon il

Inveas? o7 of aokinudarieX sA (gemaY Das ool S0
hantisiainzol oqbiogih Yo yyosrT THATIDMNT
paniianli 92latic) bes o31alY tuolsarsgol sydectM LBl

staylach bas agtosd odT aemifV bas 3lowogod .add
pori Froglh xaswomed 2o

sakha? bas grosul moidmegolal taonmexcd

sigad featdewedsa treaishan!l

L
1

B e auls bxanJA bae alpgol iosadrecd LISATTAVA
worgdows3l Iastaamerist arezsaid 1aadesmH bes valdun® AT
, soreksl taltugnal pf amokisallqoh d3iw Skyarsa L

' ‘owanod 3117 A ipdgot Inottmandiat rakddell

poddugrod olismoivh bma smdiliagin ssondnaandazl
' lnali

- molisdupm) fo vieed? risdowhasd has brsekoyd

sl ftv atlles? of 62 Eodsagus omm eoeebunt (10D ENISTUCNNERY
JrodatiASH hap Senonil 1o mieagails weed 507iY wit or labwons
~(ammrtapyrad mazger?) 2.1 satio38 lo soligews oafs dhe

%o watvey ¥eiyd 3 shulioa: Iltw 0T o dasy sauit wfd vewswl

| r ~olgoi

aotan o2 Yo yewaun ransubavind oh ssbivorq esnues aldl TIRETROD
.sabjvgwnn 10 sguisabuwol Ilsollevosds fsmwe} sds ol eiquomos
m imsbune done oviy ol el eawwos ml3 Jo Tgaand il
antqo3 gadtwallel adt o saso o suwdisa wml? Yo gathorerabos
okesd oy igye wiivevyos oi vililds yuatnemels an bas
Aninopesy Inolgal idomns 03 guisales slilds bas sgba iwvont

Filed on {INDIGO}<Loops>LoopsCourse> ExerciseRules.bravo
Edited: MIS November 10, 1983 5:00 PM

Editing and Debugqging R'uieﬁets

by the f.oops Design Team
Daniel Bobrow, Sanjay Mittal, and Mark Stefik

copyright (¢) 1583 by Xerox Corporation

Purpose of these Exercises

This set of exercises explores the programming and decbugging facilities for using rules in
Loops. In this scssion we will extend the behavior of a rle-driven "playcr™ of the Truckin game.
The techniques introduced in this session will provide experience in representing and debugging
knowledge representation that will be nceded in the later sessions.

Notation

In the dialogs below, regular font is used to show what the system types, and bold font is used to
show what the user types.

Preliminaries

Go to your workstation for the course and LLOGIN according to the instructions in the handout
titled "How to Start Loops”.

Part I. Basic Debugging Tools -

This exercise is to use the auditing, tracing, and breaking facilities of the rule language to
understand the rules behind the behavior of an automated player of Truckin called Traveler. A
Traveler is a class for playcrs that commute between UnionHall and AlicesRestaurant. stopping for
gas and WeighStations along the way.

There is a listing of Traveler in your course notcbook. You may want to refer to it as we continue.

Step 1. Getting Started

In the discussion which follows, we will use the term gamedfaster to refer to that which runs
the game. Depending on which version of Truckin’ is being used, the gameMaster may be one or
more programs, databascs, and processes, or even more than one computer, Some variations on this
will be discussed later in this class. For the purposes of this discussion, it is convenient to refer to
it all as simply the gamcMaster.

The first step is to set up a new Truckin simulation. Do this as follows:

{(+ $Truckin New)
(«+ Pl BeginGame)

Pl is an abbreviation for Playerlnterface. It's short, since you may type it a lot

The gameMaster will then ask you in the prompt window to choose a kind of playcer. Usc the
mouse to select Traveler in the menu next to the prompt window, and type the name "Travl"” for
the name of the driver. The gameMaster will then ask you for the kind of truck. Select FordTruck
(or any other brand that you prefer). Then the gameMaster will ask you about gauges on Travl
and it is recommended that you choose DEFAULT and that you place the fuel gauge to the right
of the game board.

When the gameMaster asks you for the sccond player, sclect "No" with the cursor,

The gameMaster will put up an inspector window of game parameters for you to set. These
parameters control such things as the length of the game, the number of bandits, and so forth. You
can set the values of the parameters by selecting a parameter and using the PutValue option. To
sce a description of a particular paramcter, sclect the value of a parameter and sclect the Properties
option. It is recommended that you set the value of the parameter gameDuration to 60 for this
exercise.

When you arc finished, click DONE in the menu next to the inspector. The gameMaster will
then put up a bar chart for you player’s cash.

Then the simulation will begin. Trav/ will begin commuting back and forth on the board. [f
you depress the CTRL key, the Traveler will pause in its travels. The fitel gauge should go down at
cach move, and the cashbox bar chart will change whenever the Traveler spends or receives money.
Every few turns, the bandits (Bonnie and Clyde) will make their moves.

The typescript window will type a rule before each move of Travl. This is because the Traveler
was compiled in the system with rule tracing turned on (compiler options [).

Step 2. Using the Rule Executive

Find the menu labeled Interrupt at the top center of the display. This menu should have an entry
for the player Travi. Clicking Trav! in this menu will invoke the Rule Exec window. Do this now.
(It may take a few seconds for the request to be noticed -- it waits until the current player finishes
its move.) The player interrupt will disappear.

The Rule Exec will prompt you with "re:". Notice that time keeps marching on, even though
Travl is suspended. You can resume the simulation by typing "OK" to the rule cxcc as follows:

re: OK

Do this, and click Travl again, to get the feel of using the Rule Exec to interrupt exccution.
Inside the rule cxec, you can typc cxpressions in the rule language. IFor cxample:

re: destination

will cause the current destination of your Travi to be typed. You can look at the values of other
variables (such as truck or stoppingPlace) as well. You can also use compound terms as in

re: truck:fuel

The number you get back should correspond to the value shown by Travl’s fuel gauge. You can
also look at class variables, as in

re: truck::MaxFuel
You can makc adjustments to your player, as in
re: truck:cashBox «20000

This should cause the cashBox bar chart to get updated immediately. (Of course, this would be
cheating if donc in a RuleSet, since your player should only acquire “cash” by sclling merchandise.)
Lastly, you can scnd messages, as in

re: (+ self Show)

Note: Be sure to use rounded parcntheses in these expressions, not brackets. In the Rule langauge. brackets are used to
control precedence of operators, and parentheses arc used for funclion calls and messages.

or, if you arc not at UnionHall,
re: (+ truck:location:prev PP)

This illustrates that self is set to the work space, and also shows off the Show method that Traveler
inherits from Player.

Step 3. Changing Compilation Options

One way of changing compilation options is to send a TurnOn message to a player class. For
example,

re; (+ STraveler TurnOn °A)
To cdit a RulcSet, enter the rule exec and create a browser for players as follows:
re: (Browse $Player)

Using the browser, select Traveler (with the middle button). Using the left mouse button, sclect
EM* (for EditMcthod), and you will be shown a list of the Mecthods for Traveler: BuyGas.
FindStoppingPlace, GoToStoppingPlace, and TakeTurn, Sclect the FindStoppingPlace method. The
TTYIN edit window will come up automatically -- rcady for you to examine or make changes to the
RuleSet.

WARNING!! Do not use "Reprint” on a RuleSet. This will do terrible things fo its readability. The rule editor
that your are using is our 'StopGap” version. i the next version of the Rule Language, we will use a structural editor
and a3 more Lisp-like notation.

Verify that the RuleSet has auditing turned on. If not, change the compiler options declaration
to recad as follows:

Compiler Options: A

When you have finished editing the RulcSet, type tX to exit. A pop-up menu will then appear by
the cursor. The Help option in the menu can be used to see a description of the other options.

Most of these options are intended for use in debugging the Rule Compiler. You may find it intcresting to use them to
examine the LISP code currently generated by the rule compiler under different compiler options,

To compile the rules and quit, select OK.

Step 4. Asking Why

Leave the rule excc and let the simulation run for a while. (The audit trail is created
incrementally, as the program runs, so you nced to wait for it to complete another turn.) Then
interrupt Travl and use the audit trail to answer "why" qucstions as follows:

re: why stoppingPlace

Using the rule exec in combination with auditing is a handy way of discovering which rules were
responsible for particular decisions. (Perhaps this should be called fiow instead of why.) Try asking
why for other variables such as destination. You can ask why for compound variables as in

re: why truck:fuel

in this case you should get back the message "Rule not known." because the fiel variable is not set
by a RuleSet compiled with auditing turned on.

If "Why" is typed without arguments, the Rule Excc uses the previously entered expression.
For example

re: stoppingPlace
(AlicesRestaurant 123.45)
re: why

--- that is, why stoppingPlace

IT" (Distance destination)<=.Rangel. (RoomToParkP dcstination)

THEN stoppingPlace «destination;
Rule 4 from [indSioppingPlaccTravelerRules

Step 5. Suspending and Waking Truckin’

Another menu at the top of the screen is labeled GameControl. This menu has options for
suspending, killing. and waking the current simulation. The gameMaster consists of scveral
processes for the different playcrs, the clock, and scheduling. If you entcr a Lisp break, or are
editing. you may want to stop the frenzy of activity on the screen so that you can work, This menu
is for that purpose. Practice suspending and waking the gameMaster. (But don't &ill the game yet!)

Step 6. Breaking on Rule Invocation &

In this section we will see how to step through the execution of a RuleSet. Using the Browser
and rule editor, change the compiler options for the FindStoppingPlace method of Traveler to read
as follows:

Compiler Options: BT;

This indicates that the rule should "break” to the rule exec whenever a rule is tested or executed.
Exit the rule cditor and rule executive and let the simulation run.

As the simulation continues, you will see a rule print out in the Typescript window, and then
the rule cxccutive will pop up. By typing "OK" to the rule exec as in

re: OK
You may find it useful to suspend the game while you are here.

You can step through the exccution of the rules. Note that the break occurs before exccuting the
left or right hand sides of the rules. Step through the exccution of FindStoppingPlace a few times
to sec how it works. You may want to use this feature for some subtle case of debugging particular
RulcSets.

When you arc tired of typing ok, try
re: {« SFindStoppingPlaceTravelerRules Off 'BT)

and let the Traveler run. You may have to type OK a few more times, until the Lisp interpreter
let's go of the function with the "break code” in it.

Step 7. Debugging with Gauges

In this section we will sce how to create extra gauges to help with debugging. We will begin by
putting a gauge on stoppingPlace. Enter the User Excc by depressing CTRL-LeftShift.

The User Excc is an alternative 1o the Rule Iixec. The User [xec expects lisp expressions and provides the
Interlisp-1D cnvironment (e.g.. the history list). The Rule Exec expects rule language cxpressions and provides rule
facilitics (e.g., why questions). The User Fxec can also be entered by (yping UL as a command to the Rule Iixce,

To create a gauge on stoppingPlace, type:

« (#New SLCD Attach $Travl ’stoppingPlacce)
+ OK

For obscure and temporary reasons, the «New syntax doesnt currently work in the StopGap Rule language.

The Truckin' Manual describes more automatic ways of installing gauges on the instance variables
of a player.)

Step 8. Listing RuleSets

To get a hardcopy listing of the RuleScts associated with a class, use the function ListRuleSets.
The listings will appear on the local printer. Get one of the course instructors to show you where it
is. To make a listing, type the following to the user exec.

+ (ListRuleSets 'Traveler)

Part II. Creating A New Player

The purpose of this cxercise is to practice making a new kind of Player called a BigMac, which
is a revised version of the Traveler. A BigMac is a class of player that commutes between two of
the AlicesRestaurants in the simulation. A BigMac (a hungry driver of a Mac truck) wiil
presumably eat a lot, visiting UnionHall only when it runs out of money and gets towed there. A
BigMac always drives a MacTruck.

Step 1. Sciting Up

You may want to restart the game before continuing with this exercise. Kill the game using the
GameControl menu. Using the mouse, closc a few of the windows at the top of the screen until
you find the Loops Logo (Saturn), Depress the left mouse button, and a menu should pop up.
Select the SetUpScreen option to restore the screen to its original state. You may want to create a
new browser for players as:

« {Browse S$Player)

To create a new player that is a specialization of Traveler use the Specialize option in the
Browser. When you arc prompted for a class name in the prompt window, type:

Class Name: BigMac
The Browser will now indicate a new class for Bighlac.

You may neced lo shape the browser window to sce RigMac.

Step 2. Replacing a Method

To insurc that BigMac always drives a MacTruck, we nced to replace its SelectTruck method.
[nitially, the method for SelectTruck is inherited from Player, and prompts for a truck.

To replace this mecthod usec the EM! option in the Browser.

Either approach will put you into a [isp ecditor on the Lisp function that implements the
method. Edit the function so that it just returns ‘MacTruck.

Step 3. Adding an Instance Variable to the WorkSpace

To change the behavior of BigMac, it will first be necessary to add an instancc variable to
record the nextDestination. Edit BigMac with a Lisp Editor of your choice. (Hint. You may access
it through the Edit option of the Player Browser.) When you have added the instance variable, that
portion of RigMac’s definition should look as follows:

(InstanceVariables (ncxtDestination NIL doc (* Next destination. A different AlicesRestaurant.)))

You may want to add some documentation to BigMac itself. If you do, the relevant portion of
BigMac’s definition should look approximately like this:

(MetaClass PlayerMeta
doc (* A Player that commutcs between AlicesRestaurants, cating hamburgers.)
Edited: (edited: MyName "21-Fcb-83: 15:31"))

BighMac inherits other instance variables from Traveler, but they don't show in the source
because they arc not introduced at this level of the inheritance lattice: To see them, you can
prettyPrint a summary of it through thc browser (using the PrintSummary option).

Step 4. Specializing the Rules of Traveler

In this section, you should go back and cdit the rules for the TakeTurn mcthod and modify
them for a BigMac player. In dcbugging your rules, the techniques introduced in Part 1 for
audiring and breaking RuleSets and adding gauges, will be of use.

Hints:

1. The course handout "Truckin’ Query Functions” describes a sct of functions for
accessing information in the world of the Truckin' simulation. These functions will be
discussed later in the course, but you may find it helptul to browse this document when
you arc trying to understand the Traveler rules.

2. You will probably want to replace the TakeTurn method of Traveler with one
specialized for BigMac. You can use thc EM! option in a player browser to do this.

3. BigMac should initialize his destination and nextDestination on the first call. In the
method for TakeTurn, the following rule may be a uscful substitution for some of the
existing rules:

(* On first call, initialize destination and nextDestination.)

IF ~dcstination

THEN atices«(RoadStops 'AlicesRestaurant)
destination+(CAR alices) direction«(DirectionOf destination)
nextdestination -(CAIDR alices);

This rule assumes that alices is defined as a temporary variable of the rule set.

4, In addition, a new rule like the following may be appropriate in the method for
GoToS'toppingPlace:

(* Switch destination and nex(Destination when you arrive.)
[F truck:location=destination
THEN temp «dcstination

destination < nextDestination

nextDestination « temp

direction «(DirectionOf destination);

5. If you have trouble with the behavior of BigMac, use the auditing, breaking, and
gauging facilitics you have lcarned about to understand the behavior.

Step 4. Saving the Rules on a File
To save your RuleSet on a file, type the following to a User Exec or at Top-level lisp.
(FILES?)

Lisp will ask you whether to save various instances and functions. Type BIGMAC for all of
the things that you want to save. Type] (a right squarc bracket) for all of the things that you
don’t want to save, such as Bonnie, Clyde, and other things not related to your file. You can type
LINEFEED (LF kecy) to mean same as previous.

Then make a file containing your BigMac player as follows:
MAKEFILE(BIGMAC)
This file can later be retricved by typing

LOAD(BIGMACQ).

[Optional] Part HI. How Auditing Works

This section is intended for those who finish their Bighfac player carly, and would like to learn more about how the
auditing works in the rule language. This seclion is a tour of the auditing facility.

To sce how an audit trail works interrupt your player with tF. Use the left mousce button to

select the top item of the "trace back™ menu to the left of the rule cxec window. This will create
an inspector for the workSpace.

If there is no trace back window, type (+ sclf Inspect) instead.

-

‘Seclect the value of the destination variable with the left mouse button. (It will turn black). Depress
the middle mouse button and a mcnu should pop up. Seclect the Properties option. This will
spread out the propertics of destination. The interesting part of this is the reason property of
destination. The value of the reason property should be an instance of a StandardAuditRecord. If
you inspect that record, you can "inspect” all the way to the rule object which prints out when you
type the why question,

The Lisp code gencrated for the RuleSct must not only save values, but must also create the
audit records and link them to the reason properties when it executes. To sce this auditing code,
you may want to invoke the rule cditor on the FindStoppingPlace method of Traveler, exit the
editor with *X. and select the EF menu option to examine the Lisp code. You should be able to
find the code that makes the audit trail. Say DE to the Lisp TI1'Y editor if you want DEDIT.
After looking at the code, exit the cditors.

The next step is to look at the Audit Class declaration for the RuleSet. Select the EditAllDecls
option in the Rulc Compiler menu. ‘This will put you in the editor again, except that several
addittonal "default” declarations will now be made explicit. In particular, you can now see the
declaration for the audit class. Exit the rule editor.

To see where the meta-assignment statement for saving the rule in the audit record came from,
edit the class StandardAuditRecord.

A StandardAuditRecord saves only a pointer to a rule. The specification of what to save in an
audit record is made by meta-assignment statements - cither in the class for the audit record, or in
the RuleSct. The class for the audit record must have instance variables for all of the values to be
saved. 'This facility can be used for cxperimenting with belief revision systems. See the Rules
Manual for details. This material is beyond the scope of the 3-day Loops course.

Filed on [INDIGO}<Loops>LoopsCourse> GxerciseCompetition.bravo
Edited: MJS August 3, 1983 7:37 PM

Knowledge Programming

by the Loops Design Team
Danicl Bobrow, Sanjay Mittal, and Mark Stefik

copyright {c) 1983 by Xerox Corporaticn

Purpose of these Exercises
These exercises provide experience in building a small knowlcdge system in Loops: a Truckin’
player. This Truckin' player will be your "entry™ in the knowledge competition at the end of the
course. The exeicises will help you to preparc your player, and tell you how to cnter the
knowledge competition, and what to expect.
Notation

In the dialogs below, regular font is used to show what the system typces, and bold font is used to
show what the user types.

Preliminaries

Go to your workstation for the course and LOGIN according to the instructions in the handout
titled "How to Start Loops".

Part 1. Specializing an Existing Player

This exercise is to augment the knowledge of a modest knowledge system incrementally. For
this purpose, we have provided a sample Truckin® player as follows:

Peddler (50 rules): - a player created for the second Loops course with a structure that makes it
convenicnt to create evaluation functions that prioritize player dccisions.

Find the listing of Peddler in your coursc notcbook. You may want to refer to it as we
continue.

Step 1. Creating A Player

Create a player that is a specialization of Peddler. As in the BigMac cxercises, cither a browser
to create your spccialized player.

You will need to name your player. Here are some namcs that have been used before:

HappyHauler PeterLorry
Routier Maverick
SafeSam

SpendThrift

Toyota

TravelingSalesman

When you pick a name, register it with us and we will be alert for name conflicts before the
knowledge competition.

Step 2. Hints About Peddler

Peddler is a reasonably good player, but its knowledge base lacks some fine points. [Here are
some known weaknesses which you may choose to remedy. (You may discover other weak spots.)

1. Peddler uscs "rating RuleSects” to pick Producers, Consumers, and
stopping places ncar AlicesRestaurant. But it shows little flexibility in its
sclection of which AlicesRestaurant to go to at the end, or which GasStations
to visit. You may want to extend the rating idea to thesc other decisions.

2. Peddler looks for low priccs when it picks a Producer, rather than
computing its probable profit (by looking ahead for a possible Consumer).
Late in the game, it may even buy goods for which there arc no attractive
Consumers.

3. Peddler’s gasoline logic is poorly organized. When Peddler is low on
gas, it can completely forget about other things. like stopping at WeighStations
or getting to AlicesRestaurant. |f Peddler gets in a tight loop between a
Producer and a Consumer, and therc is no gas station in-between, it will go
back and forth content on making a tidy profit but forgetting to go outside
that range for gas.

4, Peddler avoids PerishableCommodities and FragileCommodities, because
it lacks knowledge for dealing with them. It needs to know about
RoughRoads, and that perished commodities can spoil, and that damaged
merchandise must be taken to the dump to avoid fines. There is a lot of
money to be made on such merchandise.

5. Peddler’s rating schcmes using a numecric mecthod for combining
factors. You may choose to usc a symbolic approach to combine the factors
more rationally.

Step 3. Strategy for Preparing Your Knowledge System
Here are some suggestions for building and debugging your player:

Keep it simple!

You don’t have a great decal of time (6-8 hours) to build your system, and you will be
learning Loops (and pcrhaps coping with bugs) at the same time. In the previous Loops

courses, the most successful entrees were created by people who fixed bugs and made small
improvements to the players rather than starting a complete re-design.

Ask Why!

During the first Loops course, people sometimes used only conventional programming
techniques and struggled to find bugs that the auditing Ffacilitics could casily have
pinpointed for them. Part of what makes rules special arc the special facilities for auditing
rules. Use this! It will help you pinpoint shortcomings in your rules! Also use the gauges
and breaking and tracing facilities. These tools for understanding your player really help.

Save your player frequently! .

Computer systems are subject to occasional crashes. Think conservatively. Save your
files every 15 - 30 minutes, and make listings every hour or two. Be sure to type (FILES?)
before doing your MAKEFILE. (Or use the lisp function CLEANUP).

Try a crowded board!

Some important phenomena only show up during a crowded game, as will be the case
during the knowledge competition. By analogy with ccological systems, the stiffest
competition for a player is often itsclf. [dentical players, like members of the same species,
compete for the same ccological niche. Be sure to excrcise your player on such a board
before the competition. A good way to test your player is to compete it against scveral
copies of iwself and scveral Peddlers.

Try different trucks!

Trucks have different storage capacitics, speeds, ranges, etc. The performance of your
rules is likely to be different for the different classes of trucks. Use a browser to determine
the characteristics of the different trucks and try your player with different trucks so that
you can understand how your rules interact with the truck characteristics.

Lisp is legitimate!

If you find that the rulc language is too confining for you, you can always express some
of the knowledge in a Lisp function, called directly or installed as a method on your player
or some other object. This is completely "legitimate" in Truckin', and may be appropriate
since the StopGap version of the Rule Language has a somewhat awkward interface. You
may also find it useful to define some new classes of Loops objects.

Step 4. Technical Note -- Creating, Copying, and Installing RuleSets

In working on your player, you may want to define some new RuleSets as methods. To define

a RuleSet as a mecthod, usc the DecfRSM suboption under DM* in the browser.

You may want to create a new version of onc of the Rating RuleScts. Onc way to do this is to

usc the CopyRules method of RuleSets. For example, to create a rating RuleSet of GasStations for
a player named RoadRunner, you may proceed as follows:

« (¢ SPcddlerRateConsumers CopyRules RoadRunnerRateGasStations)

We recommend that you use your player name as a prefix on your RuleSetNames, to avoid name conflicts during
the knowledge compctition.

Step 5. Save Your Player Periodically
Aftcr naming your player, inform the file system by typing:
« TILES?)

to the Lisp Executive. When it prompts you for a file for the class of your player, use the player
name for the file name. When you have finished with this, create a file for your player:

« MAKEFILE(MyPlayerName)

All computers and systems are subject to failure. Be conservative. Save your player cvery haif
hour or so, to avoid losing your work.

Part II. Entering the Knowledge Competition

The knowledge competition is the usually exciting finale to our course. Here are the things you
need to do to participate.

2:15 am -

1. Register and file your player. Your player should be ready, loaded in your machine, and
backed-up in the file system. You should see the course instructors to register your player name,
and the name of a driver for it. (This is to insure that the names arc unique and short enough for
the competition.) Make sure that your player loads correctly from a file. You should also make
sure that you have saved everything your player needs (using /LES?), and that all rule tracing and
breaking has been turned off.

9:30 am

2. Competition debriefing. Before starting the competition, we will spend a few minutes talking
about the idea of a knowledge competition, and will ask cach group to spend 1-2 minutes talking
about their player. One person in your group should be rcady to tell us the main idcas you are
trying,

10:00 am

4. Starting the competition. We will then bring the distributed game master on line and tell
you the nectwork address of the PostMasier.

Note: The game clock will start so that the competition starts automaticafly at 10:15. 1f you fail
to complete the following instructions on time, you can still enter your player, but the competition
will have already started and you will be behind.

5. Go to your workstation. Type:
(StaveTruckin)

This will start the “slave" to the game master, and will also run the compctition with the
"simulation display” turned off. The game master will then ask you the following questions:

Name of your machine: JonesMachine
What is the address of the PostMaster: 12365

For the machine name, you should append "Machine” to your last name. For example, if your
name is "Jones", then you should enter "JonesMachine™ as above. The address of the Postmaster
will be the number that we gave you in step 3.

You will then be prompted to start your players in the usual way. Use your registered driver name.
The promptwindow will begin to print messages about the competition starting soon.

6. It's a lot more fun to watch the game with cveryone elsc, so you can hear the cheers and
groans and gossip as cverybody watches and comments on the performance and luck of the road!

