
File created: 20-Dec-88 09:27:17 {DSK}<LISPFILES>LOGIC>MEDLEY>LOGIC.;3

changes to: (IL:VARS IL:LOGICCOMS)
(IL:FUNCTIONS CREATE-BACKGROUND-THEORY SHOW-THEORY)

previous date: 19-Dec-88 10:50:29 {DSK}<LISPFILES>LOGIC>MEDLEY>LOGIC.;2

Read Table: INTERLISP

Package: USER

Format: XCCS

;;
;; Copyright (c) 1988 by Roberto Ghislanzoni. All rights reserved.

(IL:RPAQQ IL:LOGICCOMS
((IL:* IL:THESE IL:ARE IL:MACROS)
(IL:FUNCTIONS AND-LEVEL ANTEC ATOMIC-FORMULAP CLAUSES-OR CONJ CONSEQP DIRECTLY-IMPLEMENTED FAILEDP

FORMULA-OR GET-AND-NODE-THEORIES GET-CUT GET-OR-NODE-THEORIES GET-THEORY IMPLICATIONP
NULL-AND-LEVELP NULL-OR-LEVELP NULL-TREEP OR-LEVELS SEMANTIC-ATTACHMENT-P THEORYP UNIF-ENV-OR
UNIFICATION-ENV)

(IL:* AND IL:THESE IL:ARE IL:FUNCTIONS)
(IL:FUNCTIONS ADD-OR-LEVEL ALL ALL-PREDICATES ALL-PREDS ALL-SAS ALL-SEMANTIC-ATTACHMENTS ANY ATTACH

CLEAR-AND-LEVEL CONSEQ CREATE-BACKGROUND-THEORY CREATE-THEORY DELETE-OR-NODE
DELETE-OR-NODE-WITH-CUT FIND-CLAUSES IS-THERE-CUT LIST-ALL-THEORIES LOAD-THEORY LOGIC-ADDA
LOGIC-ADDZ LOGIC-ASSERT LOGIC-DELETE LOGIC-DELETE-FACT LOGIC-PROVE MAKE-AND-NODE MAKE-OR-NODE
MAKE-TREE MERGE-INTERNAL MERGE-THEORIES NEW-TREE PREDICATE PROVE RENAME-CUT SAVE-THEORY
SHOW-DEFINITION SHOW-THEORY SOLVE SUBSTITUTE-LEVEL UPDATE-ENV UPDATE-LEVEL UPDATE-TREE)

(IL:VARS *PRINT-PRETTY*)
(IL:P (IL:FILESLOAD LOGIC-UNIFIER))))

(IL:* IL:* IL:THESE IL:ARE IL:MACROS)

(DEFMACRO AND-LEVEL (TREE)
‘(CAR ,TREE))

(DEFMACRO ANTEC (WFF)
‘(CDDR ,WFF))

(DEFMACRO ATOMIC-FORMULAP (WFF)
‘[AND (LISTP ,WFF)

(NULL (SECOND ,WFF])

(DEFMACRO CLAUSES-OR (OR-NODE)
‘(SECOND ,OR-NODE))

(DEFMACRO CONJ (AND-LEVEL)
‘(CAR ,AND-LEVEL))

(DEFMACRO CONSEQP (C)
‘[AND (LISTP ,C)

(SYMBOLP (CAR ,C])

(DEFMACRO DIRECTLY-IMPLEMENTED (CLAUSES)
‘(EQ (CAR ,CLAUSES)

’DIRECTLY-IMPLEMENTED))

(DEFMACRO FAILEDP (ENV)
‘(EQ ,ENV ’FAILED))

(DEFMACRO FORMULA-OR (OR-LEVEL)
‘(CAR ,OR-LEVEL))

(DEFMACRO GET-AND-NODE-THEORIES (AND-NODE)
‘(THIRD ,AND-NODE))

(DEFMACRO GET-CUT (OR-NODE)
‘(SIXTH ,OR-NODE))

(DEFMACRO GET-OR-NODE-THEORIES (OR-NODE)
‘(FIFTH ,OR-NODE))