Good Luck!

SYSTEMS BUILT ON TOP OF LOOPS

Thus far in the class, you have been doing exercises to build
vour INTERLISF/LOOPS expertise. Today, we’'ll Dbe locking at
several systems which have been built on top of LOOFS.

The first svstem we'll look at 1is the SIS tool, a tool
constructed to allow some of the generic ideas of browsers tc be
applied and extended. Then we 11 go on to look briefly at a
medical diaancsis system called MDX/MYCIN, a system built
following the 0SU-~AI paradigm of diagnostic expert system desiagn,
and which is implemented on toep of both LOOFS and the 3IS.
Finally, we 11 =nd the course bv looking at some of the
capabilities of CSRL, a language which has been developed tc
allow the expressicn of diagnostic svstems in a straightforward
wav.

THE SIS TOOL

The Structured Instance 3vstem is a LOOFE tcol which has been
designed to extend the notions of "environment control” to the
realm of named instances. One of the important design goals of
the svstem defined ClassBrowser is that the browser should be an
aid to the LOOFS user for organizing and dealing with the world
of LOOPS classes she is developing. The 515 applies that same torp
level idea to LOGPS named instances.

The 5IS has its root in the distinguished LOCPS <claszs called
StructuredInstanceObiject. At the class level it includes a tool
called the StructuredInstanceObijectClassBrowser, a specialization
of the normal ClassBrowser. Going tc the instance level, the 3I=
includes a browsing tocl called the InstanceBrowser that allows
manipulation of the relations between the instances of a subclass
of StructuredInstanceObiect. Finallv., the SIS includes another
araphical tool for showing the current setting for a user chosan
IV of a collection of instances., the Valuelattice.

StructuredInstanceObjects

The 5IS5 includes acts on anv LOOFS class which has
StructuredInstanceUbiect on its supers lisc. There are two
properties that such LOOPS classes have that are important ¢to
understand.

- First, anv instantiation of such a class 1s a named
LOOPS obiect that can be viewsd ‘along anv number of
user defined relations) in relation to other members or
the same <class. These relationships that may exist
between the instances of the StructuredinstanceObiect
are called "InstancelLinks".

- Second, there is a special kind of IV that can be
defined for anv SturcturedInstanceObiect: the "UseriIV".
The notion here is the SIS svstem has been constructed
to allow knowledge engineers to build svstems for
potential end users. At the end user level, many IVs
are of no interest at all - they mav exist in a system
onlv in terms of "makinag the system work", but the end
user mayv not need to know of their existence. To hide
such IVs from the end user, the SIS distinguishes a
special sort of v (the UserIV) for express
interactions that mav be necessary with the end user.

The StructuredInstanceObjectClassBrowser

The starting point for ijumping into a number of SIS defined
ocbiects is the StructuredInstancelbiectClassbBrowser.

The function ssi brings up the a normal class browser starting
from the root SturcutredInstanceMeta, and a
StructuredInstanceObiectClassBrowser starting from the root
StructuredInstancedbiect.

Within the SIS svstem, there are many new menu items that vou
find defined at each of the three level of browser tvpe tools.
Whenever vou see a menu item called "StardardFunctions#" vou can
expect to find a submenu of more normallv defined browser
operations.

EX: mouse the obiect sSorganization
with the left button, then
mouse the StandardFunctions®
with the middie button and
Llook at the items in the submenu

[0}

do the same sort of operaticn
with the middle mouse menu item
StandardFunctionss

In addition to the standard functions, there are a number Of
new operations that vou will find too. The middle mouse sub menu
for example, includes extensive operations for storing and
retrieving obiects from secondarv storage.

EX: conn {FLOFPY:
dir()

now middle mouse Sorganization
and select 3aver with the middle button
the select the item SavellassAndInstances

now do dir() again

now middle mouse sionsTcopLevel,
select Load3ubObiect*x with the
middle button., and then select
Load5SubObiject

this will bring a menu from which
vou could select a file to load that
would restore anv object inferior to
jonsToplLevel that has been stored

mouse anv button outside the selection
menu to tell the svstem you don t want to
load anv file right now

Un the left selection menu for the
StructuredInstancelUbijectClassBrowser, vou' 11 find a item
Browselnstances that will bring urp an InstanceBrowser on the
current instances of the object buttoned.

Before going on to look at the IEB, vou mav want to plav a
lictie bit with some of the other menu items foyr the
StructuredinstanceObiectClassBrowser, but do NOT do
CompileMethods (from the middle button menu).

3

The InstanceBrowser

The heart of the SIS facilities is the InstanceBrowser.

EX: select the lert hutton item
Browselnstances on S$organization

whenn 1t asks for vour starting list
enter 1

when it asks for the relation vou want
to show select (partCGfSuper partOfSub!

place the IB in the normal wayv

You now have up an InstanceBrowser for the instances of
$organization as viewed along a certain relation. A design aoal
for the SIS was to allow the user manv facilities for graphically
editing the relation between his instances. These graphical
facilities are located on the middie menu items for the IB.

EX: mouse s¥xerox with the middle hwutton
select Movelnstance

{at this point the IE goes into
“gather mode"” to gather up
all the supers vou want tfor
the new location for Sxerox..

follow the instructions vou will zee
in the PromptWindow to move sxerox
to have a super of ghattelle and

no subs

select Movelnstance again to
put sSxerox back where it was
to start with.

EX: experiment with the other
middle button items in the IB

The

IB can be brought up for

StructuredinstanceObiect.

EX:

go back to the class level

and bring up an IB for

the instances of Sorganization
along the relation

{tveeOf Super tvpeUfSub)

place the new IBE next to the
old one

In addition to the facilities that

SIS

the notion of

svstem was a vehicle for some

cooperation between IBs.

EX:

seiect $xsis with

with the left button

in the IB showing the

relation {tvpevfSuper tvpelfSub)

select TotallvKillInstance
from the menu

note what happens to the
other IBE vou have up

select sbattelle

with the left button
in the IB showing
(partO0fSuper partOfSub)

select Spawniewbrowser
note that the ol1ld one

(the one from which vou
spawned) disappears

"co-operating browsers'.

anv

At

define

vou have seen
initial experimentation into

relation for a

so far, the

one leavel, there 1is

5

The Value Lattice

In addition to being able to graphically edit the relations
that exist between instances, the 3I3 alsc provides a wav to
access (in this «case either display or change) the values of a
seiected UserIV in all the instances. Suppose Tror example that
vou want to have a UserlV for Scorganization cail projects, and
that vou'd like to store in that IV the names of ongoing proiect
at each level in an organization.

EX: select the title menu item
SetIVofInterest in the 1B
showing (partOfSuper partOfsSub!
for Sorganization

select the IV projects

select the title menu item
MakeValueLattice in the same IB

select the ValueOnly mode of
presentation

place the Valuelattice

The structure of the Valuelattice is exactlyv the same as the I
from which it was invoked, but the print characters for each nod
show the current settinag for the IVofInterest tThat is currentlvy
sekt.

B
e

The action of zThe mouse is verv simple for the Valuelattice,

- the left button is just a diseplay device that wili
highiiagnt a node vou select. and highlight the
corresponding node in the parent IB. This is to Thelp
not get lost in the ValueLattice.

EX: select anv node in the
ValueLattice with the
left mouse button, and
note the action in the
parent IB.

the mcotivation behind
exercise,

6

the notebook,
construcing

what we will do is

- bring the svstem up and run it on a tvpical

- imagine that we are
engineering seesion whnose puUrposs
of MDX/MYCIHN

participating

- The middlie mouse button iz for vyesetting the
IVofInterest for a selected node.
EX: select the node for
Scolumbus-ai in the
ValueLattice with the
middle button
when asked, tvpe in
{ DAKFA)
note the effect on the
ValuelLattice
close the parent IE
and see what happens
(what would vou
WANT to happen?)
Discussion
The 3I3 is a svstem that 1is designed to extend programming
environment offered bv LGOFPS to the realm of named, structured
instances of LOOF3 obijects. In so doina, the idea of cooperating
browsers was introduced. As was hinted at in vesterdav's
exercises, this notion can be very powerful if viewed in a light
trving to help the user manage his thinking. If you have
suggestions, comments, or criticisms of the few parts of the SIS
that vou've seen, don t hesitate to make them known.
MDX/MYCIN
MDX/MYCIN is a medical diagnosis system coperating in a
subdomain of the MYCIN svstem: bacterial meningitis. At the end

vou' ll find a paper describing the system and
it.

For purposes of this
case
in a knowledge

is to Zdebuag a portion

EX: button mmConcept
with the middle mouse
button and select
BrinaUpCommandMenu

The command menu 1is a permanent menu (as cpposed to a pop-up
menu such as vou have seen before! that allows the user to dJust
ask for a desired function.

E¥: button Diagnose
in the command menu
that vou have up for
mmConcept

select the case
mvcinCasez32
for running

The system will now bring up an IB, and proceed to diagnosis
the case followinag an MDX approach. Note how clear cut it 1is to
follow the action of what the system is doing at anv one time.

When the d4ob 1is done, the IB will show in inverted video the
MDX/MYCIN specialists which have been established.

MDX/MYCIN Debugging Session

At this point we can imagine that vou are a xnowledge engineer.
At your side 1s vour resident medicai expert. You have dust run
case 222 and vour expert is requesting tco see the establishing
numbers Ior each specialist.

E¥X: set the IVoflnterest
for the IB that is
shown to MostRecentResult

bring up a ValueLattice

3

Now the medical esxpert points out that the establishing valus
say for dipleoFneumonia is too low. Instead of i, it should have
been 2.

Now vou as the knowledge engineer must (with the help of the
medical expert) figure out what part of the domain knowledge 1is
incorrect.

The first thing to do is to look at the individual knowledge
groups inside the specialist diploFPneumonia.

EX: 1left mouse sdiploFneumonia
middle mouse TruthTableFunctions*
select BrowseTruthTables

Now vou are looking at the individual TruthTables (ie knowledage
groups) that reside in the diploPneumonia specialist.

EX: set the IVofinterest
for the IB vou have up
on the knowledge groups
to McstRecentEkesult

brina up a ValuelLattice
for the knowledoes group
iB

Note we are now plaving the same game that we did before for
the specialist level except one level down: ie. at the knowledage
group level.

Now vour resident medical expert savs <(from looking at the
establishing vresults for the individual knowledae groups) that
the problem is in the diploPneumoia.headlInjury knowledge aroup.

At this point vou have pinpointed a potential problem and vou
can now revise the domain knowledge for that ONE knowledaoe aroup
that vou have found to be in error.

EX: left mouse the
diploPneumonia specialist

select TruthTableFunctions*
with the middle mouse button

select EditTruthTable

select diploPneumonia.headlIniury

Now vou will find the truth =zabls vou have fingered as the
culprit in a DEdit window, readv for vou to alter.

Imagine vou have done the necessarv modifications, and exit
DEdit.

Now vou have made the necessarv change to vour domain
knowledge. Consider what portions of the system must now be
re-tested in order to verifv that the change is acting as vou
want it to.

Comments

There are several points to be made about the expert svstem vou
have just seen. First, the svstem is easily extensible. (Whv?)

Second, the svstem 1s easv to debug because knowledge is
factored in a relativelyv clean wayv on two levels.

Third, the principle of NAMING the knowledage agroups and the
specialists themselves allows easv of use bv the medical expert.

:

USING CSRL IN INTERLISP-D

CSRL 1is a language for implementing diagnostic expert systems.
This chapter emphasizes the details of 1loading and interacting
with CSRL on a Xerox 1108 (hereafter called a Dandelion), rather
than describing the language and motivating it. It assumes that
the you, the reader, have some familiarity with using a Dandelion
and the LOOPS language.

Conventions in this document: Since the printer does not have a
true backarrow character, a "<" is used instead in this document.
Examples showing user interaction indicate what the user enters
by underlining it.

1. Loading CSRL

Before you can load CSRL, your Dandelion must be in Interlisp
running LOOPS. A fresh version of LOOPS is recommended. CSRL
with the Auto-Mech expert system takes up about 700 pages.

To load CSRL, obtain the relevant floppy from Tom Bylander (his
office is Caldwell 408), insert the floppy in into the Dandelion,
and type in:

<LOAD({FLOPPY3}L.OADCSRL)

Before any files are loaded, you will be asked 2 questions. The
first question finds out if you want to load the source code for
CSRL, and the second asks you if you want to locad the Auto-Mech
expert system which is written in CSRL. If you are doing this
for the first time, answer the first question "n" and the second
question "y". The following sections are written in the context
that you have loaded the Auto-Mech system.

2. The CSRL Browser

The CSRL browser allows you examine, meodify, and run a CSRL
expert system.

2

Exercise 1: Creating a CSRL Browser

To get a CSRL browser for Auto-Mech, enter:

¢<{<New sSCSRLBrowser Show ‘'(Auto-Mech Specialist))

The cursor will prompt you (by changing tc a box shape)
to place the browser on the display. You will probably
need to Recompute the browser (using the title menu) in
order to display the whole lattice. Warning: Do not
select the ShowValues item in the title menu until you
have run a case.

The lattice that is displayed shows you the ‘"specialist"
structure of the expert system. FuelSystem, for example, is a
"subspecialist" of Auto-Mech and a "superspecialist" of Vacuunm,
Delivery, and other specialists. Each specialist of Auto-Mech is
associated with a hypothesis about the state of an automobile
engine, e.g., FuelSystem is associated with the hypothesis that
something is wrong with the fuel system (the subsystem that
delivers a mixture of fuel and air to the cylinders of the
engine). The hypotheses of FuelSystem’s subspecialists are (as
you might expect) sub-hypotheses of FuelSystem’s hypothesis.

The remainder of this section briefly describes the commands
available to you on the browser. Following sections describe
more details about using the browser and creating your own expert
system.

2.1, Left Button Commands

Print Prints a specialist or some part of it on the
PPDefault window. Selecting this item brings up
the following menu.

Specialist Prints the whole specialist.
Declarations Prints the declarations of the
specialist. These indicate its

super- and subspecialists.

Knowledge Group Prints a knowledge group of the

specialist. - Another submenu is
displayed for selecting which
knowledge group to print.

Knowledge groups correspond to

Doc

Wherels

Unread

Diagnose

3

major decisions to be made by the
specialist.

Message Prints a procedure that responds
to a particular CSRL message (not
the same as a LOOPS message).
Another submenu is displayed for
selecting the procedure to print.
The Specialist class contains the
default procedures for messages.

Retrieve documentation on the specialist or some
part of it. It has the same submenu structure as
the Print command. This command also lets you
retrieve documentation for parts which are
inherited by the specialist. Currently all the
specialists in Auto-Mech are subclasses of the
Specialist class, which contains default
information for all specialists.

Find out where a part of the specialist is
inherited from.

Unread the specialist into the current display
stream.

Do diagnosis starting with this specialist.
Submenus for selecting what case to diagnose, and
what message to send are displayed. This command
is covered in more detail in the next section.

2.2. Middle Button Commands

Add

Add a new item to the specialist. Brings up the
following submenu.

Specialist Lets vyou edit the specialist.
This 1is no different from using
the Edit command to edit the
specialist.

Declarations Lets vyou edit the declarations.
This is no different from wusing
the Edit command to edit the
declarations.

Knowledge Group Add a knowledge group to the
specialist. You are prompted to

BoxNode

Copy

Delete

Edit

Rename

4

type in the name of the knowledge
group in the prompt window and
then you are sent to the editor.
If you type 1in the name of a

previously defined knowledge
group, that is what you will
edit.

Message Add a message to the specialist.

A submenu is displayed for
selected what message you want to
add (what messages can be sent is
predefined), and then you are
sent to the editor. If you
select a previously defined
message, that 1s what you will
edit.

Boxes the node. This 1is wuseful (in fact
necessary) to use the Copy command.

Allows you to copy a knowledge group or message
from the specialist that was selected to the
specialist which is currently boxed. Submenus
let you select the knowledge group or message of
yvour pleasure.

Allows you to delete a knowledge group, message,
or the specialist itself if it is a tip

specialist, 1.8., a specialist with no
subspecialists. Submenus 1let you select the
knowledge group Or message. An additional
submenu of one item 1is displayed to ok the
deletion. Clicking the mouse outside the menu
cancels the deletion. Harning: Undoing a

knowledge group or message deletion 1is not
possible. To undo a specialist deletion you need
to add the specialist back as a subspecialist of
the appropriate specialist, and edit the
declarations of the specialist.

Allows you to edit the specialist or some
previously defined part. Its submenu is the same
as the Add command. The difference is that for
the Knowledge Group and Message subcommands, you
select what you want to edit from another
submenu.

Allows you to rename a knowledge group or the
specialist itself.

2.3. Title Menu Commands

ShowValues Brings up a sub-browser which shows the
confidence wvalues for the specialist in the
current case. See next section for more details.

Recompute, AddRoot, DeleteRoot, SavelInIT
Same as for class browsers. Recompute is not
automatically called when a specialist’s
declarations are changed, so0 you will need to
Recompute the browser "manually”.

2.4. Shift Commands

If the left shift key is depressed when you click the left
mouse button, a summary of the specialist is printed in the
PPDefault window. This will be referred to as the Print Summary
command. :

If the 1left shift key is depressed when you click the middle
mouse button, you will be sent to the editor to edit the
specialist. You can use the Edit command to do the same thing.

Exercise 2: Operating the Browser

If you haven't Dbrought up the browser for Auto-Mech
vet, it is suggested that you do so now.
Try using the Print, Print Summary, and Doc commands on
the specialists.
Use the Edit command to bring up a specialist or a part
of one in the editor. If you make no changes before you
exit the editor, no processing will be done. If you make
changes, and exit the editor, then if an error is
discovered, you will go back to the editor; otherwise the
changes that you have made will take effect (and are
undoable). BSelecting the Stop item from the Exit submenu
{use the middle button to display the submenu) will let
you exit the editor without making any changes. Use the
Print command to confirm this.
Use the Copy command to copy the summary knowledge group
of Specialist to Choke. You will need to use the BoxNode
command on Choke first. Confirm the copy with the Print
command. Use the Delete command to remove the summary
knowledge group from Choke.
Rename the Choke specialist to UsedToBeChoke. Rename it
back to Choke.

3. Running a Case
Exercise 3: Running Auto-Mech
Left button the Auto-Mech specialist in the browser,

select the Diagnose command, "new case?" and "Establish-
refine". Auto-Mech will now present questions for you to
answer 1in the TTY window. Also, some information about
what the specialists are doing is displayed. The
specialist that is currently executing is boxed in the
browser. For anyone who doesn‘t want to think of answers
tc the gquestions, use the following:
Do you have problems starting your car? n
Does the car stall? n
Does the car run rough? y
Does the problem occur while idling? n

Does the problem occur on loading? y

Does the problem occur while the engine is both
hot and cold? ¥y

Have you eliminated ignition as a possible cause
of the problem? y

Is any fuel delivered to the carburetor? y

Have you been getting bad gas mileage? n

Are there any cracked, punctured or loose vacuum hoses? u
Can you hear hissing while the engine is running? n

Are the vacuum hoses 0ld? y

€Can you see cracks in the carburetor gasket? y

Has FuelSystem completed diagnosis? n

Is the air filter 0ld? n

Has FuelSystem completed diagnosis? n

Have you tried a higher grade of gas? y

7
3.1. What Happens When a Case is Run

Hhat you just did was to send an Establish-refine message to
the Auto-Mech specialist in the context of a new case. Upon
receiving this message, the Auto-Mech specialist sent itself an
Establish message, scome questions were asked, and then the
specialist sent itself a Refine message, which then called
Auto-Mech’s subspecialist, FuelSystem, with Establish and Refine
messages. As this "establish-refine" process was applied further
downn the hierarchy, some of the specialists were sent Establish
messages, but not Refine messages. This happened either because
the specialist had no subspecialists or because the specialist
did not have a high enough confidence value.

In CSRL, a seven-point confidence value scale is used. For
convenience, we use the integers from -3 to +3, which can be
loosely interpreted as:

3 Hypothesis is confirmed.

2 Hypothesis is very likely.

1 Hypothesis is mildly likely.

0 Evidence for the hypothesis is inconclusive.
-1 Hypothesis is mildly unlikely.

-2 Hypothesis is very unlikely.

-3 Hypothesis is disconfirmed.

If the confidence value is 2 or 3, the specialist is said to be
established. For -2 or -3, the specialist 1is said to be
rejected. Otherwise the specialist is suspended.

A sub-browser is available to display the confidence values in
a graphical manner by selecting the ShowValues item from the
title menu.

Exercise 4: Creating a Confidence Value Browser

Select the ShowValues items in the Auto-Mech browser.
You will be prompted to display the browser window on the
screen. Try out the menus in this browser. Note: The
confidence value browser won't work unless the top node,
Auto-Mech, has a confidence value in the current case.

Since you can use the main browser to send any message to any

8

specialist, you are able to "explore" any diagnosis that was not

originally done.

Exercise 5: Diagnosing From Inside the Hierarchy

Left button one the specialists that has a confidence
value but was not refined, and select Diagnose, "current
case?", and Refine from the menus. After this processing

is finished, go to the confidence value browser,
select Recompute from the title menu.

3.2. The Current Case

and

CSRL remembers what the current case is by setting the variable

currentCase. Cases correspond to instances of the <class
CSRLCase, which has methods for implementing a simple
question-asking facility. CSRLCase also keeps track of old

cases. Presently there is no facility (but one is planned) for

renaming or saving cases.

3.3. Tracing CSRL

The trace information that the diagnose provides you is done
using the functions TraceCSRL and UntraceCSRL. Both of them are
NLambda-NoSpread functions, and take arguments corresponding to

the following forms:

Specialist Trace all specialists
(TraceCSRL Specialist)

{specialist> Trace the specialist
{(TraceCSRL Mixture)

Message Trace all messages
(TraceCSRL Message)

(Message to {(specialist))
Trace messages to this specialist
(TraceCSRL (Message to ValveOpen))

(Message from (specialist?>)
Trace messages sent from this specialist
{TraceCSRL (Message from FuelSystem))

Rule Trace all rules. This will only trace the

of specialists that are currently traced.
(TraceCSRL Rule)

rules

(Rule of (specialist>)
Trace rules 1in the specialist. This will only
trace the rules if the specialist is traced.
(TraceCSRL (Rule of Carburetor})

(Rule of <(name’> kg)

Trace rules of knowledge groups with this name
(TraceCSRL (Rule of summary kg))}

For example, the present tracing level was done by

(TraceCSRL Specialist Message). UntraceCSRL removes a previous
TraceCSRL.

Exercise 6: Tracing Rules in Selected Specialists

Trace the rules of each of FuelSystem’'s immediate
subspecialists, and then diagnose a new case.

4. Making Your Own Expert System

This section gives a brief incomplete account of how to build a
simple expert system in CSRL. In particular, it contains no
information on how to change the default Refine procedure. It
also depends on your ability to figure out how the Auto-Mech
system. The section also includes exercises on building part of

a expert system for diagnosing problems in a house (or apartment
or mansion if you like).

4.1. Making the First Specialist

To make a specialist, use the function Specialist, which has
the form:

(Specialist (name> <{comment>
{declare {(declarationl> {(declaration2) ...)
(kgs <kgl> <kg2> ...}
(messages (messagel) {(messageZ’ ...))

The declare, kgs, and messages sections are optional, as well as
the comment.

10

Exercise 7: Creating the House Specialist

To make an specialist called House do:

€{Specialist House {* House is a new specialist))

You should also create a browser to facilitate future
additions.

< (£<New SCSRLBrowser Show ‘'{House Specialist))

4.2. Adding Subspecialists

To add subspecialists to the expert system, it 1is easiest
edit the declarations of the existing specialists.

Exercise 8: Adding Subspecialists to House

Use the Edit command (or left shift/middle button) to
edit the House specialist. Add declarations after the
comment (change the comment if you wish) which look like:

(declare
{subspecialists Electrical Heating
Security Water))

Be sure that you have spelled "subspecialists" correctly.
Now Exit the editor and Recompute the browser. The
specialists should have been automatically created.

to

11

Now add more specialists so that the browser looks
something like:

| -—0verloadedCircuit

| -——-BlownFuses--|
{ | --ShortCircuit
|--Electrical--|
| | | --BadLightSwitch
| | --LightBulb---|
! | ==BurnedOQutBulb
|
i | --HeaterOff
| I
| | --InefficientHeater
| --Heating----- |
| { —-NoFuel0il
! | | ~-BadThermostat
! | --Thermostat--|
f | --HWrongSetting
House--|
| | --DoeorLocks
|==Security——-—|
| | ~-WindowLocks
|
!
{ | --CloggedPipe
i |
|] | --BrokenWaterHeater
| I |
| | --HotWater----|--SmallWaterHeater
! | |
|-—-Water------- | | —-WaterHeaterOff
!
i | ——BasementLeak
| I
| -—-HaterLeak---{--PipeLeak
!
| --RoofLeak

Of course, feel free to restructure the specialists any
way you like. You should be forewarned, though, that the
"perfect” hierarchy does not exist. Below we will only
be concerned with embedding knowledge within the Heating
subhierarchy of this structure, so it is not necessary to
create the whole structure.