{MEDLEY}<lispusers>logic>LOGIC.;1 Page 2

(DEFMACRO GET-THEORY (THEORY-NAME &OPTIONAL WINDOW)
‘(OR (AND ,WINDOW (GET-THEORY-INTERNAL ,THEORY-NAME ,WINDOW))

(GET ’THEORY ,THEORY-NAME)))

(DEFMACRO IMPLICATIONP (WFF)
‘[LET [(SEPARATOR (SECOND ,WFF]

(AND (EQ SEPARATOR ’:-)
(NOT (NULL (CDDR ,WFF])

(DEFMACRO NULL-AND-LEVELP (TREE)
‘(NULL (CAR ,TREE)))

(DEFMACRO NULL-OR-LEVELP (TREE)
‘(NULL (SECOND ,TREE)))

(DEFMACRO NULL-TREEP (TREE)
‘(AND (NULL-AND-LEVELP ,TREE)

(NULL-OR-LEVELP ,TREE)))

(DEFMACRO OR-LEVELS (TREE)
‘(SECOND ,TREE))

(DEFMACRO SEMANTIC-ATTACHMENT-P (SA)
‘(EQ (CAR ,SA)

’SA))

(DEFMACRO THEORYP (THEORY &OPTIONAL WINDOW)
‘(OR (AND (GET-THEORY ,THEORY ,WINDOW)

T)
(HASH-TABLE-P ,THEORY)))

(DEFMACRO UNIF-ENV-OR (OR-NODE)
‘(FOURTH ,OR-NODE))

(DEFMACRO UNIFICATION-ENV (AND-NODE)
‘(SECOND ,AND-NODE))

(IL:* IL:* AND IL:THESE IL:ARE IL:FUNCTIONS)

(DEFUN ADD-OR-LEVEL (WFF CLAUSES TREE &OPTIONAL CUTNAME)

;; Adds a new or-node to the list of the nodes. The new node is put in front of the old ones

[COND
((NULL CLAUSES)
TREE)

(T (LET* ((LEVEL (AND-LEVEL TREE))
(NEW-OR-NODE (MAKE-OR-NODE WFF CLAUSES (CONJ LEVEL)

(UNIFICATION-ENV LEVEL)
(GET-AND-NODE-THEORIES LEVEL)
CUTNAME)))

(MAKE-TREE LEVEL (APPEND (LIST NEW-OR-NODE)
(OR-LEVELS TREE])

(DEFUN ALL (VARS CONJ THS)
[PROG (RESULTING-TREE (*VARIABLES-COUNTER* 0)

(TREE (MAKE-TREE (MAKE-AND-NODE CONJ NIL (APPEND (LIST ’*BACKGROUND-THEORY*)
THS))

NIL))
COLLECTED-RESULTS NEXT-OR)

(DECLARE (SPECIAL *VARIABLES-COUNTER*))
HERE

(SETF RESULTING-TREE (LOGIC-PROVE TREE))
(COND

((NULL RESULTING-TREE)
(RETURN COLLECTED-RESULTS))

(T [SETF COLLECTED-RESULTS (APPEND COLLECTED-RESULTS (LIST (LOOKUP VARS (UNIFICATION-ENV
(AND-LEVEL RESULTING-TREE]

(SETF NEXT-OR (FIRST (OR-LEVELS RESULTING-TREE)))
(SETF TREE (SOLVE (NEW-TREE RESULTING-TREE NEXT-OR)

(FORMULA-OR NEXT-OR)
(CLAUSES-OR NEXT-OR)))

(GO HERE])

{MEDLEY}<lispusers>logic>LOGIC.;1 Page 3

(DEFUN ALL-PREDICATES (THEORY-NAME)
(ALL-PREDS (GET-THEORY THEORY-NAME)))

(DEFUN ALL-PREDS (THEORY)

;; The presence of VAL in the AND body is necessary because it is correct to test if the predicates has not been erased: in such a case its value is
;; NIL

(PROG (PRNAMES)
LABEL

(MAPHASH #’[LAMBDA (KEY VAL)
(AND (NOT (SEMANTIC-ATTACHMENT-P VAL))

VAL
(SETF PRNAMES (APPEND PRNAMES (LIST KEY]

THEORY)
(RETURN PRNAMES)))

(DEFUN ALL-SAS (THEORY)
(PROG (SANAMES)

LABEL
(MAPHASH #’[LAMBDA (KEY VAL)

(AND (SEMANTIC-ATTACHMENT-P VAL)
VAL
(SETF SANAMES (APPEND SANAMES (LIST KEY]

THEORY)
(RETURN SANAMES)))

(DEFUN ALL-SEMANTIC-ATTACHMENTS (THEORY-NAME)
(ALL-SAS (GET-THEORY THEORY-NAME)))

(DEFUN ANY (HOW-MANY VARS CONJ THS)
[PROG (RESULTING-TREE (*VARIABLES-COUNTER* 0)

(COUNTER 0)
(TREE (MAKE-TREE (MAKE-AND-NODE CONJ NIL (APPEND (LIST ’*BACKGROUND-THEORY*)

THS))
NIL))

COLLECTED-RESULTS NEXT-OR)
(DECLARE (SPECIAL *VARIABLES-COUNTER*))

HERE
(SETF RESULTING-TREE (LOGIC-PROVE TREE))
(COND

((OR (NULL RESULTING-TREE)
(EQ COUNTER HOW-MANY))

(RETURN COLLECTED-RESULTS))
(T [SETF COLLECTED-RESULTS (APPEND COLLECTED-RESULTS (LIST (LOOKUP VARS (UNIFICATION-ENV

(AND-LEVEL RESULTING-TREE]
(SETF NEXT-OR (FIRST (OR-LEVELS RESULTING-TREE)))
(SETF TREE (SOLVE (NEW-TREE RESULTING-TREE NEXT-OR)

(FORMULA-OR NEXT-OR)
(CLAUSES-OR NEXT-OR)))

(INCF COUNTER)
(GO HERE])

(DEFUN ATTACH (SA-NAME DEFINITION THEORY-NAME &OPTIONAL WINDOW)
(SETF (GETHASH SA-NAME (GET-THEORY THEORY-NAME WINDOW))

(CONS ’SA DEFINITION))
’ATTACHED)

(DEFUN CLEAR-AND-LEVEL (TREE)
(PROGN (SETF (CAR TREE)

NIL)
TREE))

(DEFUN CONSEQ (WFF)
(CAR WFF))

(DEFUN CREATE-BACKGROUND-THEORY ()
[PROGN (IN-PACKAGE ’USER)

(CREATE-THEORY ’*BACKGROUND-THEORY*)
(WITH-OPEN-FILE (FILE (MERGE-PATHNAMES (MAKE-PATHNAME :NAME ’LOGIC :TYPE ’LGC))

:DIRECTION :INPUT)
(PROG (NAME)
LABEL

(AND (EQ (SETF NAME (READ FILE))
’THEORY-END)

(RETURN))
(LOGIC-ASSERT NAME (CONS ’DIRECTLY-IMPLEMENTED (READ FILE))

’*BACKGROUND-THEORY*)
(GO LABEL])

{MEDLEY}<lispusers>logic>LOGIC.;1 Page 4

(DEFUN CREATE-THEORY (THEORY-NAME)
(SETF (GET ’THEORY THEORY-NAME)

(MAKE-HASH-TABLE))
THEORY-NAME)

(DEFUN DELETE-OR-NODE (TAGNODE NODES)
(DELETE TAGNODE NODES :TEST #’EQUAL :COUNT 1))

(DEFUN DELETE-OR-NODE-WITH-CUT (CUTNAME OR-LEVELS)

;; This function is called every time a cut is proven: all the alternatives for that clause MUST be erased. Remember that every cut has a unique
;; identifier

[PROG ((NODES OR-LEVELS))
LABEL

(COND
((NULL NODES)
(RETURN OR-LEVELS))

((EQ (GET-CUT (CAR NODES))
CUTNAME)

(RETURN (DELETE-OR-NODE (CAR NODES)
OR-LEVELS)))

(T (SETF NODES (CDR NODES))
(GO LABEL])