12
4,3. Adding Knowledge to the Specialists
In CSRL, most of the knowledge of a specialist takes the form

of knowledge groups. A knowledge group (hereafter abbreviated to
kg) maps a list of expressions to a confidence value (or some

other measure). This can be the confidence value of the
specialist or perhaps the confidence value in some intermediate
hypothesis. For example, there might be a kg in the Security

specialist called badNeighborhood, which could measure the
likelihood that you are in a bad neighborhood or measure of the
"badness" of the area. This value and values of other kgs (which
measure other facets of security) could be <combined by a
"summary" kg to arrive at a confidence value for the specialist.

One type of kg is called a Table kg. Its form is:

({name> Table {comment>
(match (expression> {(expression>
with (if (test> <{(test) ...
then <(valiue>
elseif (test> <(test) ...
then (value?
else <(value’}))

For example, the BadGas specialist of Auto-Mech has this kg:

(relevant Table
{match
{AskYNU? "Is the car slow to respond")
(AskYNU? "Does the car start hard")
(And
{AskYNU? "Do you hear knocking or pinging
sounds"”)
(AskYNU? "Does the problem occur while
accelerating”))
with
(if T 2 ?
then -3
elseif 2 T ?
then -3
elseif 7 2 T
then 3
else 1)))

If the first expression is T (true), then the value of the kg is
-3. Else, if the second expression is T, then -3. Else, if the
third expression is T, then 3. Otherwise, its value is 1. Note
that the number of tests following the "if" or ‘"elseif" 1is the

13

same as the number of expressions of the table. Also note that
each test must be true for the "row" of the table to match. The
"?" test matches any value. The syntax for expressions and tests
are discussed below. You are encouraged to look at other Table
kgs in Auto-Mech.

The other type of kg which will be discussed is the Rule kg.
Its form is:

(<{name’?> Rules (comment’
{match (expression’
with (if <{(test>

then <value>
elseif (test>
then <(value>
else <(value?>))
{match (expression>
with ...)
.)

A example from the Carburetor specialist of Auto-Mech is:

(other Rules
{match (AskYNU? "Is there fuel leaking around the
carburetor")
with (if T then 3))
(match (Or
(And
(AskYNU? "Do you hear knocking or
pinging sounds")
{AskYNU? "Does the engine idle fast"))
(And
{AskYNU? "Does the car hesitate")
(AskYNU? "Does the problem occur while
decelerating")
(AskYNU? "Does the engine idle fast"))
{AskYNU? "Does the engine idle slow")
(Ask¥YNU? "Does the car run rough"))
with (if T then 3)))

Each rule {a match-with form) is tried in succession until one
“matches". A rule matches if it returns a wvalue, 1i.e., the
{expression> satisfies a test in the if-then part, or if there is
an else clause within it. (As a consequence, it only makes sense
to have an else clause in the last rule.) The value of the
matched rule becomes the value of the kg.

14

4.3.1. Expressions in CSRL

Names of knowledge groups, numbers, CSRL variables, LISP
expressions {(e.g., AskYNU? is a LISP function), "self", and the
logical constants T, F, and U are the base expressions of CSRL.
CSRL variables will not be discussed here (but see the Refine
message procedure of Specialist for an example). Any list which
is not mistaken for a CSRL expression is assumed to be a LISP
expression. The literal ‘'"self" evaluates to the name of the
current specialist. Note that CSRL uses a three-valued logic.

CSRL provides the normal set of logical and numerical
comparison operators, as well as a small set of arithmetic

functions.

{And <(exp> <(exp’> ...)
Returns T if every expression is T, F 1if any
expression is ¥, and U otherwise.

(Or <(exp> {exp? ...)
Returns T if any expression is T, F if every
expression is F, and U otherwise.

{Not <exp>) Returns T if the expression is F, F if it is T,
and U otherwise.

LT, LE, GE, GT Numerical comparison operators with the obvious
interpretation. If one or both expressions are
not numbers, U is returned.

{Range (exp’> (exp> (exp>)
Returns T if the first expression is within the
range (closed interval) of the second and third
expressions, and F if it is not. U is returned
if any expression is not a number.

EQ Equivalent to EQ in LISP.

Plus, Subtract, Minus, Times, Divide
Arithmetic functions with obvious
interpretations. If any of the expressions are

not numbers, U is returned.
4,3.2. Tests
{And <{(test) (test> ...)

Returns T if every test is T, F otherwise.

(Or (test> <(test) ...)

15

Returns T if any test is T, F otherwise. test is
F, and U otherwise.

{Not (test>) Returns T if the test is F, F if it is T, and U
otherwise.

{LT <{number>), (LE <{(number?>), (GE <{(number>), (GT <{(number>),
Numerical comparison with the obvious
interpretation, e.g., for LT, returns T if the
expression is less than the number.

(Range <{number) <{(number>)
Returns T if the expression is within the range
(closed interval) of the numbers, and F
otherwise.

(EQ <atom or number>)
Returns T if the expression is EQ to the atom or
number, and F otherwise.

(atom or number>
If not embedded in a LT, Range, or some other
comparison test, an equality test is implied.

4.4, Writing Procedures for Establish Messages

In general, a specialist sets its confidence value within its
procedure for the Establish message. This section explains some
of the syntax for these procedures: A simplified form for an
Establish message procedure is:

{Establish {(comment>
(statement>
(statement>
P |

CSRL also has facilities for creating local variables and passing
parameters, but these will not be necessary for the final
exercise. As always, you are encouraged and exhorted to look at
the Auto-Mech specialists as examples for specialists that you
write.

4.4.1. Statements

(if <exp> then (st> elseif (exp> then {(st> else <{(st)
Evaluates each expression until one 1is T. The
corresponding clause is executed. If no

16

expression 1is T, the else clause (if any) is
executed. More than one statement can follow a
then, elseif, or else.

(SetConfidence {(expression’> {(expression))
The first expression should evaluate to the name
of a specialist. In general, you will only use
"self" here. The value of the second expression
becomes the confidence value of the specialist.

(DoLisp {form> (<{lisp var> (CSRL exp>)
({lisp var> (CSRL exp’)
)

Uses Lisp EVAL to evaluate the form. Before
that, each of the Lisp variables are bound to the
corresponding CSRL expression. This allows an

escape to Lisp, and a way to get at wvalues in
CSRL. This may also be used as an expression.

17
5. Final Exercise

Exercise 9: Implementing Part of the House Expert System

Add knowledge groups and establish procedures to the
specialists in the Heating hierarchy. Use Ask¥YNU? to get

information from the user about his heating system. You
should consider the following questions in your
implementation.

"Does your house get too cold"

"Does your house get too hot”

"Is your heating bill too high"

"Are you out of fuel oil"

"Is your furnace old"

"Has your furnace been checked recently”
"Is the fuel oil igniting in your furnace"
"Is your thermostat set low"

"Is your thermostat set high"

"Does changing the thermostat affect the temperature"

18

Alsc, examine the following questions, consider what
additional hypotheses should be considered, and modify
the Heating hierarchy accordingly. In addition to adding
more specialists, you will probably need to reorganize
the hierarchy so that similar specialists are grouped,

e.qg., having a FuelOilDelivery specialist with
EmptyFuel0ilTank and ClosedFuel0ilValve as
subspecialists.

"Is the fuel o0il valve open”

"Are your heating vents open”

"Does the furnace fan turn on"

"Are your windows open’

"Do you have a fireplace"{heat can escape up the chimney)
"Do you feel air coming through the windows"

"Is your attic insulated”

1.

i

Table of Contents

Loading CSRL
The CSRL Browser

2.1.
Zods
2.3
2.4,

Left Button Commands
Middle Button Commands
Title Menu Commands
Shift Commands

Running a Case

3.1.
3o e
3.3,

‘Making

4.1.
4.2.
4.3,

4.4.

What Happens When a Case is Run

The Current Case

Tracing CSRL

Your Own Expert System

Making the First Specialist

Adding Subspecialists

Adding Knowledge to the Specialists
4.3.1. Expressions in CSRL

4,3.2. Tests

Writing Procedures for Establish Messages
4.4.1. Statements

F'inal Exercise

(YolNelNualiou B NINeRIR G RN E) OV VI8 ool o

L el =l =
NUeRNO

Exercise
Exercise
Exercise
Exercise
Exercise
Exercise
Exercise
Exercise
Exercise

WO W

ii
List of Exercises

Creating a CSRL Browser

Operating the Browser

Running Auto-Mech

Creating a Confidence Value Browser
Diagnosing From Inside the Hierarchy
Tracing Rules in Selected Specialists
Creating the House Specialist

Adding Subspecialists to House
Implementing Part of the House Expert System 17

o
COoOVWEmNOUIN

filed on: {indigo}<kbvisi>loopscoursertruckin.bravo
Last Edited: SM: July 11, 1983

Truckin

A teaching game for expert systems

by the Loops Design Team
Daniel Bobrow, Sanjay Mittal, and Mark Stefik

copyright (c) 1983 by Xerox Corporaticn

Abstract. Truckin is a knowledge system used for teaching knowledge representation techniques in
Loops. Truckin provides an environment for creating, testing, and evaluating small bodics of
knowledge interactively. Much of the knowledge in Truckin is represented as rules for controlling
an autornated truck in a simulation. The rules enable a truck to plan its journey along a road as it
buys and sells commodities. A Truckin knowledge base can be evaluated in terms of the ability it
gives an automated truck to make a profit while avoiding hazards of the highway. Truckin
knowledge bascs can be extended incrementally, so that a new Loops user can begin by extending
existing sets of rules. Truckin contains illustrative examples and idioms for access-oriented, object-
oriented, and rule-oriented programming,

Introduction

Loops is a knowledge representation system designed for use in building expert systeins. [t
augments the Interlisp-D cnvironment with object-oriented programming, access-oriented
programming, and rule-oriented programming. Loops was developed by members of the
Knowledge Systems Area at Xerox PARC.

In January 1983, the Loops system was ready for beta-testing outside of Xerox PARC. To help
beta-test users to learn and evaluate Loops, the Loops Group decided to offer a short intensive
course. This course was intended to provide hands-on experience in using loops. Because Loops
was designed for expert systems applications, it was belicved that the best way to teach Loops would
be to organize the course around a mini-expert system.

It was important that the mini-expert system for the course not be too technically specialized,
because people taking the Loops course would come with a variety of different backgrounds. The
mini-expert system should be based on knowledge from common expericnce. The cxpert system
needed to be engaging enough and open-ended enough to draw pcople into developing fairly
claborate knowledge bases. This led to the idea of a simulation game around which we could have
"knowledge competitions”.

This document describes the Truckin world as a teaching and simulation game around which
the Loops course is organized.

The Trucker’s Handbook

A “player” in Truckin is qualitatively different from a player of computer and video games,
such as those that are popular in arcades and on home computers. In most computer games, a
player is a person. In Truckin, a player is a knowledge base. In this way, personal competition in
Truckin is one level removed from the game. The objective is to creale a knowledge base that can
effectively guide a truck in the situations it encounters in the simulation cnvironment.

Truckin provides a set of commodities, producers, consumers, hazards, road stops, and trucks.
The Truckin world is intended to be complex enough to be interesting in the Loops course, but too
complex for a simple malhematical model. The online data basc of [facts about this world is,
metaphorically, called the Trucker’s HandBook. A wise Truckin player will consider the facts in the
Trucker’s Handbook in planning its route.

The simulation in Truckin is controlled by a program called the GameMaster. In different
contexts, the term "Game Master” refers to different combinations of programs, knowledge bases,
processes, and computers. For simplicity, we refer to the whole thing as "the” GameMaster. The
GameMaster chooses the initial configuration of the highway, somctimes called the game board,
decides on the legality of the requests made by the players, updates thc GameWorld and maintains
the display.

The players talk to the GameMaster, who also decides which player gets the next turn.
Currently, players get their turn on a time-robin basis, i.c., the player who has used the least
amount of time gets the next turn, During a turn a player can buy or sell commodities at any
RoadStop at which it is parked. These transactions are governed by practical considerations of how
much money is in the truck’s cashBox, whether there is cargo room in the truck for the goods, and
whether the RoadStop advertises an interest in buying or selling the particular commodities. During
a single move a truck can also drive to one other RoadStop. The distance that the truck can travel
in a move is governed by a variable reflecting traffic conditions, as well as the maximum speed of
the truck and the amount of gasolinc remaining in the fuel tank.

Profits and Risks

The goal of a player in Truckin is to maximize profit during the game. The game ends after a
predetermined number of turns. At the end of a game, the winning player is the one with the most
cash. AlicesRestaurant is a special roadstop because any player who is parked there when the game
ends, gets a hefty bonus. :

Players compete for a fixed supply of goods and parking places. Just as with real trucks, there
are a number of things that are important to know about the world. For the details of this, a player
should consult the Truckin Handbook (database of rclevant Loops classes). Here is a summary of
the clements of the Truckin world:

Kinds of Trucks. Players start the game at UnionHall with an cmpty (ruck and an allotment of
fuel and cash. Trucks come in different varicties, with different speeds, different
fue! efficiencies, and different capacities for carrying merchandise. During cach turn,
the speed of the truck is measured as the ratio of the number of roadstops actually
moved and the maximum allowed for that class of truck.

RoadStops. RoadStops are the positions along the highway. In the standard version of the
game board, therc are sixty six RoadStops along the highway. Ncighboring
RoadStops arc scparatcd by one mile. Up to two trucks can be parked at a
RoadStop.

Producers. Producers are RoadStops at which players can purchase goods. A given producer
will scll only a fixed kind of item, for cxample tclevisions, shirts, or apples. A
Producer has only a fixed inventory of items for sale, and this inventory is used up
as the simulation runs. The game board display shows the guantity of items for
sale, and a price ratio which can be multiplicd times the averagePrice of a
Commodity to determine the purchase price. An icon is displayed on the game
board to show the kind of Cemmodity. There are usually about 30 Producers
distributed along the highway.

Consumers. Consumers arc RoadStops at which players can scll goods. [n general, Consumers
are interested in generic kinds of goods, such as sporting goods, office supplies, or
groceries, The capacity for a Consumer to buy goods decrcases as items are
purchased. The game board display shows the quantity of items that will be
purchased, and a price ratio. The name of the generic class of Commodities to be
purchased is displayed on the gamc board. There are usually about 23 Consumers
distributed along the highway.

Commodities. Commodities arc the things that are bought and sold along the highway. The
kinds of Commoditics that arc available arc shown in the Trucker’s Handbook.
Some Commoditics have special features, such as being fragile or perishable,
PerishableCommodities have a lifetime (expressed in turns) which determines how
long the Comunodities remain salable. Fragile Commodities have a fragility which
determines how likely they are to brecak when you go past RoughRoads.
Commodities also have a volume and a weight which means that a truck can carry
commodities limited by the available volume and weight on the truck.

Gasoline. Driving a truck uses up gasoline. Gasoline can be purchased at GasolineStations
along the highway. Running out of gasoline results in a towing and a fine. There
are usually about 5 GasolineStations along the highway.

WeighStations. WeighStations represent the arm of the government in Truckin. If a player
goes by a WeighStation without stopping, he risks some chance of receiving a stiff
fine and a towing back to the WeighStation. If he stops, he must pay a small toll
(and usc up a turn).

Rough Roads. Some RoadStops corrcspond to rough places on the road. Driving past a
RoughRoad entails some risk to any FragileCommodities that arc on board. If a
player stops at a RoughRoad, no damage will result.

Bandits. Bandits in Truckin do not sit still. 'They can park at various RoadStops as controlled
by the GameMaster and can intercept trucks. 1f a bandit intercepts a truck, or is
parked at the same roadstop as a truck, it will take all of the LuxuryGoods that it
has room for and one fifth of the moncy in the cashBox.

The CityDump. In general, an attempt to sell perished or damanged goods results in a stiff fine.

However, such goods can be unloaded for a fee at the CityDump. (In the
simulation, these goods are sold for a modest “negative price".)

The Union Hall. If a player runs out of gas, he will be towed to Union Hall. There he will be
given a new allotment of cash, but his truck will be emptied. This happens to a
player whether he goes to Uniontall on his own request, or whether he is towed
there for violating some rule.

Alice’s Restaurant. At the end of the game, all of the trucks try to make it to Alice’s
Restaurant. Players ending the game at any of the Alice’s get their cash doubled.
There may bc more than one Alice’s Restaurant on the highway, and any one of
themn will do. [f there arc more trucks in a game than parking places at the
restaurant, then there will be competition for the places. To preclude the strategy of
just going to Alice’s Restaurant and parking, any player who parks there for more
than somc specified time will be towed away to Union Hall.

Advice for Independent Truckers

To succeed at Truckin, a player must be responsive to the configuration of the highway and to
changing conditions. To make a profit, a player must consider the spread between price ratios and
the convenience of the relative locations for buying and sclling commodities. A player must not
exceed the capacity of his truck in cither weight or volume.

We have a few final suggestions for players. Don’t buy goods that you can’t scll at a profit.
Don't buy PerishableCommodities if you can’t deliver them on time. If your goods spoil or are
damaged, take them to the CityDump. Keep an eye on your fuel gauge. Don’t drive too quickly
with FragileCommodities over RoughRoeads. Don’t spend all of your cash on Commodities; you may
nced some for incidentals along the way., Watch out for bandits, rough roads, and weigh stations.
And try to be at Alice’s Restaurant when the game ends.

filed on: {indigo}<kbvlsi>loopscoursc>truckinmanual.bravo
Last Bdited: SM: July 11,1983

Truckin MANUAL

by the Loops Design Team
Dani¢l Bobrow, Sanjay Mittal, and Mark Stefik
Copyright (c) 1983 Xerox Corp

This document gives the basic instructions for creating game boards, starting, stopping, and
continuing a game, interrupting a game in the middle, and attaching gauges to monitor the internal
state of Truckin players.

[NB: Truckin now has versions which run on both single machines as well as multiple-machine
configurations. The following instructions are written for the single machine version. Any
differences for the multi-machine version are indicated in smaller print. Otherwise the instructions

apply to both versions.]

A. Creating a new game
Send the message New to $Truckin as follows:
(¢ S$Truckin New)

this creatcs a new gamc board and the lisp variable Playerlnterface is sct to the instance of
TruckinPlayerinterface. All commands sent by your player or you go to Playerinterface. You can
play any number of times on this basic game board as follows.

[On a RemoteMasterMachine:
(¢ S$MasterTruckin New) creales a new game.
On a RemoteSlaveMachine:

{+ $SlaveTruckin New) scls up the Truckin world and links your machine to the MasterMachine. You will be asked
for a unique name to identify your machine and the address of the PostMaster. Please ask the game coordinator for this
address. A new game cannot be created from a slave machine - the slave machine will run the game created by the
master machine,

PlayerInterfuce is set as above in both these cases as well],

[[l[In all these cases, upto 4 arguments can be given to the New message (o select the game configuration you wanl. The
descripltion above is for the default case.

Arg 1: Type of Game-

This specifics what kind of DecisionMaker and PlayerInterface you want, Currently the only value is TimeTruckinDM
(thc appropriate player interface is automatically selected). Later, we may put in olher versions of the game.
Arg 2. Type of Game Board-

This specifics what kind of game board you want: BWTruckin or ColorTruckin. The former is the default. In order to
use Colorlruckin option, you need a color monitor atlached to your machine.

Arg 3 Type of Simulator-

‘This specifies whether you wanl the game board to be displayed or not: DisplayTruckinS or NoDisplayTruckinS. The
former is the default. The NoDisplay version of the simulator maintains an upto date version of the game but docs not
display the pame board

Arg 4. Broadcast List-

This is a list of objects who want to receive a copy of all game messages which change the world. These objects must be
capable of responding to the messages described in the MultiMachineTruckin document. These objects will get the
messages after the world has already been updated.]]]]

B. Starting a game

Send the niessage BeginGame to Player{nterface to start a game as follows:
(¢ PlayerInterface BeginGame)

This message refreshes the game board created carlier and prompts you for the players you want in
this game. You can cither create new players from among the existing player classes (via an
interactive menu) or use any players created carlier. [The menu appears next to the prompt window
at the left top of the screen). The menu for the players offers you a choice of both player classes
and existing player names. You can opt for all existing players by choosing the ALL-EX [STING
menu option. Select NO when you are done selecting players.

You can pass one optional arguments in the BeginGame message.

Arg : If T then all existing players will be used for the game and you will not be asked for players. This
might be convenient during debugging when you want to use the same game board and same set of
players for debugging your player. :

([If you are running SkaveTruckin, BeginGame will let you select your local players, but the game will only start when the Master
Machine decides - which it does when a BeginGame is done on the Master Machine.]]

C. Interrupting a game in the middle.

In addition to the rule exec and the break/trace facility of the rule language (see Rule Language
manual), there is another way to temporarily stop a game in the middle and bring up the lisp user
exec. Hold the CI'RL and LEFT SHIFT keys simultancously when one of the trucks is moving.
This will put you into the Lisp User Exec, where you can examine things and/or edit your rule sets
and functions. Type OK in the Excc to resume the game. On a dorado, the trucks move pretty fast,
so if the above does not work the first time, try again.

C.2 Interrupting a player any time

Left of the Status Window, you will notice a menu which lists the players running on your machine.
Selecting any player in the menu, allows you to interrupt that player and bring up the Rule Exec.
Remember that the game time continues to click while you are in the Rule Exec.

D. Suspension/Premature Termination of the Game

You can suspend, resume, or kill the game by using the Game Control Menu, which normally appears
left of the Status Window. Sclecting Suspend will suspend the game (but remember that the time
allocated for the game continues to tick, so when you resume, the intervening time will be deducted
from the game time). Selecting Awake will resume the game and Kifl Game will Kill the game.

E. Attaching gauges to your player’s truck

You can attach gauges to Instance Variables (1Vs) of abjects under your control such as your player
or truck in order to monitor important internal state during the game. When you first create a
player, the game master will offer to put gauges on your truck, i.c., to the IVs cashBox, fuel, weight,
and volume. You have several options. NO will not put any gauges. YES response will lead to the
system asking you whether you want gauges on cach of the four IVs listed above. For each 1V for
which you respond with Y£S the system will offer a choice of gauges. DEFAULT response will put
default gauges on fuel

Once you put gauges on a player, they can be reused when you use the same game board for a new
game or create new game boards. Thus, if you expect to use a player many times, it pays to attach
the desired gauges once and continue to use the player.

F. Attaching gauges to other I'Vs of your player

When you create a player, the instance object is given the same name as the driver name you enter.
Thus, if you name some player Joe you can access the object as $Joe.

You will often find it uscful to attach gauges to IVs of your player. For example, if your player is
an instance of Peddler, you might want to monitor IVs such as destination, stoppingPlace, and goal.
The way to attach gauges on your player is to send it the AddGauges message. For example,

(+ $Joe AddGauges ’(destination goal)

will attach gauges to destination and goal IVs of $Joc if $Joe is an instance of Pcddler. The
AddGauges method will prompt you for the type of gauge. The most suitable gauge for arbitrary
values is LCD.

The AddGauges message can be used to sclect default gauges on the instance variables indicated,
instead of having to sclect gauges yourself cach time. In order to do this, you have to specify
additional information in the object class as shown in the following simplified description of the
class Truck.

(DEFCLASS 'Truck
(MetaClass ..)
(Supers ..)
(ClassVariables ..)
(TnstanceVariables (cashBox 10000 DecfaultGauge 1.CD Gaugelimit (0 10000))
(fuel 80 DefaultGauge Dial Gaugelimit (0 80))))

Thus, suppose, you wanted an LCD gauge to be the default gauge on destination, you can specify
this for use by the AddGauges mcthod by adding the property DefaultGauge to the instance
variable destination with LCD as the value. Then pass T as the second argument in the above
AddGauges message. This will result in a T.CD gauge being installed on destination and you will be
prompted only for goal. [You can do the same for goal or any other Vs also]. If the default gauge
you have specified 18 being used for numbers, you also should specify the default limits. For this,
put under the Gaugelimit property a list containing the two numbers which indicate the lower and
upper limits.

G. Adding gauges under program control

You can also attach gauges under full program control by specializing the method SetUpGauges in
the class Player. The description given above is carricd out by this method. You could write your
own SctUpGauges method in your player class and make it attach gauges by using the method
AddGauges described carlier. Both Truck and Player respond to the message AddGauges. This way
you could build into your SetUpGauges method, your choice of gauges, which then will be carried
out by the system cach time you create a player of that class.

H. Selecting trucks under program control

You can also select the truck you want for your player automatically, instead of being prompted for
it. In order to do this specialize the method SelectTruck for your player class. This method will be
called when your player class is instantiated. This method should return Yhe name of one of the
truck classes currcntly allowed in the game. Curcently, the allowed trucks are: MacTruck,
GMCTruck, FordTruck, and PeterBiltTruck.

1. Summarizing the truck data at a glance

You can get a summary report of your players truck by sending your player (say Joe) the Show
message as follows:

(¢ SJoc Show)

This will print out the cashBox, fuel, weight, and volume, as well show you the cargo your truck is
carrying. This summary may be uscful during debugging.

J. Clearing up the screen

If your screen gets messed up for some reason, you can restore it to the initial state by buttoning
the LoopsLogo in the middie top of your screen and selecting the command SetUpScreen. You can
also do this in the middle of the game when you are in any of the rule exec, user exec or break
exec. Even though the game board and gauges will disappear temporarily, they will come back as
those windows are wriiten to.

K. When players get control

A player gets control when his/her turn comes and the game master sends a TakeTurn message to
the instance of your player object. Your top-level rule-set must be written to respond to this
message.

You can also write your player in such a way that the top-level rule set never returns, ie., the TakeTurn rule-set uses
whileAll control structure. The Playerinterface will suspend you when you make a Buy, Move or Sell request and
reschedule you when your turn comes again.

L. Legal requests by players during game

A player can make three kinds of requests during the game: Move, Buy, Scll. After each request,
the player is suspended until the request is completed and your turn comes again (i.e., all other
players have used up (he samc amount of time).

1. (= PlayerInterface Move player numOrl.oc)

This is a request to move player from the current location to a location determined by numOrlLoc. If
numOrLoc is a number, then it is the relative offset from the current location. It can be positive or
negative, It can also be the actual instance object representing the particular roadStop in the game.

2. (¢ PlayerInterface Buy player qty)
This is request to buy gty of the commodity at the location at which player is currently parked.

3. (+ Playerinterface Sell player commoditylnstance qty)
This is a request to selt sell gty of the commodity commodityInstance owned by the player in their

truck’s cargo, at their current location. If gty is not specified, then the qty in the commuodityInstance
will be used.

‘The standard value of player in all the three above messages is self which is bound to the player
exccuting the rule-set.

filed on: {indigo}<kbvisi>lospscourse>truckinvocabulary brave
Last Edited: SM: July 11, 1983

Truckin Query Functions

by the Loops Design Tcam
Daniel Bobrow, Sanjay Mittal, and Mark Stefik

copyright (c) 1983 Xerox Corp

This document summarizes the functions and mcthods you will find useful in writing the rules for
your Truckin players. These functions allow you to select and filter roadstops satisfying different
constraints as well as conveniently access other information about the current status of the Truckin
world, Many of the following functions are also available as methods attached to the class Player,
allowing you to casily specialize them if you so desire.

In the foltowing summary, functions marked with an asterisk (*) are also implemented as methods
on Player with the same name as the function and taking the exact same arguments. For more
details about these functions see the listing of the file TRUCKINYVY in your folder.

A. Selection functions
The following functions return a list of roadstops based on certain constraints.

AnyRoadStop (roadStopType unumMoves direction roomToParkFlg)*

Randomly picks one of the roadstops of type roadStopType where roadStopType is one of the
RoadStop classes. If numdloves is provided, it returns only those roadstops within that distance. If
direction is F then only those in the forward direction, if B then only in the backward direction, if
NIL then in cither dircction. If roomToParkFlg is T then only those roadstops where there is room
to park.

Buyers {commodityClass numMoves includeCDFIg)*

Returns all of the Buyers (i.c. Coasumer roadstops) able to purchase a commodity of type
commodityClass. If numMoves is provided, returns only those within that distance., A common case
is to use the instance variable maxMove of your player as this argument. If includeCDFlg is T then
includes CityDumps also, otherwisc not.

NthRouadStop (numMoves direction fromRoadStop roomToParkFig)*

Returns the Nth roadstop in the given direction from fromRoadStop. 1f fromRoadStop is NIL, the
current location of the player is used. If direction is NIL, Forward is assumed. If there are fewer
than numMoves roadstops in the specified direction, that is if the request would go off the board,
this function returns the farthest roadstop in that direction.

RoadStops (roadStopType numMoves direction roomToParkFlg)*
Returns all of the roadstops of type roadStopType rcachable within nmwnMoves in the direction
specified by direction taking into account room to park if reomToParkFlg is 'I.

Sellers {commedityClass numMoves)*
Returns all the roadstops which are Sellers (i.c. Producer roadstops) of commodityClass and are

located within aumMoves.

B. Filter functions

The following functions take a set of roadstops as one argument and prunc that set bascd on other
criteria specified by other arguments. Some of the following functions arc very general and can be
used to filter (or order) any set of objects of the same class and arc not limited to working on
roadstops only. These arc: FilterObjs, PickHiObj, PickLowObj, and SortObjs.

FilterObjs (self sclector objects)

Sends a selector msg to self for cach of the object in objects and returns all of the objects for which
the rule sct returned a non-NIL value. This is the basic function for doing filtering based on your
knowledge encoded as rules.

FurthestRoadStop (roadStops fromRoadStop)*
Returns the roadstop in roadStops which is furthest from fromRoadStop excluding fromRoadStop. 1f
fromRoadStop is NIL, assumcs the current location of the player.

NearestRoadStop (roadStops fromRoadStop)*
Samme as FurthestRoadStop except returns the nearest roadstop.

PickHiObj (sclf sclector objects)

Sends a selector msg to self for cach object in objects to determine a numeric rating for each of the
objects. It returns the object with the highest numeric rating. When the value returned is non-
numeric for an object, then that object is automatically excluded.

PickLowQObj (self sclector objects)
Same as PickHiObj except rcturns the one with the lowest numeric rating.

SortOhjs (self selector objects)

Scnds a selector msg to self for each object in objects to determine a nuneric rating for each of
them. It returns a list of objects in the descending order of their numeric rating. It also excludes the
ones with non-numeric ratings.

C. Miscelleneous Manctions

AnyBanditsP (toRoadStop fromRoadStop)
Returns T if there are any bandits parked between toRoadStop and fromRoadStop, NIL otherwise.

DirectionOf (toRoadStop fromRoadStop)* ,
Returns the direction of travel for going from fromRoadStop to toRoadStop. If the fromRoadStop is
not given, then the current location of the player is assumed.

Distance (toRoadStop fromRoadStop)*

Computes the distance between fromRoadStop and toRvadStop. If the fromRoadStop is not given,
then the current location of the player is assumed.

PricePerUnit (produccrRoadStop)
Returns the buying price per unit of the commodity being sold at the producerRoadStop. If the

argument is not @ Producer roadstop, then complains and returns L

RoomToParkP (roadStop)
Returns T if there is room to park at roadStop.

ISA (instance className)
Returns I if instance is an instance of className.

Nth (list index)
Returns the index element of [ist

SUBCLASS (class superClass)
Returns T if class is same as or a subclass of superClass.

The following are available only as methods on Player class.

(+ player Range)
Computes how far the player can move based on the amount of fuel carried on the player’s truck.

(¢ player Rangel)
Computes how far the player can move in a single turn. This depends on the fuel in the truck and
the maximum distance allowed by the game master for that turn.

(¢ player TimeAtStop)
Returns the time spent by player at the stop where currently parked. Useful when parked at one of
the Alice’s. _

(+ player TurusAtStop)
Returns the number of turns player has becen parked at the stop where currently parked. Useful
when parked at onc of the Alice's.

D. Useful Global Variables

1. PlayerInterface (you can also use PI)

After doing (+ $Truckin New), Playerinterface is bound to the instance of the class
TruckinPlayerInterface and is used to send messages to the GameMaster for making moves and
starting game. You can also get some game information such as roadStops and localPlayers from
this object. '

2. Simulator
Once the game is sct up, Simulator is bound to the instance of TruckinSimulator and can be used to
access important game information such as roadStops, players, beginTime, endTime, timel.efl.

3. debugMeode

If set to 7, then cach lime a rule is violated, the RuleExee is automatically brought up. Uscful while dcbugging your
rulesets. If sct to AJL, then the Rulelxcc is not entered for cach rule violation, Also, the GamcMaster traps all errors.
Initially set to T

4. truckinl.ogFlg

If set fo T, beforc game is started, then prepares a log fle of all important game messages in a file called
TRUCKINLOG. This log file may be uscful during the debugging of your players. Set this variable to NIL, if you dont
want any log file. Initially set to NIL.

Gauges -- Defined by Classes, Driven by Active Values

0]
2] 16

a

| 84 |
58 a 168
28
30
4758 19

- g
78 8B4~
= 10 7
6
—168

VerticalScale T

[]
=

(A1)
=

(a y]
=

L2z ——18a —30
] —&a —E8
=70 -5
.ﬁzﬂ L -3
=54 =3
v} =z
;—:E:Ei :_113
L -0
=19 Danny Sanjay Mark

=8

lazs Inheritance Lattice

= —Instrument - Found3cale e———Metar-.

Gauge =——_ L - A .

=l —— L O - Ty v =0igiMeter
T —— ——— [IREER] |

e, — — A |

— —_ - Si———— 1S, |

BoundedMizin -me-‘_—__:—_:--“?—gﬂr“lIljr'u'r_.a]:::::.a'Ie——-.‘- LDigiscale |
TT——¥Yarticalicale—

[5 P &
a+Char 330 iMecer
Bat l_-h‘::r'_E_-:_::_-- 230 giMeLe

- T,

selficaleMivin =—— ~~ S3BarChart

COMMODITY INHERITANCE LATTICE
-_~Refrigerator

CornrnodityTransport ability

i Fragil::f:_urnmodity —

O

e
e
—~Fruit ———Strawberry
e

T “Grape

e
e,

PerishableCornrnodity ——

-,

-,

£ —=egetable %Tomato

~Carrot

Corarnodity & —LuxuryGoods @StereoSyStern
%; _ ____--!'Dishes ""-:lj,;‘--r._ﬁ old
W “-Hardware =———Harmmer N
I":.‘*.\'»., . -._E""--Saw ‘Oiarnond
ey Gasoline
A . ArtSupplies

;.._‘:-gl'\._ufficeSupplies -::'_':_ Bk
I".l 'l,l.l A xerox 1 1 I] 0
' "SportingGoods ~——"" BaseBall
' —— Bicycle
"Clothing ~——— Pants
~-—Shirt

Pr Typescript window Game Status
BRE-couting ru 3 SARYAY paTT ol
FindStoppingPlice ITavelerRules Danny Moves -
Expert Svs
" Qanny Sefls 19 =0 LLAA wrr
AIF wSration+(NearestAoadStop (RoadStops SWeighStation Rang gM Moves 10 1a3: (2§ o XEQS

"e

[j ey L 0

a1 dicection ‘Room}}) Hart Buys £ cerusLigd .
{Distance wStation){(Distance destination) Far 1oy Moves 7 luas Alice’s
THEN stoppingPlace+wStation: Garn; Moves 19 (13- XEOS
fann: Buys 19 far3.1180 L
Mark Moves -3 ua- 23 Sheik Gas

Fgbe 0 Arn Fie s ot Fonadluoping? dceTasel<rBuies

wditad e (TEFE a1 W3R ITC7i00f #ark Buys .

S Frule 3 Otficesupplies
hae & 10.5[135 & 1.1a)523 w 3.02

Clathing Cloching
234 @ 6.681 336 W 4.2

Sporringtoeds
491 o .9 (38 & 4.38[897 & 1.09/ 162 & 971|305 @ 98] 12 ~ 75

Appliances
523 « 1.61107 & 6.88

firgueriesy Strewberry ||

Xerax 1100 | Cammedicy | Appliances
553 & 5.53|176 = 13.Ul %

237 & .92 | ENOUGH!! |529 & -.05/258 & 6.37]1734 & 73232 & 331|291 & .92 |15 4 7.37

L%

Kimws Staff
. i .

Lemmodiry B ms-g o = Hardware i e

663 & 2 59) 633 & 5.87 !

|| tummodity |LusuryGosds o Groceries = Ve ! Caminodity | Yeyetsble 5/ HE
‘f|783 & 1.09] 29 & 6.99| 87 & .98 [550 & 7.19[416 @ 1.06{308 & 1.39%294 & 115 546 & -1 |407 & 345|813 & 79|

| i
| L

Pr Typescnpl wInsow -
rINaSoppIngPiace | FaverRrHules

1 direction ‘Room))

anpected Uireeturyt LYY j ATEFIRILIIR,

(Distance gesStation)<(Distance destination)

L Biule @ tyd Fglaiet Fine ki
dited by

{ THEN stoppingPlace«gasStation:

Pl e Travelerfuies

ETEFIN an 1 MAR 57 17

e fgasStation+ (FurthestRoadStop (RoadSrops $GasScation .Range

asme Status
T
Trzr

EEEG

San an Moves
Weigh Here
Zaprlay watd Tt
Mark Moves -3
Mar b Sels Lo
Moves Remaining:
Zan- 3w Moves -7
DirtyDans

car c 3y Buys L C
Mart Moves g

Aeroxiing
63 w 11.6

Ctething
a’1 & 1.0

i33372.29

P

e
-4
L

B

Ta B10.D

Fruit
442 & .79

Xeraxiioo
114 & 6.86|

Cosmadity
Tr2 & 292

Commodity
794 @ 1.23

Hardware

Officesapplies
581 & 3,02

]

Srarentysrem
vz & 6.7

Applianues
162 wi 1.7 5

Toatnato
172 & 9,97

LuxuryGoods

48 @ 571

¥ goal
truc

(* Dont run out of gas.)
‘Sit light
uel .25
truck ;cashfox >0
gasStation+(NearestRoadStop (RoadStops SGasStation Range | NIL ‘Roorn))
THEN stopgingPlace +gasStation:

* truck::MaxFuel

kLI

SpretenL ME IebedslecT e

{indigo}<kbvlsi>papers>loopsmanual5.brave January 29, 1983 116 PM

LOOPS Summary
LoopPsNames (< obj SetName 'FOO) gives obj the Loops name FOO
$FOO evaluates to object named FOO #$FO0 reads in as object named FOO
Variable Access Read macros and their translation
form translation form translation
@x (GetValue self ’X) @X «unewValue (PutVaiue self "X ocewValue)
@(0hj X) (GetValue Obj 'X) @(0Obj X)+newVYalue (PutValee Obj 'X newValue)
@(0bj X P) {GetValue Obj "X °P) @(0Ohj X P)enewValue (PutValue Obj "X newValue 'P)
@@x (GetClassValue selfl "X} @@X «newValue (PutClassValne self "X newValue)
@@L X) (GetClassValue Obj "X) @@(0bj X)+newValue {PutClassValue Ohj "X newValuc)
@@(0bj X P) {GetClassValue Obj 'X 'P) @@(Obj X P)«newValue {PutClassValue Obj 'X newValue 'P)
@X « +unewValue (PushValue sell "X newValue)
Defining and Editing Classes
DC{className New className supersList) e.g. DC (StudentEmployee (Student Employee))
(+ class New className superslist) eg (+ $Class New ‘StudenEmployee '(S{odent Employee))
(« $SludentEmplc‘)/yee Edit) or EC(StudentEmployee)
Sending Messages Active Values
{« object Selector argl ... argn) #{localState getFn putFn)
e.g. (¢ $PayRolt PrintQut *payFile) e.g. #(37 PrintFetcher StopSmasher)
(<Super object selector argl ..)

e.g. (+Super self Edit commands) DefAVP(getFn) edit template for getFn named getFnName
(DoMethod object selector class argl arg? ...) args: (self varName oldValue propName activeVal type)
e.g. (DoMethod X PP $Object ’filel) DefAVP(putFnName T) edit template for puiFnName

args: (self varName newValue propName activeVal type)
Creating, Editing,, Inspecting Instances GetLocalState (activeValue self varName propName)
(¢ class New) eg (+ $Transistor New)h PutLocaiState (activeValue newValue self varName
propName)
(+ object Edit) eg EX(myInstance) Examples of Useful Active Value Forms
(« object Inspect) eg (« $Foo Inspect) #((RANDOM 1 10) TFirstFetch)
Replace me by a random number when first fetched
Defining and Editing Methods #(Initial (DATE))
DM(className selector) Replace me by today’s date on initialization
edit template definion of method . #((sellf rightPoint) Getlndirect Putlndirect)
DM(className selector fnName) Put and get my value from my rightPoint
fnName is unction implementing the method.
DM(className selector argsOrFnName form) Dcbugging
eg DM(Number Increment (self) BreakMethod (className selector)
((* addl to myValue) TraceMethed (className selector)
@myValue+«(ADD1 @myValue))) Breaklt (self varName propName type breakOnGetAlsoFig)
EM (className selector) Tracelt (self varName propName type breakOnGetAlsoFig)
edit method used in className UnBreaklt (self varName propName (ype)

Saving Classes and Instances

(CLASSES * classNamelList) Saves class definitions on files
{INSTANCES * instanceNameList) Saves named Instances on file, and instances pointed to by them.

{(+ $KB New 'KBName ‘environmeniName newVersionllg) Create new KB attaached to Environemnt

(+ SenvironmentName Open) Open Environment for reading and writing

(¢ SenvironmentName Cleanup) Save insiance and class data in a KB

(+ SenvironmentName Closc) Close Environment and release attached KB

(+ SKB Old 'KBName ‘environmentName) Connect an old KB to new cnvironment
(+ S$environmentName Frase) Cancel an entire session

89

Give CURRENTX CURRENTY and HEADING default values of 0.
Give ERASED? a default value of T.

Now add the class variable WINDOW:

(ClassVariables (WINDOW NIL doc (* Turtle graphics window shared by all instances of this
class.))

This variable will cause all the turtles created to share a common window. In the next step, the
function InitializeTurtlelcons will initialize this variable.

Note: Contrary to the usual Loops convention for naming variables, these variables are all in upper case because they
were translated that way from the Lisp program.

Step 2. Initialize the Turtle class.

The function InitializeTurtlelcons installs the methods needed to make Turtles display themselves. Run
this function by typing:

(InitializeTurtleIcons)

Step 3. Translate the Turtle lisp functions into Loops methods.
Note: For this exercise make the names of the methods be all upper case letters. This isn't the
standard LOOPS convention but is simplest for thc purposes of this excrcise.

After you have added the instance variables to the class, the next thing to do is translate the
following functions:

CENTER POINT FORWARD TURN JUMP and CLEAR

into method form. This list of functions is bound to the variable SimpleTurtleFns. The function
Makel.oopsMethod is provided to do the translation. It takes the argumcnts CLASS
FUNCTIONNAME and SELECTOR.

If the SELECTOR is not specified the name of the function will be used as a SELECTOR. For
example to make a method FORWARD by translating the funcion FORWARD, type:

(MakcLoopsMethod $Turtle 'FORWARD)

Hint: You can save yourself some typing by using a for loop to repeat this step for all of the functions ie.

(for Fn in SimpleTurtleFns
do (MakeLoopsMethod S$Turile Fn))

Step 4. Compare the Lisp and Loops programs.

At this point you should have a complete Turtle class, with ali of the nccessary variables and
methods. Using the editor, compare it with the TURTLE record. What do the structures have in

common?

Hint: (RECLOOK, "TURTLE) will print the definition of the TURTLE record into the typescript window.

Use PP to look at the lisp functions FORWARD and Turtle. FORWARD. What do you notice
about how variables are set and fetched?

Step 5. Make an instance of Turtle.

You can now make an instance of the Turtle class by sending the class a New message. Give the
namec MyTurtle to the new instance.

(+ STurtle New 'MyTurtle)

To initialize the postion of the Turtle with respect to the window, send the turtle the message
CENTER:

(+ SMyTurtle CENTER)

You can try out your turtle by sending it messages, such as FORWARD and Turn. For cxample,
sending it a FORWARD message should make it draw a line (as the FORWARD function did in
the original Turtle Grahpics program). To do this, type:

(¢ $MyTurtle FORWARD 100 20)

Step 6. Making some more methods.

In this step we will convert the functions PRETTY0, PRETTYI, PRETTY2, and PRETTY3 into
methods on Turtle. '

Use the function Makel.oopsMethod to convert PRETTY0 into a method of Turde. Using the
browser, cdit this method to examine its structure. Compare the original LISP code with that
gencrated by the transiator. Notice how calls to [unctions like FOR WARD amd TURN, which are
now methods, have been converted to messages sent by the Turtle to itsclf, Test out the translation
as follows:

(+ $MyTurtle PRETTYO0)

Repeat this step for PRETTYI, PRETTY2, and PRETTY3. You may find it interesting to carry
out the translation voursc!f instead of using MakeLoopsMethod.

Part II. Specializing a Turtle.

Now that you have succeeded in making an object that bchaves as the original turtle did, the next
step is to specialize the Turtle by creating a history turtle with the class Turile as its only super
class.

Step 1. Make a class for the History Turtle.

Use the browser to specialize Turtle to create a new class called HistTurtlewith. Specialize is a
suboption of Add*

HistTurtle should have an instance variable named HISTORY. Make this change with the editor.

This turtle will be like the onc in another of your previous exercises, in that it remembers the
commands it has executed. Bound to HISTORY will be a list of operations. c.g. (FORWARD 10
5) (POINT 30) .).

Step 2. Specialize methods in HistTurtle.

Using the browser, add new methods each of the selectors FORWARD CENTER JUMP POINT
TURN. These methods should use «Super to carry out the methods inherited from Turtle, after
putting the received cvent on the history list.

Hint: DM is a suboption of Add* in the browser.
Fach of these methods will have the general form of the one for FORWARD shown below:

(LAMBDA (self dist width)
(+@ HISTORY
(CONS (LIST 'FORWARD dist width) (@ HISTORY))
(«Super self FORWARD dist width))

Be sure to test out the FORWARD method, before doing the others. You will need to make an
instance of HistTurtle first, in order to check the method.

(¢ SHistTurtle New 'MyHistTurtle)

(¢ $MyHistTurtle CENTER)
{+ $MyHistTurtle FORWARD 200 10)

Step 3. Inspecting your HistTurtle.

After you have sent your HistTurtle a few commands, check to see if it is remembering its moves
by inspecting it. To invoke the inspector, type:

(+ $MyHistTurtle Inspect)

Step 4. Making your HistTurtle use its history list.

In this last step, you arc more on your own. This step is to add to the HisiTurtle the cabability to
use its history list in additional commands.

Implement the following methods for HistTurile.

REDO receives one argument specifying the how many opcrations to repcat. It begins that
far back on the HISTORY list and exccutes the operations in the original order. If no
count is passed REDO the entire history list is repeated.

RESET clears the HISTORY Ilist.

METHOD takes as its arguments the NAME of a new method for the Turtle class and the
number N of precceding events that should be taken from the HISTORY list. It constructs
a new method containing these steps and installs it in the Turile class.

Hint: These methods could use a function that extracts a copy of the last N cvents from Lhe history list Write
a recursive function that takes as arguments the [TISTORY list and the number N of events requested. Since
the IISTORY list has the most recent event is nearest the head of the list, your list of events will come out in
the reverse order. Creating the sequence by recursive CONSing should reverse that order again.

Specialization is one of the important capabilities provided by objects. What would it have taken to
create a HistTurtle using records alone’.

BROWSERS REVISITED

In Day 2, the first thing you learned about LOOPS was the
notion of the ClassBrowser. At this point, after completing 1lots

of exercises with the aid of the ClassBrowser, you are aware of
the central role it plays in using LOOPS.

Today, we'll do three things to increase your understanding of
browsers and to practice using your LOOPS skills.

- understand how the browsers work by using and poking
around in other system browsers,

- build a browser that will make the standard class
browser easier to use for very large systems, and

- give our new browser class some "advanced features".

For the first exercise today, these notes will be relatively
detailed to lead you through understanding browsers. For the
second, an outline will be given of how to construct the browser
we will describe. For the third, only a description of what we
want our ‘"advanced" browser to do will be given. Consider the
last exercise as a kind of self test on your current LOOPS
abilities.

Other LOOPS Browsers

In addition to the ClassBrowser, there are several other
browsers that come as a part of our LOOPS loadup.

The Supers Browser

To look DOWN the class hierarchy, we have been making heavy use
of the ClassBrowser. To look UP the class hierarchy, you may use
the SupersBrowser.

EX: ({leftArrow>New $SupersBrowser Show ’'LuxuryGoods)

Play with your new SupersBrowser to Dbe sSure you are

understanding how such functions as WHEREIS are working here.

The Meta Browser

To look from a class to its meta class, then on up the "meta
class link", you can use the MetaBrowser.

EX: ({leftArrow’>New $MetaBrowser Show ’‘'LuxuryGoods)

Play with this as well. One particularly interesting thing to
figure out is highlighted by doing WHEREIS on the Method New in
objects in your new MetaBrowser.

The Instance Browser

Besides the one mentioned above, there 1is also a system browser
for instances. There is also a fairly well developed instance
browser for named instances that one of your instructors has
built (jon). We will not be looking at either of these in todays
class, but after the class, you may want to poke around in the
system version, and if you want to poke in jon’s version, he will
make it awvailable.

How Browsers Hork

All of the browsers in LOOPS share some top level
functionality. Note what that functionality is.

- instances of browsers amount to windows with some kind
of lattice drawn in the window where nodes in the
lattice are LOOPS objects, and the lattice links are
some link between LOOPS objects and

- mouse operations can be done on the nodes in the
lattice (ie the LOOPS objects represented by the named
nodes).

In this section we’ll get a top level perspective on how this
functionality is achieved.

EX: ({leftArrow>New $ClassBrowser
Show ‘LatticeBrowser)

Here you can see that all the browsers have a common linkage
back to the LOOPS object sLatticeBrowser.

The important slots of a browser for us are

1. the CV LeftButtonItems,
2. the CV MiddleButtonlItems,
3. the CV LocalCommands, and

4, the method called GetSubs.