(DEFUN FIND-CLAUSES (PREDICATE-NAME THEORY-NAMES &OPTIONAL WINDOW)
[PROG NIL
LABEL

(COND
((NULL THEORY-NAMES)
(RETURN NIL))

(T (LET* ((TH (FIRST THEORY-NAMES))
(CLAUSES (BINDING PREDICATE-NAME TH WINDOW)))

(COND
((NULL CLAUSES)
(SETF THEORY-NAMES (CDR THEORY-NAMES))
(GO LABEL))

(T (RETURN CLAUSES])

(DEFUN IS-THERE-CUT (CONJS)
[OR (MEMBER ’! CONJS)

(PROG ((ELTS CONJS))
LABEL

(COND
((NULL ELTS)
NIL)

((AND (SYMBOLP (CAR ELTS))
(EQ (CHAR-CODE (CHAR (SYMBOL-NAME (CAR ELTS))

0))
33))

(RETURN T))
(T (SETF ELTS (CDR ELTS))

(GO LABEL])

(DEFUN LIST-ALL-THEORIES (&OPTIONAL WINDOW)
[OR (AND WINDOW (LIST-ALL-THEORIES-INTERNAL WINDOW))

(DO ((LL (SYMBOL-PLIST ’THEORY)
(CDDR LL))

(RESULT NIL))
((NULL LL)
RESULT)

[SETF RESULT (APPEND RESULT (LIST (CAR LL])])

(DEFUN LOAD-THEORY (THEORY-NAME &OPTIONAL WINDOW)
[LET [(THEORY-FILE (MERGE-PATHNAMES (MAKE-PATHNAME :NAME THEORY-NAME :TYPE ’LGC]

(OR (AND WINDOW (LOAD-DEVEL-THEORY WINDOW THEORY-NAME))
(OR [AND (PROBE-FILE THEORY-FILE)

(WITH-OPEN-FILE (FILE THEORY-FILE :DIRECTION :INPUT)
(PROG (THEORY-NAME PRED-NUMBER SAS-NUMBER)

(SETF THEORY-NAME (READ FILE))
(CREATE-THEORY THEORY-NAME)
(SETF SAS-NUMBER (READ FILE))
(DO ((SAS SAS-NUMBER (DECF SAS)))

((EQ SAS 0)
NIL)

(SETF (GETHASH (READ FILE)
(GET ’THEORY THEORY-NAME))

(READ FILE)))
(SETF PRED-NUMBER (READ FILE))
(DO ((PREDS PRED-NUMBER (DECF PREDS)))

((EQ PREDS 0)

{MEDLEY}<lispusers>logic>LOGIC.;1 (LOAD-THEORY cont.) Page 5

NIL)
(SETF (GETHASH (READ FILE)

(GET ’THEORY THEORY-NAME))
(READ FILE)))

(RETURN ’LOADED]
(FORMAT T "Theory not found"])

(DEFUN LOGIC-ADDA (PRED CLAUSES THEORY &OPTIONAL WINDOW)
(PROGN [SETF (GETHASH PRED (GET-THEORY THEORY WINDOW))

(APPEND CLAUSES (GETHASH PRED (GET-THEORY THEORY WINDOW]
’ADDED))

(DEFUN LOGIC-ADDZ (PRED CLAUSES THEORY &OPTIONAL WINDOW)
(PROGN (SETF (GETHASH PRED (GET-THEORY THEORY WINDOW))

(APPEND (GETHASH PRED (GET-THEORY THEORY WINDOW))
CLAUSES))

’ADDED))

(DEFUN LOGIC-ASSERT (PREDICATE-NAME CLAUSES THEORY-NAME &OPTIONAL WINDOW)
(SETF (GETHASH PREDICATE-NAME (GET-THEORY THEORY-NAME WINDOW))

CLAUSES)
’ASSERTED)

(DEFUN LOGIC-DELETE (PRED-OR-SA THEORY-NAME &OPTIONAL WINDOW)
(PROGN (SETF (GETHASH PRED-OR-SA (GET-THEORY THEORY-NAME WINDOW))

NIL)
’DELETED))