The CVs hold information for setting both the items that will
appear in the pop up menus of the browser, and for information
that will point to the method to process a selection from those
menus. If the menu item is a simple (ie, no sub menu associated
with it} then the form that of the CV entry is

(<{menultemThatWillAppear>
'¢{nameOfMethodToProcessIt>
{descriptiveStringToAppearInPromptiWindow>)

If the item has an associated sub menu, then the structure is a

little more complicated to allow embedding of the sub menu
1

information as well as default information.

L

As you’ve already seen, when you see a stared menu item, it
means there 1is an associated submenu. If you button the stared
item with the middle button, you get the sub menu, but if you
button it with the right button, you’ll get a default action.

3

EX: poke around in $LatticeBrowser
and sClassBrowser to see
how the CVs for left and
middle button items look

LocalCommands

The CV LocalCommands tells the browser processing mechanism
whether the method associated with a menu item is wunderstood by
the browser itself or by the object you have buttoned. If a
method name is contained in the CV LocalCommands, then when you
button a menu item, the message associated with that menu item
will be sent to the browser itself with two arguments

l. obj - a binding to the object that you have buttoned
in the browser (ie binding to the POINTER toc the LOOPS

object) and

2. objName - a binding to the name of the object you have
buttoned.

In addition self is bound to the instance of the browser you are
working in.

If on the other hand the menu item you chose is NOT contained
in LocalCommands, then the browser mechanism will send the
associated message to the LOOPS object you have buttoned, with
self bound to the LOOPS pointer for that object.

EX: poke around in the
LocalCommands of
sClassBrowser

From the above you can see that if a browser item is a local
command, then the method that responds must be of two arguments:
ocbj and objName.

EX: look at the local
command GetSubs of
$ClassBrowser

l. When To Make Something Local

Although not something that LOOPS imposes on you, I find the
following programming disipline useful when constructing
browsers.

In addition to any other considerations,
make any menu item which interacts with
the user be a local browser command. Make
methods which run in the objects themselves
do no interactive operations.

If you follow this disipline, then you will factor cleanly any

LOOPS system you build into "program control component" and "user

interactive component". I find such a factoring useful especially
2

for debugging purposes.

GetSubs

The GetSubs method of a browser does just what the name
implies, it finds the "sub objects” of the current object. Note
"sub objects" can be defined however you want to define it.

ClassBrowser - look down the class hierarchy

SupersBrowser - look up the class hierarchy

|

MetaBrowser - look along the meta link

- etec.

2

There are special considerations when you want to interact
with LOOPS under a mouse process. See the INTERLISP manual, or
talk to me about this if you want to someday build “interactive"
operations under from a browser.

5

The important point is that $LatticeBrowser has methods which
send a GetSubs message to self. The methods in $LatticeBrowser do
a lot of the work of any browser. But they use a method that we
may easily specialize for our own purposes.

EX: do WHEREIS
on &ClassBrowser
and find how many of its
methods are up higher
in LatticeBrowser

try to find an example
of GetSubs being used

in some method in
slatticeBrowser

Building A KeyClassBrowser

Suppose we have a very large set of LOOPS classes that is hard
to view all at one time in a browser.

EX: ((leftArrow>New $ClassBrowser Show ‘Object)

Now that you believe that you really do sometime have TO0 many
LOOPS classes for getting a gestalt view, lets decide how to
build a browser to help us.

Here is one possibility to accomplish what we want.

- a browser that will only show those LOOPS classes which
we have designated as "Key Classes"

- but will allow us to "expand" the view to show a normal

class browser starting from any key class we choose in
our KeyClassBrowser

Designation of KevClass

The first thing we have to do is decide how we are going to
mark, or keep track of key classes.

EX: add a new CV to
$0bject called
KeyClasses

Now make three new methods for $Class:

EX: MakeKeyClass
makes self be a
key class by
using PutClassValue

UnMakeKeyClass
removes self
from the list
of KeyClasses

KeyClass?
a predicate function

to test if self is
a key class

Now lets make some of the objects in the class hierarchy to be
on the list of KeyClasses using the functions we just made.

EX: pp{KeyClasses)
this is a list i have

provided. You are to

make each Class on the
3

list into a key class

Now lets make a specialization of ClassBrowser.

3
Remember that sending a message to Object for example doesn’'t

make sense. You can however send a message to the pointer
$0bject.

EX: specialize gClassBrowser
to a new Class called
$KeyClassBrowser

All that we have to do now to get our new browser to make an
instance and display in the way we want is to specialize the
method GetSubs from $ClassBrowser.

EX: copy the method
GetSubs from $ClassBrowser
to $KeyClassBrowser

look at the method and decide
what we have to do next

GetSubs in ¢ClassBrowser sends a message off to obj to fetch
4
the subs of obj. Lets simply change the name of the method that
goes to obj, then go back and create that method.

EX: do EM on GetSubs
in $KeyClassBrowser

change SubClasses
to SubKeyClasses

Now we have to make sure that obj will understand the method
SubKeyClasses. What we want is a method that will

- fetch 1its subs in the class hierarchy (it can do this
by issuing a SubClasses message to self)

- collect the subs that are KeyClasses

4
I think they should have called it "OBI-ONE".

Be

8

- for those subs that are
searching down the class hierarchy
classes, stopping when one is found

not Kkey classes, continue

helpful to draw pictures of the class hierarchy.

If you get just plain stuck in this, then look at the

DefMethod a new

method in sClass

called SubKeyClasses

to accomplish the above

test your method to
make sure it works

jonsClass.SubKeyClasses in your loadUP.

CONGRATULATIONS!

EX:

({leftArrow>New s$KeyClassBrowser Show ‘Object)

Now most of the battle is
things that are needed in our KeyClass browser.

make any instances of
$KeyClassBrowser come up
with "Key Class Browser"
in the title bar instead
of "Class Browser"

now add new

functicnality to

the g$KeyClassBrowser

by adding left button

functions:
MakeRegularClassBrowser
MakeSupersBrowser

done.

looking for

key

sure you understand what i am saying in this logic. It may be

function

But there are still a few

MakeMetaBrowser

this involves adding
things to LeftButtonltems
and creating new methods
for SKeyClassBrowser

Question: WHY was building this new browser such a "relatively"
easy operation using LOOPS?

Advanced Features For $KeyClassBrowser

In the regular notion of browsers, there is no real idea that
browsers can "cooperate" with each other to present a consistent
view of the LOOPS world to the user. In this section, i’'ll
suggest ways you might further develop your $KeyClassBrowser so
that you wuse it not only to get a gestalt view of all of the
LOOPS objects, but also to "manage" the view of LOOPS objects (as
shown in OTHER browsers) that is presented.

THIS SECTION IS OPTIONAL!

One basic problem with browsers is that you have to constantly
run about closing old browsers. The reason is that if you have
say two browsers up, and you alter one of them is some way (1
mean alter the «class hierarchy (eg)) in one of them, then you
could be in trouble if you try to use the other one. Suppose you
destroy a class in one, then try to specialize it in the other.

Solution: make your KeyClassBrowser a sort of index you use
into the others. Only pull wup a class browser by using the
KeyClassBrowser AND keep track of all the browsers “"spawned" from
the key class browser. Any time you generate a NEW ClassBrowser,
close the OLD one.

Further modification: Instead of just killing it, close it,
cash its pointer on a stack, and build some functionality that
will allow you to "pop back up" to it.

Another mild problem is doing WHEREIS using a ClassBrowser, and
the object that has the method you want to find is not IN the
current browser. Of course, the browser will let you know in the
PromptWindow where the object is, but sometime you want more.

10

Solution: specialize WHEREIS soc that if the object you want to
highlight is not in the current browser, that a SupersBrowser
will pop up AND blink the appropriate object for you.

This could go on and on. There are MANY useful things that
could be done to extend the notion of cooperative browsers. As
you think more about this, even if you don’t implement your idea,
please tell me about it.

| . ¥

YHIRAACLT & Peag: wa T
EANREING HOITAAROMPY, LR T D D W LU

=T

I1 812 0 SNOIDAUKICS SIEAE - UOU BED
el Ay
£ TEAT RN
nsaeiasinl asiift4 i ity

AR INET-083 gadBied a0 D UK
snsedglogns v saeld xedio Gos eg O W tewden eniTIO

0 SUAND
tevoir! o B30

sodmpnd nk aplisesdia)! wimgoell eyalelilAsl! bon Ja.asB wE?
E Ligh=galirori sour=l03
21 _eemwes wili 70t sitalupmiuta add (N0 w0t med =l sk wldl oded)

winD _sefdsdon bos sdecisior w9 ot pusdl bewtupay bl
. olente oo &t swsdl .serens el del dakEsion wea vl 0 TASa
subsiungd & 3ud S0 o) lakrsrem loepdus Sl 3o dwez wld 38) Czed
1o gnilosagveboy me o3 Cissersan al ssad Akdt al Jsissdw 203 o
{ fatycdng soywon il

Inveas? o7 of aokinudarieX sA (gemaY Das ool S0
hantisiainzol oqbiogih Yo yyosrT THATIDMNT
paniianli 92latic) bes o31alY tuolsarsgol sydectM LBl

staylach bas agtosd odT aemifV bas 3lowogod .add
pori Froglh xaswomed 2o

sakha? bas grosul moidmegolal taonmexcd

sigad featdewedsa treaishan!l

L
1

B e auls bxanJA bae alpgol iosadrecd LISATTAVA
worgdows3l Iastaamerist arezsaid 1aadesmH bes valdun® AT
, soreksl taltugnal pf amokisallqoh d3iw Skyarsa L

' ‘owanod 3117 A ipdgot Inottmandiat rakddell

poddugrod olismoivh bma smdiliagin ssondnaandazl
' lnali

- molisdupm) fo vieed? risdowhasd has brsekoyd

sl ftv atlles? of 62 Eodsagus omm eoeebunt (10D ENISTUCNNERY
JrodatiASH hap Senonil 1o mieagails weed 507iY wit or labwons
~(ammrtapyrad mazger?) 2.1 satio38 lo soligews oafs dhe

%o watvey ¥eiyd 3 shulioa: Iltw 0T o dasy sauit wfd vewswl

| r ~olgoi

aotan o2 Yo yewaun ransubavind oh ssbivorq esnues aldl TIRETROD
.sabjvgwnn 10 sguisabuwol Ilsollevosds fsmwe} sds ol eiquomos
m imsbune done oviy ol el eawwos ml3 Jo Tgaand il
antqo3 gadtwallel adt o saso o suwdisa wml? Yo gathorerabos
okesd oy igye wiivevyos oi vililds yuatnemels an bas
Aninopesy Inolgal idomns 03 guisales slilds bas sgba iwvont

Filed on {INDIGO}<Loops>LoopsCourse> ExerciseRules.bravo
Edited: MIS November 10, 1983 5:00 PM

Editing and Debugqging R'uieﬁets

by the f.oops Design Team
Daniel Bobrow, Sanjay Mittal, and Mark Stefik

copyright (¢) 1583 by Xerox Corporation

Purpose of these Exercises

This set of exercises explores the programming and decbugging facilities for using rules in
Loops. In this scssion we will extend the behavior of a rle-driven "playcr™ of the Truckin game.
The techniques introduced in this session will provide experience in representing and debugging
knowledge representation that will be nceded in the later sessions.

Notation

In the dialogs below, regular font is used to show what the system types, and bold font is used to
show what the user types.

Preliminaries

Go to your workstation for the course and LLOGIN according to the instructions in the handout
titled "How to Start Loops”.

Part I. Basic Debugging Tools -

This exercise is to use the auditing, tracing, and breaking facilities of the rule language to
understand the rules behind the behavior of an automated player of Truckin called Traveler. A
Traveler is a class for playcrs that commute between UnionHall and AlicesRestaurant. stopping for
gas and WeighStations along the way.

There is a listing of Traveler in your course notcbook. You may want to refer to it as we continue.

Step 1. Getting Started

In the discussion which follows, we will use the term gamedfaster to refer to that which runs
the game. Depending on which version of Truckin’ is being used, the gameMaster may be one or
more programs, databascs, and processes, or even more than one computer, Some variations on this
will be discussed later in this class. For the purposes of this discussion, it is convenient to refer to
it all as simply the gamcMaster.

The first step is to set up a new Truckin simulation. Do this as follows:

{(+ $Truckin New)
(«+ Pl BeginGame)

Pl is an abbreviation for Playerlnterface. It's short, since you may type it a lot

The gameMaster will then ask you in the prompt window to choose a kind of playcer. Usc the
mouse to select Traveler in the menu next to the prompt window, and type the name "Travl"” for
the name of the driver. The gameMaster will then ask you for the kind of truck. Select FordTruck
(or any other brand that you prefer). Then the gameMaster will ask you about gauges on Travl
and it is recommended that you choose DEFAULT and that you place the fuel gauge to the right
of the game board.

When the gameMaster asks you for the sccond player, sclect "No" with the cursor,

The gameMaster will put up an inspector window of game parameters for you to set. These
parameters control such things as the length of the game, the number of bandits, and so forth. You
can set the values of the parameters by selecting a parameter and using the PutValue option. To
sce a description of a particular paramcter, sclect the value of a parameter and sclect the Properties
option. It is recommended that you set the value of the parameter gameDuration to 60 for this
exercise.

When you arc finished, click DONE in the menu next to the inspector. The gameMaster will
then put up a bar chart for you player’s cash.

Then the simulation will begin. Trav/ will begin commuting back and forth on the board. [f
you depress the CTRL key, the Traveler will pause in its travels. The fitel gauge should go down at
cach move, and the cashbox bar chart will change whenever the Traveler spends or receives money.
Every few turns, the bandits (Bonnie and Clyde) will make their moves.

The typescript window will type a rule before each move of Travl. This is because the Traveler
was compiled in the system with rule tracing turned on (compiler options [).

Step 2. Using the Rule Executive

Find the menu labeled Interrupt at the top center of the display. This menu should have an entry
for the player Travi. Clicking Trav! in this menu will invoke the Rule Exec window. Do this now.
(It may take a few seconds for the request to be noticed -- it waits until the current player finishes
its move.) The player interrupt will disappear.

The Rule Exec will prompt you with "re:". Notice that time keeps marching on, even though
Travl is suspended. You can resume the simulation by typing "OK" to the rule cxcc as follows:

re: OK

Do this, and click Travl again, to get the feel of using the Rule Exec to interrupt exccution.
Inside the rule cxec, you can typc cxpressions in the rule language. IFor cxample:

re: destination

will cause the current destination of your Travi to be typed. You can look at the values of other
variables (such as truck or stoppingPlace) as well. You can also use compound terms as in

re: truck:fuel

The number you get back should correspond to the value shown by Travl’s fuel gauge. You can
also look at class variables, as in

re: truck::MaxFuel
You can makc adjustments to your player, as in
re: truck:cashBox «20000

This should cause the cashBox bar chart to get updated immediately. (Of course, this would be
cheating if donc in a RuleSet, since your player should only acquire “cash” by sclling merchandise.)
Lastly, you can scnd messages, as in

re: (+ self Show)

Note: Be sure to use rounded parcntheses in these expressions, not brackets. In the Rule langauge. brackets are used to
control precedence of operators, and parentheses arc used for funclion calls and messages.

or, if you arc not at UnionHall,
re: (+ truck:location:prev PP)

This illustrates that self is set to the work space, and also shows off the Show method that Traveler
inherits from Player.

Step 3. Changing Compilation Options

One way of changing compilation options is to send a TurnOn message to a player class. For
example,

re; (+ STraveler TurnOn °A)
To cdit a RulcSet, enter the rule exec and create a browser for players as follows:
re: (Browse $Player)

Using the browser, select Traveler (with the middle button). Using the left mouse button, sclect
EM* (for EditMcthod), and you will be shown a list of the Mecthods for Traveler: BuyGas.
FindStoppingPlace, GoToStoppingPlace, and TakeTurn, Sclect the FindStoppingPlace method. The
TTYIN edit window will come up automatically -- rcady for you to examine or make changes to the
RuleSet.

WARNING!! Do not use "Reprint” on a RuleSet. This will do terrible things fo its readability. The rule editor
that your are using is our 'StopGap” version. i the next version of the Rule Language, we will use a structural editor
and a3 more Lisp-like notation.

Verify that the RuleSet has auditing turned on. If not, change the compiler options declaration
to recad as follows:

Compiler Options: A

When you have finished editing the RulcSet, type tX to exit. A pop-up menu will then appear by
the cursor. The Help option in the menu can be used to see a description of the other options.

Most of these options are intended for use in debugging the Rule Compiler. You may find it intcresting to use them to
examine the LISP code currently generated by the rule compiler under different compiler options,

To compile the rules and quit, select OK.

Step 4. Asking Why

Leave the rule excc and let the simulation run for a while. (The audit trail is created
incrementally, as the program runs, so you nced to wait for it to complete another turn.) Then
interrupt Travl and use the audit trail to answer "why" qucstions as follows:

re: why stoppingPlace

Using the rule exec in combination with auditing is a handy way of discovering which rules were
responsible for particular decisions. (Perhaps this should be called fiow instead of why.) Try asking
why for other variables such as destination. You can ask why for compound variables as in

re: why truck:fuel

in this case you should get back the message "Rule not known." because the fiel variable is not set
by a RuleSet compiled with auditing turned on.

If "Why" is typed without arguments, the Rule Excc uses the previously entered expression.
For example

re: stoppingPlace
(AlicesRestaurant 123.45)
re: why

--- that is, why stoppingPlace

IT" (Distance destination)<=.Rangel. (RoomToParkP dcstination)

THEN stoppingPlace «destination;
Rule 4 from [indSioppingPlaccTravelerRules

Step 5. Suspending and Waking Truckin’

Another menu at the top of the screen is labeled GameControl. This menu has options for
suspending, killing. and waking the current simulation. The gameMaster consists of scveral
processes for the different playcrs, the clock, and scheduling. If you entcr a Lisp break, or are
editing. you may want to stop the frenzy of activity on the screen so that you can work, This menu
is for that purpose. Practice suspending and waking the gameMaster. (But don't &ill the game yet!)

Step 6. Breaking on Rule Invocation &

In this section we will see how to step through the execution of a RuleSet. Using the Browser
and rule editor, change the compiler options for the FindStoppingPlace method of Traveler to read
as follows:

Compiler Options: BT;

This indicates that the rule should "break” to the rule exec whenever a rule is tested or executed.
Exit the rule cditor and rule executive and let the simulation run.

As the simulation continues, you will see a rule print out in the Typescript window, and then
the rule cxccutive will pop up. By typing "OK" to the rule exec as in

re: OK
You may find it useful to suspend the game while you are here.

You can step through the exccution of the rules. Note that the break occurs before exccuting the
left or right hand sides of the rules. Step through the exccution of FindStoppingPlace a few times
to sec how it works. You may want to use this feature for some subtle case of debugging particular
RulcSets.

When you arc tired of typing ok, try
re: {« SFindStoppingPlaceTravelerRules Off 'BT)

and let the Traveler run. You may have to type OK a few more times, until the Lisp interpreter
let's go of the function with the "break code” in it.

Step 7. Debugging with Gauges

In this section we will sce how to create extra gauges to help with debugging. We will begin by
putting a gauge on stoppingPlace. Enter the User Excc by depressing CTRL-LeftShift.

The User Excc is an alternative 1o the Rule Iixec. The User [xec expects lisp expressions and provides the
Interlisp-1D cnvironment (e.g.. the history list). The Rule Exec expects rule language cxpressions and provides rule
facilitics (e.g., why questions). The User Fxec can also be entered by (yping UL as a command to the Rule Iixce,

To create a gauge on stoppingPlace, type:

« (#New SLCD Attach $Travl ’stoppingPlacce)
+ OK

For obscure and temporary reasons, the «New syntax doesnt currently work in the StopGap Rule language.

The Truckin' Manual describes more automatic ways of installing gauges on the instance variables
of a player.)

Step 8. Listing RuleSets

To get a hardcopy listing of the RuleScts associated with a class, use the function ListRuleSets.
The listings will appear on the local printer. Get one of the course instructors to show you where it
is. To make a listing, type the following to the user exec.

+ (ListRuleSets 'Traveler)

Part II. Creating A New Player

The purpose of this cxercise is to practice making a new kind of Player called a BigMac, which
is a revised version of the Traveler. A BigMac is a class of player that commutes between two of
the AlicesRestaurants in the simulation. A BigMac (a hungry driver of a Mac truck) wiil
presumably eat a lot, visiting UnionHall only when it runs out of money and gets towed there. A
BigMac always drives a MacTruck.

Step 1. Sciting Up

You may want to restart the game before continuing with this exercise. Kill the game using the
GameControl menu. Using the mouse, closc a few of the windows at the top of the screen until
you find the Loops Logo (Saturn), Depress the left mouse button, and a menu should pop up.
Select the SetUpScreen option to restore the screen to its original state. You may want to create a
new browser for players as:

« {Browse S$Player)

To create a new player that is a specialization of Traveler use the Specialize option in the
Browser. When you arc prompted for a class name in the prompt window, type:

Class Name: BigMac
The Browser will now indicate a new class for Bighlac.

You may neced lo shape the browser window to sce RigMac.

Step 2. Replacing a Method

To insurc that BigMac always drives a MacTruck, we nced to replace its SelectTruck method.
[nitially, the method for SelectTruck is inherited from Player, and prompts for a truck.

To replace this mecthod usec the EM! option in the Browser.

Either approach will put you into a [isp ecditor on the Lisp function that implements the
method. Edit the function so that it just returns ‘MacTruck.

Step 3. Adding an Instance Variable to the WorkSpace

To change the behavior of BigMac, it will first be necessary to add an instancc variable to
record the nextDestination. Edit BigMac with a Lisp Editor of your choice. (Hint. You may access
it through the Edit option of the Player Browser.) When you have added the instance variable, that
portion of RigMac’s definition should look as follows:

(InstanceVariables (ncxtDestination NIL doc (* Next destination. A different AlicesRestaurant.)))

You may want to add some documentation to BigMac itself. If you do, the relevant portion of
BigMac’s definition should look approximately like this:

(MetaClass PlayerMeta
doc (* A Player that commutcs between AlicesRestaurants, cating hamburgers.)
Edited: (edited: MyName "21-Fcb-83: 15:31"))

BighMac inherits other instance variables from Traveler, but they don't show in the source
because they arc not introduced at this level of the inheritance lattice: To see them, you can
prettyPrint a summary of it through thc browser (using the PrintSummary option).

Step 4. Specializing the Rules of Traveler

In this section, you should go back and cdit the rules for the TakeTurn mcthod and modify
them for a BigMac player. In dcbugging your rules, the techniques introduced in Part 1 for
audiring and breaking RuleSets and adding gauges, will be of use.

Hints:

1. The course handout "Truckin’ Query Functions” describes a sct of functions for
accessing information in the world of the Truckin' simulation. These functions will be
discussed later in the course, but you may find it helptul to browse this document when
you arc trying to understand the Traveler rules.

2. You will probably want to replace the TakeTurn method of Traveler with one
specialized for BigMac. You can use thc EM! option in a player browser to do this.

3. BigMac should initialize his destination and nextDestination on the first call. In the
method for TakeTurn, the following rule may be a uscful substitution for some of the
existing rules:

(* On first call, initialize destination and nextDestination.)

IF ~dcstination

THEN atices«(RoadStops 'AlicesRestaurant)
destination+(CAR alices) direction«(DirectionOf destination)
nextdestination -(CAIDR alices);

This rule assumes that alices is defined as a temporary variable of the rule set.

4, In addition, a new rule like the following may be appropriate in the method for
GoToS'toppingPlace:

(* Switch destination and nex(Destination when you arrive.)
[F truck:location=destination
THEN temp «dcstination

destination < nextDestination

nextDestination « temp

direction «(DirectionOf destination);

5. If you have trouble with the behavior of BigMac, use the auditing, breaking, and
gauging facilitics you have lcarned about to understand the behavior.

Step 4. Saving the Rules on a File
To save your RuleSet on a file, type the following to a User Exec or at Top-level lisp.
(FILES?)

Lisp will ask you whether to save various instances and functions. Type BIGMAC for all of
the things that you want to save. Type] (a right squarc bracket) for all of the things that you
don’t want to save, such as Bonnie, Clyde, and other things not related to your file. You can type
LINEFEED (LF kecy) to mean same as previous.

Then make a file containing your BigMac player as follows:
MAKEFILE(BIGMAC)
This file can later be retricved by typing

LOAD(BIGMACQ).

[Optional] Part HI. How Auditing Works

This section is intended for those who finish their Bighfac player carly, and would like to learn more about how the
auditing works in the rule language. This seclion is a tour of the auditing facility.

To sce how an audit trail works interrupt your player with tF. Use the left mousce button to

select the top item of the "trace back™ menu to the left of the rule cxec window. This will create
an inspector for the workSpace.

If there is no trace back window, type (+ sclf Inspect) instead.

-

‘Seclect the value of the destination variable with the left mouse button. (It will turn black). Depress
the middle mouse button and a mcnu should pop up. Seclect the Properties option. This will
spread out the propertics of destination. The interesting part of this is the reason property of
destination. The value of the reason property should be an instance of a StandardAuditRecord. If
you inspect that record, you can "inspect” all the way to the rule object which prints out when you
type the why question,

The Lisp code gencrated for the RuleSct must not only save values, but must also create the
audit records and link them to the reason properties when it executes. To sce this auditing code,
you may want to invoke the rule cditor on the FindStoppingPlace method of Traveler, exit the
editor with *X. and select the EF menu option to examine the Lisp code. You should be able to
find the code that makes the audit trail. Say DE to the Lisp TI1'Y editor if you want DEDIT.
After looking at the code, exit the cditors.

The next step is to look at the Audit Class declaration for the RuleSet. Select the EditAllDecls
option in the Rulc Compiler menu. ‘This will put you in the editor again, except that several
addittonal "default” declarations will now be made explicit. In particular, you can now see the
declaration for the audit class. Exit the rule editor.

To see where the meta-assignment statement for saving the rule in the audit record came from,
edit the class StandardAuditRecord.

A StandardAuditRecord saves only a pointer to a rule. The specification of what to save in an
audit record is made by meta-assignment statements - cither in the class for the audit record, or in
the RuleSct. The class for the audit record must have instance variables for all of the values to be
saved. 'This facility can be used for cxperimenting with belief revision systems. See the Rules
Manual for details. This material is beyond the scope of the 3-day Loops course.

Filed on [INDIGO}<Loops>LoopsCourse> GxerciseCompetition.bravo
Edited: MJS August 3, 1983 7:37 PM

Knowledge Programming

by the Loops Design Team
Danicl Bobrow, Sanjay Mittal, and Mark Stefik

copyright {c) 1983 by Xerox Corporaticn

Purpose of these Exercises
These exercises provide experience in building a small knowlcdge system in Loops: a Truckin’
player. This Truckin' player will be your "entry™ in the knowledge competition at the end of the
course. The exeicises will help you to preparc your player, and tell you how to cnter the
knowledge competition, and what to expect.
Notation

In the dialogs below, regular font is used to show what the system typces, and bold font is used to
show what the user types.

Preliminaries

Go to your workstation for the course and LOGIN according to the instructions in the handout
titled "How to Start Loops".

Part 1. Specializing an Existing Player

This exercise is to augment the knowledge of a modest knowledge system incrementally. For
this purpose, we have provided a sample Truckin® player as follows:

Peddler (50 rules): - a player created for the second Loops course with a structure that makes it
convenicnt to create evaluation functions that prioritize player dccisions.

Find the listing of Peddler in your coursc notcbook. You may want to refer to it as we
continue.

Step 1. Creating A Player

Create a player that is a specialization of Peddler. As in the BigMac cxercises, cither a browser
to create your spccialized player.

You will need to name your player. Here are some namcs that have been used before:

HappyHauler PeterLorry
Routier Maverick
SafeSam

SpendThrift

Toyota

TravelingSalesman

When you pick a name, register it with us and we will be alert for name conflicts before the
knowledge competition.

Step 2. Hints About Peddler

Peddler is a reasonably good player, but its knowledge base lacks some fine points. [Here are
some known weaknesses which you may choose to remedy. (You may discover other weak spots.)

1. Peddler uscs "rating RuleSects” to pick Producers, Consumers, and
stopping places ncar AlicesRestaurant. But it shows little flexibility in its
sclection of which AlicesRestaurant to go to at the end, or which GasStations
to visit. You may want to extend the rating idea to thesc other decisions.

2. Peddler looks for low priccs when it picks a Producer, rather than
computing its probable profit (by looking ahead for a possible Consumer).
Late in the game, it may even buy goods for which there arc no attractive
Consumers.

3. Peddler’s gasoline logic is poorly organized. When Peddler is low on
gas, it can completely forget about other things. like stopping at WeighStations
or getting to AlicesRestaurant. |f Peddler gets in a tight loop between a
Producer and a Consumer, and therc is no gas station in-between, it will go
back and forth content on making a tidy profit but forgetting to go outside
that range for gas.

4, Peddler avoids PerishableCommodities and FragileCommodities, because
it lacks knowledge for dealing with them. It needs to know about
RoughRoads, and that perished commodities can spoil, and that damaged
merchandise must be taken to the dump to avoid fines. There is a lot of
money to be made on such merchandise.

5. Peddler’s rating schcmes using a numecric mecthod for combining
factors. You may choose to usc a symbolic approach to combine the factors
more rationally.

Step 3. Strategy for Preparing Your Knowledge System
Here are some suggestions for building and debugging your player:

Keep it simple!

You don’t have a great decal of time (6-8 hours) to build your system, and you will be
learning Loops (and pcrhaps coping with bugs) at the same time. In the previous Loops

courses, the most successful entrees were created by people who fixed bugs and made small
improvements to the players rather than starting a complete re-design.

Ask Why!

During the first Loops course, people sometimes used only conventional programming
techniques and struggled to find bugs that the auditing Ffacilitics could casily have
pinpointed for them. Part of what makes rules special arc the special facilities for auditing
rules. Use this! It will help you pinpoint shortcomings in your rules! Also use the gauges
and breaking and tracing facilities. These tools for understanding your player really help.

Save your player frequently! .

Computer systems are subject to occasional crashes. Think conservatively. Save your
files every 15 - 30 minutes, and make listings every hour or two. Be sure to type (FILES?)
before doing your MAKEFILE. (Or use the lisp function CLEANUP).

Try a crowded board!

Some important phenomena only show up during a crowded game, as will be the case
during the knowledge competition. By analogy with ccological systems, the stiffest
competition for a player is often itsclf. [dentical players, like members of the same species,
compete for the same ccological niche. Be sure to excrcise your player on such a board
before the competition. A good way to test your player is to compete it against scveral
copies of iwself and scveral Peddlers.

Try different trucks!

Trucks have different storage capacitics, speeds, ranges, etc. The performance of your
rules is likely to be different for the different classes of trucks. Use a browser to determine
the characteristics of the different trucks and try your player with different trucks so that
you can understand how your rules interact with the truck characteristics.

Lisp is legitimate!

If you find that the rulc language is too confining for you, you can always express some
of the knowledge in a Lisp function, called directly or installed as a method on your player
or some other object. This is completely "legitimate" in Truckin', and may be appropriate
since the StopGap version of the Rule Language has a somewhat awkward interface. You
may also find it useful to define some new classes of Loops objects.

Step 4. Technical Note -- Creating, Copying, and Installing RuleSets

In working on your player, you may want to define some new RuleSets as methods. To define

a RuleSet as a mecthod, usc the DecfRSM suboption under DM* in the browser.

You may want to create a new version of onc of the Rating RuleScts. Onc way to do this is to

usc the CopyRules method of RuleSets. For example, to create a rating RuleSet of GasStations for
a player named RoadRunner, you may proceed as follows:

« (¢ SPcddlerRateConsumers CopyRules RoadRunnerRateGasStations)

We recommend that you use your player name as a prefix on your RuleSetNames, to avoid name conflicts during
the knowledge compctition.

Step 5. Save Your Player Periodically
Aftcr naming your player, inform the file system by typing:
« TILES?)

to the Lisp Executive. When it prompts you for a file for the class of your player, use the player
name for the file name. When you have finished with this, create a file for your player:

« MAKEFILE(MyPlayerName)

All computers and systems are subject to failure. Be conservative. Save your player cvery haif
hour or so, to avoid losing your work.

Part II. Entering the Knowledge Competition

The knowledge competition is the usually exciting finale to our course. Here are the things you
need to do to participate.

2:15 am -

1. Register and file your player. Your player should be ready, loaded in your machine, and
backed-up in the file system. You should see the course instructors to register your player name,
and the name of a driver for it. (This is to insure that the names arc unique and short enough for
the competition.) Make sure that your player loads correctly from a file. You should also make
sure that you have saved everything your player needs (using /LES?), and that all rule tracing and
breaking has been turned off.

9:30 am

2. Competition debriefing. Before starting the competition, we will spend a few minutes talking
about the idea of a knowledge competition, and will ask cach group to spend 1-2 minutes talking
about their player. One person in your group should be rcady to tell us the main idcas you are
trying,

10:00 am

4. Starting the competition. We will then bring the distributed game master on line and tell
you the nectwork address of the PostMasier.

Note: The game clock will start so that the competition starts automaticafly at 10:15. 1f you fail
to complete the following instructions on time, you can still enter your player, but the competition
will have already started and you will be behind.

5. Go to your workstation. Type:
(StaveTruckin)

This will start the “slave" to the game master, and will also run the compctition with the
"simulation display” turned off. The game master will then ask you the following questions:

Name of your machine: JonesMachine
What is the address of the PostMaster: 12365

For the machine name, you should append "Machine” to your last name. For example, if your
name is "Jones", then you should enter "JonesMachine™ as above. The address of the Postmaster
will be the number that we gave you in step 3.

You will then be prompted to start your players in the usual way. Use your registered driver name.
The promptwindow will begin to print messages about the competition starting soon.

6. It's a lot more fun to watch the game with cveryone elsc, so you can hear the cheers and
groans and gossip as cverybody watches and comments on the performance and luck of the road!

Good Luck!

SYSTEMS BUILT ON TOP OF LOOPS

Thus far in the class, you have been doing exercises to build
vour INTERLISF/LOOPS expertise. Today, we’'ll Dbe locking at
several systems which have been built on top of LOOFS.

The first svstem we'll look at 1is the SIS tool, a tool
constructed to allow some of the generic ideas of browsers tc be
applied and extended. Then we 11 go on to look briefly at a
medical diaancsis system called MDX/MYCIN, a system built
following the 0SU-~AI paradigm of diagnostic expert system desiagn,
and which is implemented on toep of both LOOFS and the 3IS.
Finally, we 11 =nd the course bv looking at some of the
capabilities of CSRL, a language which has been developed tc
allow the expressicn of diagnostic svstems in a straightforward
wav.

THE SIS TOOL

The Structured Instance 3vstem is a LOOFE tcol which has been
designed to extend the notions of "environment control” to the
realm of named instances. One of the important design goals of
the svstem defined ClassBrowser is that the browser should be an
aid to the LOOFS user for organizing and dealing with the world
of LOOPS classes she is developing. The 515 applies that same torp
level idea to LOGPS named instances.

The 5IS has its root in the distinguished LOCPS <claszs called
StructuredInstanceObiject. At the class level it includes a tool
called the StructuredInstanceObijectClassBrowser, a specialization
of the normal ClassBrowser. Going tc the instance level, the 3I=
includes a browsing tocl called the InstanceBrowser that allows
manipulation of the relations between the instances of a subclass
of StructuredInstanceObiect. Finallv., the SIS includes another
araphical tool for showing the current setting for a user chosan
IV of a collection of instances., the Valuelattice.

StructuredInstanceObjects

The 5IS5 includes acts on anv LOOFS class which has
StructuredInstanceUbiect on its supers lisc. There are two
properties that such LOOPS classes have that are important ¢to
understand.

- First, anv instantiation of such a class 1s a named
LOOPS obiect that can be viewsd ‘along anv number of
user defined relations) in relation to other members or
the same <class. These relationships that may exist
between the instances of the StructuredinstanceObiect
are called "InstancelLinks".

- Second, there is a special kind of IV that can be
defined for anv SturcturedInstanceObiect: the "UseriIV".
The notion here is the SIS svstem has been constructed
to allow knowledge engineers to build svstems for
potential end users. At the end user level, many IVs
are of no interest at all - they mav exist in a system
onlv in terms of "makinag the system work", but the end
user mayv not need to know of their existence. To hide
such IVs from the end user, the SIS distinguishes a
special sort of v (the UserIV) for express
interactions that mav be necessary with the end user.

The StructuredInstanceObjectClassBrowser

The starting point for ijumping into a number of SIS defined
ocbiects is the StructuredInstancelbiectClassbBrowser.

The function ssi brings up the a normal class browser starting
from the root SturcutredInstanceMeta, and a
StructuredInstanceObiectClassBrowser starting from the root
StructuredInstancedbiect.

Within the SIS svstem, there are many new menu items that vou
find defined at each of the three level of browser tvpe tools.
Whenever vou see a menu item called "StardardFunctions#" vou can
expect to find a submenu of more normallv defined browser
operations.

EX: mouse the obiect sSorganization
with the left button, then
mouse the StandardFunctions®
with the middie button and
Llook at the items in the submenu

[0}

do the same sort of operaticn
with the middle mouse menu item
StandardFunctionss

In addition to the standard functions, there are a number Of
new operations that vou will find too. The middle mouse sub menu
for example, includes extensive operations for storing and
retrieving obiects from secondarv storage.

EX: conn {FLOFPY:
dir()

now middle mouse Sorganization
and select 3aver with the middle button
the select the item SavellassAndInstances

now do dir() again

now middle mouse sionsTcopLevel,
select Load3ubObiect*x with the
middle button., and then select
Load5SubObiject

this will bring a menu from which
vou could select a file to load that
would restore anv object inferior to
jonsToplLevel that has been stored

mouse anv button outside the selection
menu to tell the svstem you don t want to
load anv file right now

Un the left selection menu for the
StructuredInstancelUbijectClassBrowser, vou' 11 find a item
Browselnstances that will bring urp an InstanceBrowser on the
current instances of the object buttoned.

Before going on to look at the IEB, vou mav want to plav a
lictie bit with some of the other menu items foyr the
StructuredinstanceObiectClassBrowser, but do NOT do
CompileMethods (from the middle button menu).

3

The InstanceBrowser

The heart of the SIS facilities is the InstanceBrowser.

EX: select the lert hutton item
Browselnstances on S$organization

whenn 1t asks for vour starting list
enter 1

when it asks for the relation vou want
to show select (partCGfSuper partOfSub!

place the IB in the normal wayv

You now have up an InstanceBrowser for the instances of
$organization as viewed along a certain relation. A design aoal
for the SIS was to allow the user manv facilities for graphically
editing the relation between his instances. These graphical
facilities are located on the middie menu items for the IB.

EX: mouse s¥xerox with the middle hwutton
select Movelnstance

{at this point the IE goes into
“gather mode"” to gather up
all the supers vou want tfor
the new location for Sxerox..

follow the instructions vou will zee
in the PromptWindow to move sxerox
to have a super of ghattelle and

no subs

select Movelnstance again to
put sSxerox back where it was
to start with.

EX: experiment with the other
middle button items in the IB

The

IB can be brought up for

StructuredinstanceObiect.

EX:

go back to the class level

and bring up an IB for

the instances of Sorganization
along the relation

{tveeOf Super tvpeUfSub)

place the new IBE next to the
old one

In addition to the facilities that

SIS

the notion of

svstem was a vehicle for some

cooperation between IBs.

EX:

seiect $xsis with

with the left button

in the IB showing the

relation {tvpevfSuper tvpelfSub)

select TotallvKillInstance
from the menu

note what happens to the
other IBE vou have up

select sbattelle

with the left button
in the IB showing
(partO0fSuper partOfSub)

select Spawniewbrowser
note that the ol1ld one

(the one from which vou
spawned) disappears

"co-operating browsers'.

anv

At

define

vou have seen
initial experimentation into

relation for a

so far, the

one leavel, there 1is

5

The Value Lattice

In addition to being able to graphically edit the relations
that exist between instances, the 3I3 alsc provides a wav to
access (in this «case either display or change) the values of a
seiected UserIV in all the instances. Suppose Tror example that
vou want to have a UserlV for Scorganization cail projects, and
that vou'd like to store in that IV the names of ongoing proiect
at each level in an organization.

EX: select the title menu item
SetIVofInterest in the 1B
showing (partOfSuper partOfsSub!
for Sorganization

select the IV projects

select the title menu item
MakeValueLattice in the same IB

select the ValueOnly mode of
presentation

place the Valuelattice

The structure of the Valuelattice is exactlyv the same as the I
from which it was invoked, but the print characters for each nod
show the current settinag for the IVofInterest tThat is currentlvy
sekt.

B
e

The action of zThe mouse is verv simple for the Valuelattice,

- the left button is just a diseplay device that wili
highiiagnt a node vou select. and highlight the
corresponding node in the parent IB. This is to Thelp
not get lost in the ValueLattice.

EX: select anv node in the
ValueLattice with the
left mouse button, and
note the action in the
parent IB.

the mcotivation behind
exercise,

6

the notebook,
construcing

what we will do is

- bring the svstem up and run it on a tvpical

- imagine that we are
engineering seesion whnose puUrposs
of MDX/MYCIHN

participating

- The middlie mouse button iz for vyesetting the
IVofInterest for a selected node.
EX: select the node for
Scolumbus-ai in the
ValueLattice with the
middle button
when asked, tvpe in
{ DAKFA)
note the effect on the
ValuelLattice
close the parent IE
and see what happens
(what would vou
WANT to happen?)
Discussion
The 3I3 is a svstem that 1is designed to extend programming
environment offered bv LGOFPS to the realm of named, structured
instances of LOOF3 obijects. In so doina, the idea of cooperating
browsers was introduced. As was hinted at in vesterdav's
exercises, this notion can be very powerful if viewed in a light
trving to help the user manage his thinking. If you have
suggestions, comments, or criticisms of the few parts of the SIS
that vou've seen, don t hesitate to make them known.
MDX/MYCIN
MDX/MYCIN is a medical diagnosis system coperating in a
subdomain of the MYCIN svstem: bacterial meningitis. At the end

vou' ll find a paper describing the system and
it.

For purposes of this
case
in a knowledge

is to Zdebuag a portion

EX: button mmConcept
with the middle mouse
button and select
BrinaUpCommandMenu

The command menu 1is a permanent menu (as cpposed to a pop-up
menu such as vou have seen before! that allows the user to dJust
ask for a desired function.

E¥: button Diagnose
in the command menu
that vou have up for
mmConcept

select the case
mvcinCasez32
for running

The system will now bring up an IB, and proceed to diagnosis
the case followinag an MDX approach. Note how clear cut it 1is to
follow the action of what the system is doing at anv one time.

When the d4ob 1is done, the IB will show in inverted video the
MDX/MYCIN specialists which have been established.

MDX/MYCIN Debugging Session

At this point we can imagine that vou are a xnowledge engineer.
At your side 1s vour resident medicai expert. You have dust run
case 222 and vour expert is requesting tco see the establishing
numbers Ior each specialist.

E¥X: set the IVoflnterest
for the IB that is
shown to MostRecentResult

bring up a ValueLattice

3

Now the medical esxpert points out that the establishing valus
say for dipleoFneumonia is too low. Instead of i, it should have
been 2.

Now vou as the knowledge engineer must (with the help of the
medical expert) figure out what part of the domain knowledge 1is
incorrect.

The first thing to do is to look at the individual knowledge
groups inside the specialist diploFPneumonia.

EX: 1left mouse sdiploFneumonia
middle mouse TruthTableFunctions*
select BrowseTruthTables

Now vou are looking at the individual TruthTables (ie knowledage
groups) that reside in the diploPneumonia specialist.

EX: set the IVofinterest
for the IB vou have up
on the knowledge groups
to McstRecentEkesult

brina up a ValuelLattice
for the knowledoes group
iB

Note we are now plaving the same game that we did before for
the specialist level except one level down: ie. at the knowledage
group level.

Now vour resident medical expert savs <(from looking at the
establishing vresults for the individual knowledae groups) that
the problem is in the diploPneumoia.headlInjury knowledge aroup.

At this point vou have pinpointed a potential problem and vou
can now revise the domain knowledge for that ONE knowledaoe aroup
that vou have found to be in error.

EX: left mouse the
diploPneumonia specialist

select TruthTableFunctions*
with the middle mouse button

select EditTruthTable

select diploPneumonia.headlIniury

Now vou will find the truth =zabls vou have fingered as the
culprit in a DEdit window, readv for vou to alter.

Imagine vou have done the necessarv modifications, and exit
DEdit.

Now vou have made the necessarv change to vour domain
knowledge. Consider what portions of the system must now be
re-tested in order to verifv that the change is acting as vou
want it to.

Comments

There are several points to be made about the expert svstem vou
have just seen. First, the svstem is easily extensible. (Whv?)

Second, the svstem 1s easv to debug because knowledge is
factored in a relativelyv clean wayv on two levels.

Third, the principle of NAMING the knowledage agroups and the
specialists themselves allows easv of use bv the medical expert.

:

USING CSRL IN INTERLISP-D

CSRL 1is a language for implementing diagnostic expert systems.
This chapter emphasizes the details of 1loading and interacting
with CSRL on a Xerox 1108 (hereafter called a Dandelion), rather
than describing the language and motivating it. It assumes that
the you, the reader, have some familiarity with using a Dandelion
and the LOOPS language.

Conventions in this document: Since the printer does not have a
true backarrow character, a "<" is used instead in this document.
Examples showing user interaction indicate what the user enters
by underlining it.

1. Loading CSRL

Before you can load CSRL, your Dandelion must be in Interlisp
running LOOPS. A fresh version of LOOPS is recommended. CSRL
with the Auto-Mech expert system takes up about 700 pages.

To load CSRL, obtain the relevant floppy from Tom Bylander (his
office is Caldwell 408), insert the floppy in into the Dandelion,
and type in:

<LOAD({FLOPPY3}L.OADCSRL)

Before any files are loaded, you will be asked 2 questions. The
first question finds out if you want to load the source code for
CSRL, and the second asks you if you want to locad the Auto-Mech
expert system which is written in CSRL. If you are doing this
for the first time, answer the first question "n" and the second
question "y". The following sections are written in the context
that you have loaded the Auto-Mech system.

2. The CSRL Browser

The CSRL browser allows you examine, meodify, and run a CSRL
expert system.

2

Exercise 1: Creating a CSRL Browser

To get a CSRL browser for Auto-Mech, enter:

¢<{<New sSCSRLBrowser Show ‘'(Auto-Mech Specialist))

The cursor will prompt you (by changing tc a box shape)
to place the browser on the display. You will probably
need to Recompute the browser (using the title menu) in
order to display the whole lattice. Warning: Do not
select the ShowValues item in the title menu until you
have run a case.

The lattice that is displayed shows you the ‘"specialist"
structure of the expert system. FuelSystem, for example, is a
"subspecialist" of Auto-Mech and a "superspecialist" of Vacuunm,
Delivery, and other specialists. Each specialist of Auto-Mech is
associated with a hypothesis about the state of an automobile
engine, e.g., FuelSystem is associated with the hypothesis that
something is wrong with the fuel system (the subsystem that
delivers a mixture of fuel and air to the cylinders of the
engine). The hypotheses of FuelSystem’s subspecialists are (as
you might expect) sub-hypotheses of FuelSystem’s hypothesis.

The remainder of this section briefly describes the commands
available to you on the browser. Following sections describe
more details about using the browser and creating your own expert
system.

2.1, Left Button Commands

Print Prints a specialist or some part of it on the
PPDefault window. Selecting this item brings up
the following menu.

Specialist Prints the whole specialist.
Declarations Prints the declarations of the
specialist. These indicate its

super- and subspecialists.

Knowledge Group Prints a knowledge group of the

specialist. - Another submenu is
displayed for selecting which
knowledge group to print.

Knowledge groups correspond to

Doc

Wherels

Unread

Diagnose

3

major decisions to be made by the
specialist.

Message Prints a procedure that responds
to a particular CSRL message (not
the same as a LOOPS message).
Another submenu is displayed for
selecting the procedure to print.
The Specialist class contains the
default procedures for messages.

Retrieve documentation on the specialist or some
part of it. It has the same submenu structure as
the Print command. This command also lets you
retrieve documentation for parts which are
inherited by the specialist. Currently all the
specialists in Auto-Mech are subclasses of the
Specialist class, which contains default
information for all specialists.

Find out where a part of the specialist is
inherited from.

Unread the specialist into the current display
stream.

Do diagnosis starting with this specialist.
Submenus for selecting what case to diagnose, and
what message to send are displayed. This command
is covered in more detail in the next section.

2.2. Middle Button Commands

Add

Add a new item to the specialist. Brings up the
following submenu.

Specialist Lets vyou edit the specialist.
This 1is no different from using
the Edit command to edit the
specialist.

Declarations Lets vyou edit the declarations.
This is no different from wusing
the Edit command to edit the
declarations.

Knowledge Group Add a knowledge group to the
specialist. You are prompted to

BoxNode

Copy

Delete

Edit

Rename

4

type in the name of the knowledge
group in the prompt window and
then you are sent to the editor.
If you type 1in the name of a

previously defined knowledge
group, that is what you will
edit.

Message Add a message to the specialist.

A submenu is displayed for
selected what message you want to
add (what messages can be sent is
predefined), and then you are
sent to the editor. If you
select a previously defined
message, that 1s what you will
edit.

Boxes the node. This 1is wuseful (in fact
necessary) to use the Copy command.

Allows you to copy a knowledge group or message
from the specialist that was selected to the
specialist which is currently boxed. Submenus
let you select the knowledge group or message of
yvour pleasure.

Allows you to delete a knowledge group, message,
or the specialist itself if it is a tip

specialist, 1.8., a specialist with no
subspecialists. Submenus 1let you select the
knowledge group Or message. An additional
submenu of one item 1is displayed to ok the
deletion. Clicking the mouse outside the menu
cancels the deletion. Harning: Undoing a

knowledge group or message deletion 1is not
possible. To undo a specialist deletion you need
to add the specialist back as a subspecialist of
the appropriate specialist, and edit the
declarations of the specialist.

Allows you to edit the specialist or some
previously defined part. Its submenu is the same
as the Add command. The difference is that for
the Knowledge Group and Message subcommands, you
select what you want to edit from another
submenu.

Allows you to rename a knowledge group or the
specialist itself.

2.3. Title Menu Commands

ShowValues Brings up a sub-browser which shows the
confidence wvalues for the specialist in the
current case. See next section for more details.

Recompute, AddRoot, DeleteRoot, SavelInIT
Same as for class browsers. Recompute is not
automatically called when a specialist’s
declarations are changed, so0 you will need to
Recompute the browser "manually”.

2.4. Shift Commands

If the left shift key is depressed when you click the left
mouse button, a summary of the specialist is printed in the
PPDefault window. This will be referred to as the Print Summary
command. :

If the 1left shift key is depressed when you click the middle
mouse button, you will be sent to the editor to edit the
specialist. You can use the Edit command to do the same thing.

Exercise 2: Operating the Browser

If you haven't Dbrought up the browser for Auto-Mech
vet, it is suggested that you do so now.
Try using the Print, Print Summary, and Doc commands on
the specialists.
Use the Edit command to bring up a specialist or a part
of one in the editor. If you make no changes before you
exit the editor, no processing will be done. If you make
changes, and exit the editor, then if an error is
discovered, you will go back to the editor; otherwise the
changes that you have made will take effect (and are
undoable). BSelecting the Stop item from the Exit submenu
{use the middle button to display the submenu) will let
you exit the editor without making any changes. Use the
Print command to confirm this.
Use the Copy command to copy the summary knowledge group
of Specialist to Choke. You will need to use the BoxNode
command on Choke first. Confirm the copy with the Print
command. Use the Delete command to remove the summary
knowledge group from Choke.
Rename the Choke specialist to UsedToBeChoke. Rename it
back to Choke.

3. Running a Case
Exercise 3: Running Auto-Mech
Left button the Auto-Mech specialist in the browser,

select the Diagnose command, "new case?" and "Establish-
refine". Auto-Mech will now present questions for you to
answer 1in the TTY window. Also, some information about
what the specialists are doing is displayed. The
specialist that is currently executing is boxed in the
browser. For anyone who doesn‘t want to think of answers
tc the gquestions, use the following:
Do you have problems starting your car? n
Does the car stall? n
Does the car run rough? y
Does the problem occur while idling? n

Does the problem occur on loading? y

Does the problem occur while the engine is both
hot and cold? ¥y

Have you eliminated ignition as a possible cause
of the problem? y

Is any fuel delivered to the carburetor? y

Have you been getting bad gas mileage? n

Are there any cracked, punctured or loose vacuum hoses? u
Can you hear hissing while the engine is running? n

Are the vacuum hoses 0ld? y

€Can you see cracks in the carburetor gasket? y

Has FuelSystem completed diagnosis? n

Is the air filter 0ld? n

Has FuelSystem completed diagnosis? n

Have you tried a higher grade of gas? y

7
3.1. What Happens When a Case is Run

Hhat you just did was to send an Establish-refine message to
the Auto-Mech specialist in the context of a new case. Upon
receiving this message, the Auto-Mech specialist sent itself an
Establish message, scome questions were asked, and then the
specialist sent itself a Refine message, which then called
Auto-Mech’s subspecialist, FuelSystem, with Establish and Refine
messages. As this "establish-refine" process was applied further
downn the hierarchy, some of the specialists were sent Establish
messages, but not Refine messages. This happened either because
the specialist had no subspecialists or because the specialist
did not have a high enough confidence value.

In CSRL, a seven-point confidence value scale is used. For
convenience, we use the integers from -3 to +3, which can be
loosely interpreted as:

3 Hypothesis is confirmed.

2 Hypothesis is very likely.

1 Hypothesis is mildly likely.

0 Evidence for the hypothesis is inconclusive.
-1 Hypothesis is mildly unlikely.

-2 Hypothesis is very unlikely.

-3 Hypothesis is disconfirmed.

If the confidence value is 2 or 3, the specialist is said to be
established. For -2 or -3, the specialist 1is said to be
rejected. Otherwise the specialist is suspended.

A sub-browser is available to display the confidence values in
a graphical manner by selecting the ShowValues item from the
title menu.

Exercise 4: Creating a Confidence Value Browser

Select the ShowValues items in the Auto-Mech browser.
You will be prompted to display the browser window on the
screen. Try out the menus in this browser. Note: The
confidence value browser won't work unless the top node,
Auto-Mech, has a confidence value in the current case.

Since you can use the main browser to send any message to any

8

specialist, you are able to "explore" any diagnosis that was not

originally done.

Exercise 5: Diagnosing From Inside the Hierarchy

Left button one the specialists that has a confidence
value but was not refined, and select Diagnose, "current
case?", and Refine from the menus. After this processing

is finished, go to the confidence value browser,
select Recompute from the title menu.

3.2. The Current Case

and

CSRL remembers what the current case is by setting the variable

currentCase. Cases correspond to instances of the <class
CSRLCase, which has methods for implementing a simple
question-asking facility. CSRLCase also keeps track of old

cases. Presently there is no facility (but one is planned) for

renaming or saving cases.

3.3. Tracing CSRL

The trace information that the diagnose provides you is done
using the functions TraceCSRL and UntraceCSRL. Both of them are
NLambda-NoSpread functions, and take arguments corresponding to

the following forms:

Specialist Trace all specialists
(TraceCSRL Specialist)

{specialist> Trace the specialist
{(TraceCSRL Mixture)

Message Trace all messages
(TraceCSRL Message)

(Message to {(specialist))
Trace messages to this specialist
(TraceCSRL (Message to ValveOpen))

(Message from (specialist?>)
Trace messages sent from this specialist
{TraceCSRL (Message from FuelSystem))

Rule Trace all rules. This will only trace the

of specialists that are currently traced.
(TraceCSRL Rule)

rules

(Rule of (specialist>)
Trace rules 1in the specialist. This will only
trace the rules if the specialist is traced.
(TraceCSRL (Rule of Carburetor})

(Rule of <(name’> kg)

Trace rules of knowledge groups with this name
(TraceCSRL (Rule of summary kg))}

For example, the present tracing level was done by

(TraceCSRL Specialist Message). UntraceCSRL removes a previous
TraceCSRL.

Exercise 6: Tracing Rules in Selected Specialists

Trace the rules of each of FuelSystem’'s immediate
subspecialists, and then diagnose a new case.

4. Making Your Own Expert System

This section gives a brief incomplete account of how to build a
simple expert system in CSRL. In particular, it contains no
information on how to change the default Refine procedure. It
also depends on your ability to figure out how the Auto-Mech
system. The section also includes exercises on building part of

a expert system for diagnosing problems in a house (or apartment
or mansion if you like).

4.1. Making the First Specialist

To make a specialist, use the function Specialist, which has
the form:

(Specialist (name> <{comment>
{declare {(declarationl> {(declaration2) ...)
(kgs <kgl> <kg2> ...}
(messages (messagel) {(messageZ’ ...))

The declare, kgs, and messages sections are optional, as well as
the comment.

10

Exercise 7: Creating the House Specialist

To make an specialist called House do:

€{Specialist House {* House is a new specialist))

You should also create a browser to facilitate future
additions.

< (£<New SCSRLBrowser Show ‘'{House Specialist))

4.2. Adding Subspecialists

To add subspecialists to the expert system, it 1is easiest
edit the declarations of the existing specialists.

Exercise 8: Adding Subspecialists to House

Use the Edit command (or left shift/middle button) to
edit the House specialist. Add declarations after the
comment (change the comment if you wish) which look like:

(declare
{subspecialists Electrical Heating
Security Water))

Be sure that you have spelled "subspecialists" correctly.
Now Exit the editor and Recompute the browser. The
specialists should have been automatically created.

to

11

Now add more specialists so that the browser looks
something like:

| -—0verloadedCircuit

| -——-BlownFuses--|
{ | --ShortCircuit
|--Electrical--|
| | | --BadLightSwitch
| | --LightBulb---|
! | ==BurnedOQutBulb
|
i | --HeaterOff
| I
| | --InefficientHeater
| --Heating----- |
| { —-NoFuel0il
! | | ~-BadThermostat
! | --Thermostat--|
f | --HWrongSetting
House--|
| | --DoeorLocks
|==Security——-—|
| | ~-WindowLocks
|
!
{ | --CloggedPipe
i |
|] | --BrokenWaterHeater
| I |
| | --HotWater----|--SmallWaterHeater
! | |
|-—-Water------- | | —-WaterHeaterOff
!
i | ——BasementLeak
| I
| -—-HaterLeak---{--PipeLeak
!
| --RoofLeak

Of course, feel free to restructure the specialists any
way you like. You should be forewarned, though, that the
"perfect” hierarchy does not exist. Below we will only
be concerned with embedding knowledge within the Heating
subhierarchy of this structure, so it is not necessary to
create the whole structure.

12
4,3. Adding Knowledge to the Specialists
In CSRL, most of the knowledge of a specialist takes the form

of knowledge groups. A knowledge group (hereafter abbreviated to
kg) maps a list of expressions to a confidence value (or some

other measure). This can be the confidence value of the
specialist or perhaps the confidence value in some intermediate
hypothesis. For example, there might be a kg in the Security

specialist called badNeighborhood, which could measure the
likelihood that you are in a bad neighborhood or measure of the
"badness" of the area. This value and values of other kgs (which
measure other facets of security) could be <combined by a
"summary" kg to arrive at a confidence value for the specialist.

One type of kg is called a Table kg. Its form is:

({name> Table {comment>
(match (expression> {(expression>
with (if (test> <{(test) ...
then <(valiue>
elseif (test> <(test) ...
then (value?
else <(value’}))

For example, the BadGas specialist of Auto-Mech has this kg:

(relevant Table
{match
{AskYNU? "Is the car slow to respond")
(AskYNU? "Does the car start hard")
(And
{AskYNU? "Do you hear knocking or pinging
sounds"”)
(AskYNU? "Does the problem occur while
accelerating”))
with
(if T 2 ?
then -3
elseif 2 T ?
then -3
elseif 7 2 T
then 3
else 1)))

If the first expression is T (true), then the value of the kg is
-3. Else, if the second expression is T, then -3. Else, if the
third expression is T, then 3. Otherwise, its value is 1. Note
that the number of tests following the "if" or ‘"elseif" 1is the

13

same as the number of expressions of the table. Also note that
each test must be true for the "row" of the table to match. The
"?" test matches any value. The syntax for expressions and tests
are discussed below. You are encouraged to look at other Table
kgs in Auto-Mech.

The other type of kg which will be discussed is the Rule kg.
Its form is:

(<{name’?> Rules (comment’
{match (expression’
with (if <{(test>

then <value>
elseif (test>
then <(value>
else <(value?>))
{match (expression>
with ...)
.)

A example from the Carburetor specialist of Auto-Mech is:

(other Rules
{match (AskYNU? "Is there fuel leaking around the
carburetor")
with (if T then 3))
(match (Or
(And
(AskYNU? "Do you hear knocking or
pinging sounds")
{AskYNU? "Does the engine idle fast"))
(And
{AskYNU? "Does the car hesitate")
(AskYNU? "Does the problem occur while
decelerating")
(AskYNU? "Does the engine idle fast"))
{AskYNU? "Does the engine idle slow")
(Ask¥YNU? "Does the car run rough"))
with (if T then 3)))

Each rule {a match-with form) is tried in succession until one
“matches". A rule matches if it returns a wvalue, 1i.e., the
{expression> satisfies a test in the if-then part, or if there is
an else clause within it. (As a consequence, it only makes sense
to have an else clause in the last rule.) The value of the
matched rule becomes the value of the kg.

14

4.3.1. Expressions in CSRL

Names of knowledge groups, numbers, CSRL variables, LISP
expressions {(e.g., AskYNU? is a LISP function), "self", and the
logical constants T, F, and U are the base expressions of CSRL.
CSRL variables will not be discussed here (but see the Refine
message procedure of Specialist for an example). Any list which
is not mistaken for a CSRL expression is assumed to be a LISP
expression. The literal ‘'"self" evaluates to the name of the
current specialist. Note that CSRL uses a three-valued logic.

CSRL provides the normal set of logical and numerical
comparison operators, as well as a small set of arithmetic

functions.

{And <(exp> <(exp’> ...)
Returns T if every expression is T, F 1if any
expression is ¥, and U otherwise.

(Or <(exp> {exp? ...)
Returns T if any expression is T, F if every
expression is F, and U otherwise.

{Not <exp>) Returns T if the expression is F, F if it is T,
and U otherwise.

LT, LE, GE, GT Numerical comparison operators with the obvious
interpretation. If one or both expressions are
not numbers, U is returned.

{Range (exp’> (exp> (exp>)
Returns T if the first expression is within the
range (closed interval) of the second and third
expressions, and F if it is not. U is returned
if any expression is not a number.

EQ Equivalent to EQ in LISP.

Plus, Subtract, Minus, Times, Divide
Arithmetic functions with obvious
interpretations. If any of the expressions are

not numbers, U is returned.
4,3.2. Tests
{And <{(test) (test> ...)

Returns T if every test is T, F otherwise.

(Or (test> <(test) ...)

15

Returns T if any test is T, F otherwise. test is
F, and U otherwise.

{Not (test>) Returns T if the test is F, F if it is T, and U
otherwise.

{LT <{number>), (LE <{(number?>), (GE <{(number>), (GT <{(number>),
Numerical comparison with the obvious
interpretation, e.g., for LT, returns T if the
expression is less than the number.

(Range <{number) <{(number>)
Returns T if the expression is within the range
(closed interval) of the numbers, and F
otherwise.

(EQ <atom or number>)
Returns T if the expression is EQ to the atom or
number, and F otherwise.

(atom or number>
If not embedded in a LT, Range, or some other
comparison test, an equality test is implied.

4.4, Writing Procedures for Establish Messages

In general, a specialist sets its confidence value within its
procedure for the Establish message. This section explains some
of the syntax for these procedures: A simplified form for an
Establish message procedure is:

{Establish {(comment>
(statement>
(statement>
P |

CSRL also has facilities for creating local variables and passing
parameters, but these will not be necessary for the final
exercise. As always, you are encouraged and exhorted to look at
the Auto-Mech specialists as examples for specialists that you
write.

4.4.1. Statements

(if <exp> then (st> elseif (exp> then {(st> else <{(st)
Evaluates each expression until one 1is T. The
corresponding clause is executed. If no

16

expression 1is T, the else clause (if any) is
executed. More than one statement can follow a
then, elseif, or else.

(SetConfidence {(expression’> {(expression))
The first expression should evaluate to the name
of a specialist. In general, you will only use
"self" here. The value of the second expression
becomes the confidence value of the specialist.

(DoLisp {form> (<{lisp var> (CSRL exp>)
({lisp var> (CSRL exp’)
)

Uses Lisp EVAL to evaluate the form. Before
that, each of the Lisp variables are bound to the
corresponding CSRL expression. This allows an

escape to Lisp, and a way to get at wvalues in
CSRL. This may also be used as an expression.

17
5. Final Exercise

Exercise 9: Implementing Part of the House Expert System

Add knowledge groups and establish procedures to the
specialists in the Heating hierarchy. Use Ask¥YNU? to get

information from the user about his heating system. You
should consider the following questions in your
implementation.

"Does your house get too cold"

"Does your house get too hot”

"Is your heating bill too high"

"Are you out of fuel oil"

"Is your furnace old"

"Has your furnace been checked recently”
"Is the fuel oil igniting in your furnace"
"Is your thermostat set low"

"Is your thermostat set high"

"Does changing the thermostat affect the temperature"

18

Alsc, examine the following questions, consider what
additional hypotheses should be considered, and modify
the Heating hierarchy accordingly. In addition to adding
more specialists, you will probably need to reorganize
the hierarchy so that similar specialists are grouped,

e.qg., having a FuelOilDelivery specialist with
EmptyFuel0ilTank and ClosedFuel0ilValve as
subspecialists.

"Is the fuel o0il valve open”

"Are your heating vents open”

"Does the furnace fan turn on"

"Are your windows open’

"Do you have a fireplace"{heat can escape up the chimney)
"Do you feel air coming through the windows"

"Is your attic insulated”

1.

i

Table of Contents

Loading CSRL
The CSRL Browser

2.1.
Zods
2.3
2.4,

Left Button Commands
Middle Button Commands
Title Menu Commands
Shift Commands

Running a Case

3.1.
3o e
3.3,

‘Making

4.1.
4.2.
4.3,

4.4.

What Happens When a Case is Run

The Current Case

Tracing CSRL

Your Own Expert System

Making the First Specialist

Adding Subspecialists

Adding Knowledge to the Specialists
4.3.1. Expressions in CSRL

4,3.2. Tests

Writing Procedures for Establish Messages
4.4.1. Statements

F'inal Exercise

(YolNelNualiou B NINeRIR G RN E) OV VI8 ool o

L el =l =
NUeRNO

Exercise
Exercise
Exercise
Exercise
Exercise
Exercise
Exercise
Exercise
Exercise

WO W

ii
List of Exercises

Creating a CSRL Browser

Operating the Browser

Running Auto-Mech

Creating a Confidence Value Browser
Diagnosing From Inside the Hierarchy
Tracing Rules in Selected Specialists
Creating the House Specialist

Adding Subspecialists to House
Implementing Part of the House Expert System 17

o
COoOVWEmNOUIN

filed on: {indigo}<kbvisi>loopscoursertruckin.bravo
Last Edited: SM: July 11, 1983

Truckin

A teaching game for expert systems

by the Loops Design Team
Daniel Bobrow, Sanjay Mittal, and Mark Stefik

copyright (c) 1983 by Xerox Corporaticn

Abstract. Truckin is a knowledge system used for teaching knowledge representation techniques in
Loops. Truckin provides an environment for creating, testing, and evaluating small bodics of
knowledge interactively. Much of the knowledge in Truckin is represented as rules for controlling
an autornated truck in a simulation. The rules enable a truck to plan its journey along a road as it
buys and sells commodities. A Truckin knowledge base can be evaluated in terms of the ability it
gives an automated truck to make a profit while avoiding hazards of the highway. Truckin
knowledge bascs can be extended incrementally, so that a new Loops user can begin by extending
existing sets of rules. Truckin contains illustrative examples and idioms for access-oriented, object-
oriented, and rule-oriented programming,

Introduction

Loops is a knowledge representation system designed for use in building expert systeins. [t
augments the Interlisp-D cnvironment with object-oriented programming, access-oriented
programming, and rule-oriented programming. Loops was developed by members of the
Knowledge Systems Area at Xerox PARC.

In January 1983, the Loops system was ready for beta-testing outside of Xerox PARC. To help
beta-test users to learn and evaluate Loops, the Loops Group decided to offer a short intensive
course. This course was intended to provide hands-on experience in using loops. Because Loops
was designed for expert systems applications, it was belicved that the best way to teach Loops would
be to organize the course around a mini-expert system.

It was important that the mini-expert system for the course not be too technically specialized,
because people taking the Loops course would come with a variety of different backgrounds. The
mini-expert system should be based on knowledge from common expericnce. The cxpert system
needed to be engaging enough and open-ended enough to draw pcople into developing fairly
claborate knowledge bases. This led to the idea of a simulation game around which we could have
"knowledge competitions”.

This document describes the Truckin world as a teaching and simulation game around which
the Loops course is organized.

The Trucker’s Handbook

A “player” in Truckin is qualitatively different from a player of computer and video games,
such as those that are popular in arcades and on home computers. In most computer games, a
player is a person. In Truckin, a player is a knowledge base. In this way, personal competition in
Truckin is one level removed from the game. The objective is to creale a knowledge base that can
effectively guide a truck in the situations it encounters in the simulation cnvironment.

Truckin provides a set of commodities, producers, consumers, hazards, road stops, and trucks.
The Truckin world is intended to be complex enough to be interesting in the Loops course, but too
complex for a simple malhematical model. The online data basc of [facts about this world is,
metaphorically, called the Trucker’s HandBook. A wise Truckin player will consider the facts in the
Trucker’s Handbook in planning its route.

The simulation in Truckin is controlled by a program called the GameMaster. In different
contexts, the term "Game Master” refers to different combinations of programs, knowledge bases,
processes, and computers. For simplicity, we refer to the whole thing as "the” GameMaster. The
GameMaster chooses the initial configuration of the highway, somctimes called the game board,
decides on the legality of the requests made by the players, updates thc GameWorld and maintains
the display.

The players talk to the GameMaster, who also decides which player gets the next turn.
Currently, players get their turn on a time-robin basis, i.c., the player who has used the least
amount of time gets the next turn, During a turn a player can buy or sell commodities at any
RoadStop at which it is parked. These transactions are governed by practical considerations of how
much money is in the truck’s cashBox, whether there is cargo room in the truck for the goods, and
whether the RoadStop advertises an interest in buying or selling the particular commodities. During
a single move a truck can also drive to one other RoadStop. The distance that the truck can travel
in a move is governed by a variable reflecting traffic conditions, as well as the maximum speed of
the truck and the amount of gasolinc remaining in the fuel tank.

Profits and Risks

The goal of a player in Truckin is to maximize profit during the game. The game ends after a
predetermined number of turns. At the end of a game, the winning player is the one with the most
cash. AlicesRestaurant is a special roadstop because any player who is parked there when the game
ends, gets a hefty bonus. :

Players compete for a fixed supply of goods and parking places. Just as with real trucks, there
are a number of things that are important to know about the world. For the details of this, a player
should consult the Truckin Handbook (database of rclevant Loops classes). Here is a summary of
the clements of the Truckin world:

Kinds of Trucks. Players start the game at UnionHall with an cmpty (ruck and an allotment of
fuel and cash. Trucks come in different varicties, with different speeds, different
fue! efficiencies, and different capacities for carrying merchandise. During cach turn,
the speed of the truck is measured as the ratio of the number of roadstops actually
moved and the maximum allowed for that class of truck.

RoadStops. RoadStops are the positions along the highway. In the standard version of the
game board, therc are sixty six RoadStops along the highway. Ncighboring
RoadStops arc scparatcd by one mile. Up to two trucks can be parked at a
RoadStop.

Producers. Producers are RoadStops at which players can purchase goods. A given producer
will scll only a fixed kind of item, for cxample tclevisions, shirts, or apples. A
Producer has only a fixed inventory of items for sale, and this inventory is used up
as the simulation runs. The game board display shows the guantity of items for
sale, and a price ratio which can be multiplicd times the averagePrice of a
Commodity to determine the purchase price. An icon is displayed on the game
board to show the kind of Cemmodity. There are usually about 30 Producers
distributed along the highway.

Consumers. Consumers arc RoadStops at which players can scll goods. [n general, Consumers
are interested in generic kinds of goods, such as sporting goods, office supplies, or
groceries, The capacity for a Consumer to buy goods decrcases as items are
purchased. The game board display shows the quantity of items that will be
purchased, and a price ratio. The name of the generic class of Commodities to be
purchased is displayed on the gamc board. There are usually about 23 Consumers
distributed along the highway.

Commodities. Commodities arc the things that are bought and sold along the highway. The
kinds of Commoditics that arc available arc shown in the Trucker’s Handbook.
Some Commoditics have special features, such as being fragile or perishable,
PerishableCommodities have a lifetime (expressed in turns) which determines how
long the Comunodities remain salable. Fragile Commodities have a fragility which
determines how likely they are to brecak when you go past RoughRoads.
Commodities also have a volume and a weight which means that a truck can carry
commodities limited by the available volume and weight on the truck.

Gasoline. Driving a truck uses up gasoline. Gasoline can be purchased at GasolineStations
along the highway. Running out of gasoline results in a towing and a fine. There
are usually about 5 GasolineStations along the highway.

WeighStations. WeighStations represent the arm of the government in Truckin. If a player
goes by a WeighStation without stopping, he risks some chance of receiving a stiff
fine and a towing back to the WeighStation. If he stops, he must pay a small toll
(and usc up a turn).

Rough Roads. Some RoadStops corrcspond to rough places on the road. Driving past a
RoughRoad entails some risk to any FragileCommodities that arc on board. If a
player stops at a RoughRoad, no damage will result.

Bandits. Bandits in Truckin do not sit still. 'They can park at various RoadStops as controlled
by the GameMaster and can intercept trucks. 1f a bandit intercepts a truck, or is
parked at the same roadstop as a truck, it will take all of the LuxuryGoods that it
has room for and one fifth of the moncy in the cashBox.

The CityDump. In general, an attempt to sell perished or damanged goods results in a stiff fine.

However, such goods can be unloaded for a fee at the CityDump. (In the
simulation, these goods are sold for a modest “negative price".)

The Union Hall. If a player runs out of gas, he will be towed to Union Hall. There he will be
given a new allotment of cash, but his truck will be emptied. This happens to a
player whether he goes to Uniontall on his own request, or whether he is towed
there for violating some rule.

Alice’s Restaurant. At the end of the game, all of the trucks try to make it to Alice’s
Restaurant. Players ending the game at any of the Alice’s get their cash doubled.
There may bc more than one Alice’s Restaurant on the highway, and any one of
themn will do. [f there arc more trucks in a game than parking places at the
restaurant, then there will be competition for the places. To preclude the strategy of
just going to Alice’s Restaurant and parking, any player who parks there for more
than somc specified time will be towed away to Union Hall.

Advice for Independent Truckers

To succeed at Truckin, a player must be responsive to the configuration of the highway and to
changing conditions. To make a profit, a player must consider the spread between price ratios and
the convenience of the relative locations for buying and sclling commodities. A player must not
exceed the capacity of his truck in cither weight or volume.

We have a few final suggestions for players. Don’t buy goods that you can’t scll at a profit.
Don't buy PerishableCommodities if you can’t deliver them on time. If your goods spoil or are
damaged, take them to the CityDump. Keep an eye on your fuel gauge. Don’t drive too quickly
with FragileCommodities over RoughRoeads. Don’t spend all of your cash on Commodities; you may
nced some for incidentals along the way., Watch out for bandits, rough roads, and weigh stations.
And try to be at Alice’s Restaurant when the game ends.

filed on: {indigo}<kbvlsi>loopscoursc>truckinmanual.bravo
Last Bdited: SM: July 11,1983

Truckin MANUAL

by the Loops Design Team
Dani¢l Bobrow, Sanjay Mittal, and Mark Stefik
Copyright (c) 1983 Xerox Corp

This document gives the basic instructions for creating game boards, starting, stopping, and
continuing a game, interrupting a game in the middle, and attaching gauges to monitor the internal
state of Truckin players.

[NB: Truckin now has versions which run on both single machines as well as multiple-machine
configurations. The following instructions are written for the single machine version. Any
differences for the multi-machine version are indicated in smaller print. Otherwise the instructions

apply to both versions.]

A. Creating a new game
Send the message New to $Truckin as follows:
(¢ S$Truckin New)

this creatcs a new gamc board and the lisp variable Playerlnterface is sct to the instance of
TruckinPlayerinterface. All commands sent by your player or you go to Playerinterface. You can
play any number of times on this basic game board as follows.

[On a RemoteMasterMachine:
(¢ S$MasterTruckin New) creales a new game.
On a RemoteSlaveMachine:

{+ $SlaveTruckin New) scls up the Truckin world and links your machine to the MasterMachine. You will be asked
for a unique name to identify your machine and the address of the PostMaster. Please ask the game coordinator for this
address. A new game cannot be created from a slave machine - the slave machine will run the game created by the
master machine,

PlayerInterfuce is set as above in both these cases as well],

[[l[In all these cases, upto 4 arguments can be given to the New message (o select the game configuration you wanl. The
descripltion above is for the default case.

Arg 1: Type of Game-

This specifics what kind of DecisionMaker and PlayerInterface you want, Currently the only value is TimeTruckinDM
(thc appropriate player interface is automatically selected). Later, we may put in olher versions of the game.
Arg 2. Type of Game Board-

This specifics what kind of game board you want: BWTruckin or ColorTruckin. The former is the default. In order to
use Colorlruckin option, you need a color monitor atlached to your machine.

Arg 3 Type of Simulator-

‘This specifies whether you wanl the game board to be displayed or not: DisplayTruckinS or NoDisplayTruckinS. The
former is the default. The NoDisplay version of the simulator maintains an upto date version of the game but docs not
display the pame board

Arg 4. Broadcast List-

This is a list of objects who want to receive a copy of all game messages which change the world. These objects must be
capable of responding to the messages described in the MultiMachineTruckin document. These objects will get the
messages after the world has already been updated.]]]]

B. Starting a game

Send the niessage BeginGame to Player{nterface to start a game as follows:
(¢ PlayerInterface BeginGame)

This message refreshes the game board created carlier and prompts you for the players you want in
this game. You can cither create new players from among the existing player classes (via an
interactive menu) or use any players created carlier. [The menu appears next to the prompt window
at the left top of the screen). The menu for the players offers you a choice of both player classes
and existing player names. You can opt for all existing players by choosing the ALL-EX [STING
menu option. Select NO when you are done selecting players.

You can pass one optional arguments in the BeginGame message.

Arg : If T then all existing players will be used for the game and you will not be asked for players. This
might be convenient during debugging when you want to use the same game board and same set of
players for debugging your player. :

([If you are running SkaveTruckin, BeginGame will let you select your local players, but the game will only start when the Master
Machine decides - which it does when a BeginGame is done on the Master Machine.]]

C. Interrupting a game in the middle.

In addition to the rule exec and the break/trace facility of the rule language (see Rule Language
manual), there is another way to temporarily stop a game in the middle and bring up the lisp user
exec. Hold the CI'RL and LEFT SHIFT keys simultancously when one of the trucks is moving.
This will put you into the Lisp User Exec, where you can examine things and/or edit your rule sets
and functions. Type OK in the Excc to resume the game. On a dorado, the trucks move pretty fast,
so if the above does not work the first time, try again.

C.2 Interrupting a player any time

Left of the Status Window, you will notice a menu which lists the players running on your machine.
Selecting any player in the menu, allows you to interrupt that player and bring up the Rule Exec.
Remember that the game time continues to click while you are in the Rule Exec.

D. Suspension/Premature Termination of the Game

You can suspend, resume, or kill the game by using the Game Control Menu, which normally appears
left of the Status Window. Sclecting Suspend will suspend the game (but remember that the time
allocated for the game continues to tick, so when you resume, the intervening time will be deducted
from the game time). Selecting Awake will resume the game and Kifl Game will Kill the game.

E. Attaching gauges to your player’s truck

You can attach gauges to Instance Variables (1Vs) of abjects under your control such as your player
or truck in order to monitor important internal state during the game. When you first create a
player, the game master will offer to put gauges on your truck, i.c., to the IVs cashBox, fuel, weight,
and volume. You have several options. NO will not put any gauges. YES response will lead to the
system asking you whether you want gauges on cach of the four IVs listed above. For each 1V for
which you respond with Y£S the system will offer a choice of gauges. DEFAULT response will put
default gauges on fuel

Once you put gauges on a player, they can be reused when you use the same game board for a new
game or create new game boards. Thus, if you expect to use a player many times, it pays to attach
the desired gauges once and continue to use the player.

F. Attaching gauges to other I'Vs of your player

When you create a player, the instance object is given the same name as the driver name you enter.
Thus, if you name some player Joe you can access the object as $Joe.

You will often find it uscful to attach gauges to IVs of your player. For example, if your player is
an instance of Peddler, you might want to monitor IVs such as destination, stoppingPlace, and goal.
The way to attach gauges on your player is to send it the AddGauges message. For example,

(+ $Joe AddGauges ’(destination goal)

will attach gauges to destination and goal IVs of $Joc if $Joe is an instance of Pcddler. The
AddGauges method will prompt you for the type of gauge. The most suitable gauge for arbitrary
values is LCD.

The AddGauges message can be used to sclect default gauges on the instance variables indicated,
instead of having to sclect gauges yourself cach time. In order to do this, you have to specify
additional information in the object class as shown in the following simplified description of the
class Truck.

(DEFCLASS 'Truck
(MetaClass ..)
(Supers ..)
(ClassVariables ..)
(TnstanceVariables (cashBox 10000 DecfaultGauge 1.CD Gaugelimit (0 10000))
(fuel 80 DefaultGauge Dial Gaugelimit (0 80))))

Thus, suppose, you wanted an LCD gauge to be the default gauge on destination, you can specify
this for use by the AddGauges mcthod by adding the property DefaultGauge to the instance
variable destination with LCD as the value. Then pass T as the second argument in the above
AddGauges message. This will result in a T.CD gauge being installed on destination and you will be
prompted only for goal. [You can do the same for goal or any other Vs also]. If the default gauge
you have specified 18 being used for numbers, you also should specify the default limits. For this,
put under the Gaugelimit property a list containing the two numbers which indicate the lower and
upper limits.

G. Adding gauges under program control

You can also attach gauges under full program control by specializing the method SetUpGauges in
the class Player. The description given above is carricd out by this method. You could write your
own SctUpGauges method in your player class and make it attach gauges by using the method
AddGauges described carlier. Both Truck and Player respond to the message AddGauges. This way
you could build into your SetUpGauges method, your choice of gauges, which then will be carried
out by the system cach time you create a player of that class.

H. Selecting trucks under program control

You can also select the truck you want for your player automatically, instead of being prompted for
it. In order to do this specialize the method SelectTruck for your player class. This method will be
called when your player class is instantiated. This method should return Yhe name of one of the
truck classes currcntly allowed in the game. Curcently, the allowed trucks are: MacTruck,
GMCTruck, FordTruck, and PeterBiltTruck.

1. Summarizing the truck data at a glance

You can get a summary report of your players truck by sending your player (say Joe) the Show
message as follows:

(¢ SJoc Show)

This will print out the cashBox, fuel, weight, and volume, as well show you the cargo your truck is
carrying. This summary may be uscful during debugging.

J. Clearing up the screen

If your screen gets messed up for some reason, you can restore it to the initial state by buttoning
the LoopsLogo in the middie top of your screen and selecting the command SetUpScreen. You can
also do this in the middle of the game when you are in any of the rule exec, user exec or break
exec. Even though the game board and gauges will disappear temporarily, they will come back as
those windows are wriiten to.

K. When players get control

A player gets control when his/her turn comes and the game master sends a TakeTurn message to
the instance of your player object. Your top-level rule-set must be written to respond to this
message.

You can also write your player in such a way that the top-level rule set never returns, ie., the TakeTurn rule-set uses
whileAll control structure. The Playerinterface will suspend you when you make a Buy, Move or Sell request and
reschedule you when your turn comes again.

L. Legal requests by players during game

A player can make three kinds of requests during the game: Move, Buy, Scll. After each request,
the player is suspended until the request is completed and your turn comes again (i.e., all other
players have used up (he samc amount of time).

1. (= PlayerInterface Move player numOrl.oc)

This is a request to move player from the current location to a location determined by numOrlLoc. If
numOrLoc is a number, then it is the relative offset from the current location. It can be positive or
negative, It can also be the actual instance object representing the particular roadStop in the game.

2. (¢ PlayerInterface Buy player qty)
This is request to buy gty of the commodity at the location at which player is currently parked.

3. (+ Playerinterface Sell player commoditylnstance qty)
This is a request to selt sell gty of the commodity commodityInstance owned by the player in their

truck’s cargo, at their current location. If gty is not specified, then the qty in the commuodityInstance
will be used.

‘The standard value of player in all the three above messages is self which is bound to the player
exccuting the rule-set.

filed on: {indigo}<kbvisi>lospscourse>truckinvocabulary brave
Last Edited: SM: July 11, 1983

Truckin Query Functions

by the Loops Design Tcam
Daniel Bobrow, Sanjay Mittal, and Mark Stefik

copyright (c) 1983 Xerox Corp

This document summarizes the functions and mcthods you will find useful in writing the rules for
your Truckin players. These functions allow you to select and filter roadstops satisfying different
constraints as well as conveniently access other information about the current status of the Truckin
world, Many of the following functions are also available as methods attached to the class Player,
allowing you to casily specialize them if you so desire.

In the foltowing summary, functions marked with an asterisk (*) are also implemented as methods
on Player with the same name as the function and taking the exact same arguments. For more
details about these functions see the listing of the file TRUCKINYVY in your folder.

A. Selection functions
The following functions return a list of roadstops based on certain constraints.

AnyRoadStop (roadStopType unumMoves direction roomToParkFlg)*

Randomly picks one of the roadstops of type roadStopType where roadStopType is one of the
RoadStop classes. If numdloves is provided, it returns only those roadstops within that distance. If
direction is F then only those in the forward direction, if B then only in the backward direction, if
NIL then in cither dircction. If roomToParkFlg is T then only those roadstops where there is room
to park.

Buyers {commodityClass numMoves includeCDFIg)*

Returns all of the Buyers (i.c. Coasumer roadstops) able to purchase a commodity of type
commodityClass. If numMoves is provided, returns only those within that distance., A common case
is to use the instance variable maxMove of your player as this argument. If includeCDFlg is T then
includes CityDumps also, otherwisc not.

NthRouadStop (numMoves direction fromRoadStop roomToParkFig)*

Returns the Nth roadstop in the given direction from fromRoadStop. 1f fromRoadStop is NIL, the
current location of the player is used. If direction is NIL, Forward is assumed. If there are fewer
than numMoves roadstops in the specified direction, that is if the request would go off the board,
this function returns the farthest roadstop in that direction.

RoadStops (roadStopType numMoves direction roomToParkFlg)*
Returns all of the roadstops of type roadStopType rcachable within nmwnMoves in the direction
specified by direction taking into account room to park if reomToParkFlg is 'I.

Sellers {commedityClass numMoves)*
Returns all the roadstops which are Sellers (i.c. Producer roadstops) of commodityClass and are

located within aumMoves.

B. Filter functions

The following functions take a set of roadstops as one argument and prunc that set bascd on other
criteria specified by other arguments. Some of the following functions arc very general and can be
used to filter (or order) any set of objects of the same class and arc not limited to working on
roadstops only. These arc: FilterObjs, PickHiObj, PickLowObj, and SortObjs.

FilterObjs (self sclector objects)

Sends a selector msg to self for cach of the object in objects and returns all of the objects for which
the rule sct returned a non-NIL value. This is the basic function for doing filtering based on your
knowledge encoded as rules.

FurthestRoadStop (roadStops fromRoadStop)*
Returns the roadstop in roadStops which is furthest from fromRoadStop excluding fromRoadStop. 1f
fromRoadStop is NIL, assumcs the current location of the player.

NearestRoadStop (roadStops fromRoadStop)*
Samme as FurthestRoadStop except returns the nearest roadstop.

PickHiObj (sclf sclector objects)

Sends a selector msg to self for cach object in objects to determine a numeric rating for each of the
objects. It returns the object with the highest numeric rating. When the value returned is non-
numeric for an object, then that object is automatically excluded.

PickLowQObj (self sclector objects)
Same as PickHiObj except rcturns the one with the lowest numeric rating.

SortOhjs (self selector objects)

Scnds a selector msg to self for each object in objects to determine a nuneric rating for each of
them. It returns a list of objects in the descending order of their numeric rating. It also excludes the
ones with non-numeric ratings.

C. Miscelleneous Manctions

AnyBanditsP (toRoadStop fromRoadStop)
Returns T if there are any bandits parked between toRoadStop and fromRoadStop, NIL otherwise.

DirectionOf (toRoadStop fromRoadStop)* ,
Returns the direction of travel for going from fromRoadStop to toRoadStop. If the fromRoadStop is
not given, then the current location of the player is assumed.

Distance (toRoadStop fromRoadStop)*

Computes the distance between fromRoadStop and toRvadStop. If the fromRoadStop is not given,
then the current location of the player is assumed.

PricePerUnit (produccrRoadStop)
Returns the buying price per unit of the commodity being sold at the producerRoadStop. If the

argument is not @ Producer roadstop, then complains and returns L

RoomToParkP (roadStop)
Returns T if there is room to park at roadStop.

ISA (instance className)
Returns I if instance is an instance of className.

Nth (list index)
Returns the index element of [ist

SUBCLASS (class superClass)
Returns T if class is same as or a subclass of superClass.

The following are available only as methods on Player class.

(+ player Range)
Computes how far the player can move based on the amount of fuel carried on the player’s truck.

(¢ player Rangel)
Computes how far the player can move in a single turn. This depends on the fuel in the truck and
the maximum distance allowed by the game master for that turn.

(¢ player TimeAtStop)
Returns the time spent by player at the stop where currently parked. Useful when parked at one of
the Alice’s. _

(+ player TurusAtStop)
Returns the number of turns player has becen parked at the stop where currently parked. Useful
when parked at onc of the Alice's.

D. Useful Global Variables

1. PlayerInterface (you can also use PI)

After doing (+ $Truckin New), Playerinterface is bound to the instance of the class
TruckinPlayerInterface and is used to send messages to the GameMaster for making moves and
starting game. You can also get some game information such as roadStops and localPlayers from
this object. '

2. Simulator
Once the game is sct up, Simulator is bound to the instance of TruckinSimulator and can be used to
access important game information such as roadStops, players, beginTime, endTime, timel.efl.

3. debugMeode

If set to 7, then cach lime a rule is violated, the RuleExee is automatically brought up. Uscful while dcbugging your
rulesets. If sct to AJL, then the Rulelxcc is not entered for cach rule violation, Also, the GamcMaster traps all errors.
Initially set to T

4. truckinl.ogFlg

If set fo T, beforc game is started, then prepares a log fle of all important game messages in a file called
TRUCKINLOG. This log file may be uscful during the debugging of your players. Set this variable to NIL, if you dont
want any log file. Initially set to NIL.

Gauges -- Defined by Classes, Driven by Active Values

0]
2] 16

a

| 84 |
58 a 168
28
30
4758 19

- g
78 8B4~
= 10 7
6
—168

VerticalScale T

[]
=

(A1)
=

(a y]
=

L2z ——18a —30
] —&a —E8
=70 -5
.ﬁzﬂ L -3
=54 =3
v} =z
;—:E:Ei :_113
L -0
=19 Danny Sanjay Mark

=8

lazs Inheritance Lattice

= —Instrument - Found3cale e———Metar-.

Gauge =——_ L - A .

=l —— L O - Ty v =0igiMeter
T —— ——— [IREER] |

e, — — A |

— —_ - Si———— 1S, |

BoundedMizin -me-‘_—__:—_:--“?—gﬂr“lIljr'u'r_.a]:::::.a'Ie——-.‘- LDigiscale |
TT——¥Yarticalicale—

[5 P &
a+Char 330 iMecer
Bat l_-h‘::r'_E_-:_::_-- 230 giMeLe

- T,

selficaleMivin =—— ~~ S3BarChart

COMMODITY INHERITANCE LATTICE
-_~Refrigerator

CornrnodityTransport ability

i Fragil::f:_urnmodity —

O

e
e
—~Fruit ———Strawberry
e

T “Grape

e
e,

PerishableCornrnodity ——

-,

-,

£ —=egetable %Tomato

~Carrot

Corarnodity & —LuxuryGoods @StereoSyStern
%; _ ____--!'Dishes ""-:lj,;‘--r._ﬁ old
W “-Hardware =———Harmmer N
I":.‘*.\'»., . -._E""--Saw ‘Oiarnond
ey Gasoline
A . ArtSupplies

;.._‘:-gl'\._ufficeSupplies -::'_':_ Bk
I".l 'l,l.l A xerox 1 1 I] 0
' "SportingGoods ~——"" BaseBall
' —— Bicycle
"Clothing ~——— Pants
~-—Shirt

Pr Typescript window Game Status
BRE-couting ru 3 SARYAY paTT ol
FindStoppingPlice ITavelerRules Danny Moves -
Expert Svs
" Qanny Sefls 19 =0 LLAA wrr
AIF wSration+(NearestAoadStop (RoadStops SWeighStation Rang gM Moves 10 1a3: (2§ o XEQS

"e

[j ey L 0

a1 dicection ‘Room}}) Hart Buys £ cerusLigd .
{Distance wStation){(Distance destination) Far 1oy Moves 7 luas Alice’s
THEN stoppingPlace+wStation: Garn; Moves 19 (13- XEOS
fann: Buys 19 far3.1180 L
Mark Moves -3 ua- 23 Sheik Gas

Fgbe 0 Arn Fie s ot Fonadluoping? dceTasel<rBuies

wditad e (TEFE a1 W3R ITC7i00f #ark Buys .

S Frule 3 Otficesupplies
hae & 10.5[135 & 1.1a)523 w 3.02

Clathing Cloching
234 @ 6.681 336 W 4.2

Sporringtoeds
491 o .9 (38 & 4.38[897 & 1.09/ 162 & 971|305 @ 98] 12 ~ 75

Appliances
523 « 1.61107 & 6.88

firgueriesy Strewberry ||

Xerax 1100 | Cammedicy | Appliances
553 & 5.53|176 = 13.Ul %

237 & .92 | ENOUGH!! |529 & -.05/258 & 6.37]1734 & 73232 & 331|291 & .92 |15 4 7.37

L%

Kimws Staff
. i .

Lemmodiry B ms-g o = Hardware i e

663 & 2 59) 633 & 5.87 !

|| tummodity |LusuryGosds o Groceries = Ve ! Caminodity | Yeyetsble 5/ HE
‘f|783 & 1.09] 29 & 6.99| 87 & .98 [550 & 7.19[416 @ 1.06{308 & 1.39%294 & 115 546 & -1 |407 & 345|813 & 79|

| i
| L

Pr Typescnpl wInsow -
rINaSoppIngPiace | FaverRrHules

1 direction ‘Room))

anpected Uireeturyt LYY j ATEFIRILIIR,

(Distance gesStation)<(Distance destination)

L Biule @ tyd Fglaiet Fine ki
dited by

{ THEN stoppingPlace«gasStation:

Pl e Travelerfuies

ETEFIN an 1 MAR 57 17

e fgasStation+ (FurthestRoadStop (RoadSrops $GasScation .Range

asme Status
T
Trzr

EEEG

San an Moves
Weigh Here
Zaprlay watd Tt
Mark Moves -3
Mar b Sels Lo
Moves Remaining:
Zan- 3w Moves -7
DirtyDans

car c 3y Buys L C
Mart Moves g

Aeroxiing
63 w 11.6

Ctething
a’1 & 1.0

i33372.29

P

e
-4
L

B

Ta B10.D

Fruit
442 & .79

Xeraxiioo
114 & 6.86|

Cosmadity
Tr2 & 292

Commodity
794 @ 1.23

Hardware

Officesapplies
581 & 3,02

]

Srarentysrem
vz & 6.7

Applianues
162 wi 1.7 5

Toatnato
172 & 9,97

LuxuryGoods

48 @ 571

¥ goal
truc

(* Dont run out of gas.)
‘Sit light
uel .25
truck ;cashfox >0
gasStation+(NearestRoadStop (RoadStops SGasStation Range | NIL ‘Roorn))
THEN stopgingPlace +gasStation:

* truck::MaxFuel

kLI

SpretenL ME IebedslecT e

{indigo}<kbvlsi>papers>loopsmanual5.brave January 29, 1983 116 PM

LOOPS Summary
LoopPsNames (< obj SetName 'FOO) gives obj the Loops name FOO
$FOO evaluates to object named FOO #$FO0 reads in as object named FOO
Variable Access Read macros and their translation
form translation form translation
@x (GetValue self ’X) @X «unewValue (PutVaiue self "X ocewValue)
@(0hj X) (GetValue Obj 'X) @(0Obj X)+newVYalue (PutValee Obj 'X newValue)
@(0bj X P) {GetValue Obj "X °P) @(0Ohj X P)enewValue (PutValue Obj "X newValue 'P)
@@x (GetClassValue selfl "X} @@X «newValue (PutClassValne self "X newValue)
@@L X) (GetClassValue Obj "X) @@(0bj X)+newValue {PutClassValue Ohj "X newValuc)
@@(0bj X P) {GetClassValue Obj 'X 'P) @@(Obj X P)«newValue {PutClassValue Obj 'X newValue 'P)
@X « +unewValue (PushValue sell "X newValue)
Defining and Editing Classes
DC{className New className supersList) e.g. DC (StudentEmployee (Student Employee))
(+ class New className superslist) eg (+ $Class New ‘StudenEmployee '(S{odent Employee))
(« $SludentEmplc‘)/yee Edit) or EC(StudentEmployee)
Sending Messages Active Values
{« object Selector argl ... argn) #{localState getFn putFn)
e.g. (¢ $PayRolt PrintQut *payFile) e.g. #(37 PrintFetcher StopSmasher)
(<Super object selector argl ..)

e.g. (+Super self Edit commands) DefAVP(getFn) edit template for getFn named getFnName
(DoMethod object selector class argl arg? ...) args: (self varName oldValue propName activeVal type)
e.g. (DoMethod X PP $Object ’filel) DefAVP(putFnName T) edit template for puiFnName

args: (self varName newValue propName activeVal type)
Creating, Editing,, Inspecting Instances GetLocalState (activeValue self varName propName)
(¢ class New) eg (+ $Transistor New)h PutLocaiState (activeValue newValue self varName
propName)
(+ object Edit) eg EX(myInstance) Examples of Useful Active Value Forms
(« object Inspect) eg (« $Foo Inspect) #((RANDOM 1 10) TFirstFetch)
Replace me by a random number when first fetched
Defining and Editing Methods #(Initial (DATE))
DM(className selector) Replace me by today’s date on initialization
edit template definion of method . #((sellf rightPoint) Getlndirect Putlndirect)
DM(className selector fnName) Put and get my value from my rightPoint
fnName is unction implementing the method.
DM(className selector argsOrFnName form) Dcbugging
eg DM(Number Increment (self) BreakMethod (className selector)
((* addl to myValue) TraceMethed (className selector)
@myValue+«(ADD1 @myValue))) Breaklt (self varName propName type breakOnGetAlsoFig)
EM (className selector) Tracelt (self varName propName type breakOnGetAlsoFig)
edit method used in className UnBreaklt (self varName propName (ype)

Saving Classes and Instances

(CLASSES * classNamelList) Saves class definitions on files
{INSTANCES * instanceNameList) Saves named Instances on file, and instances pointed to by them.

{(+ $KB New 'KBName ‘environmeniName newVersionllg) Create new KB attaached to Environemnt

(+ SenvironmentName Open) Open Environment for reading and writing

(¢ SenvironmentName Cleanup) Save insiance and class data in a KB

(+ SenvironmentName Closc) Close Environment and release attached KB

(+ SKB Old 'KBName ‘environmentName) Connect an old KB to new cnvironment
(+ S$environmentName Frase) Cancel an entire session

89