(DEFUN LOGIC-DELETE-FACT (FACT-NAME FACT-CLAUSE THEORY &OPTIONAL WINDOW)

;; deletes from the definition of facts one of the definitions themselves

;; ((ON a b) (ON b c)) --> ((ON a b))

(PROGN (SETF (GETHASH FACT-NAME (GET-THEORY THEORY WINDOW))
(DELETE FACT-CLAUSE (GETHASH FACT-NAME (GET-THEORY THEORY WINDOW))

:TEST
#’EQUAL))

’DELETED))

(DEFUN LOGIC-PROVE (TREE &OPTIONAL WINDOW)
[PROG ((*VARIABLES-COUNTER* -1))

(DECLARE (SPECIAL *VARIABLES-COUNTER*))

;; This is a counter for the variables that will be used during the unification

JUMP
(COND

((NULL-TREEP TREE)
(RETURN NIL))

[(NULL-AND-LEVELP TREE)
(LET [(NEXT-OR (FIRST (OR-LEVELS TREE]

;; Gets the next or-node: we have now no strategy for choosing it; maybe later...

(COND
((NULL NEXT-OR)
(SETF TREE (LIST NIL NIL))
(GO JUMP))

(T (SETF TREE (SOLVE (NEW-TREE TREE NEXT-OR)
(FORMULA-OR NEXT-OR)
(CLAUSES-OR NEXT-OR)
NIL WINDOW))

(GO JUMP]
(T (LET ((NEXT-LEVEL (AND-LEVEL TREE)))

(COND
((NULL (CONJ NEXT-LEVEL))
(RETURN TREE))

(T (LET* [(TO-PROVE (FIRST (CONJ NEXT-LEVEL)))
(THS (GET-AND-NODE-THEORIES NEXT-LEVEL))
(CLAUSES (FIND-CLAUSES (PREDICATE TO-PROVE)

THS WINDOW))
(CUT? (IS-THERE-CUT (REST (CONJ NEXT-LEVEL]

(SETF TREE (SOLVE (UPDATE-TREE (UPDATE-LEVEL NEXT-LEVEL TO-PROVE)
TREE)

TO-PROVE CLAUSES CUT? WINDOW))
(GO JUMP])

(DEFUN MAKE-AND-NODE (CONJ UNIF-ENV THEORIES)
(LIST CONJ UNIF-ENV THEORIES))

(DEFUN MAKE-OR-NODE (WFF CLAUSES BORDER UNIF-ENV THEORIES &OPTIONAL CUTNAME)
(LIST WFF CLAUSES BORDER UNIF-ENV THEORIES CUTNAME))

{MEDLEY}<lispusers>logic>LOGIC.;1 Page 6

(DEFUN MAKE-TREE (AND-LEVEL OR-LEVELS)
(LIST AND-LEVEL OR-LEVELS))

(DEFUN MERGE-INTERNAL (NEW-THEORY-NAME THEORIES &OPTIONAL WINDOW)
[PROGN

;; Merges the specified theories in to a new-brand theory

(LET ((ACTUAL-THEORY (GET-THEORY NEW-THEORY-NAME WINDOW)))
(DO ((THS THEORIES (CDR THS)))

((NULL THS)
’MERGED)

(AND (THEORYP (CAR THS)
WINDOW)

(MAPHASH #’(LAMBDA (KEY VAL)
(AND VAL (SETF (GETHASH KEY ACTUAL-THEORY)

VAL)))
(GET-THEORY (CAR THS)

WINDOW))))])

(DEFUN MERGE-THEORIES (NEW-THEORY-NAME &REST LIST-OF-THEORIES)
(PROGN (CREATE-THEORY NEW-THEORY-NAME)

(MERGE-INTERNAL NEW-THEORY-NAME LIST-OF-THEORIES)
’MERGED))

(DEFUN NEW-TREE (TREE OR-NODE)
(MAKE-TREE (MAKE-AND-NODE (THIRD OR-NODE)

(UNIF-ENV-OR OR-NODE)
(GET-OR-NODE-THEORIES OR-NODE))

(DELETE-OR-NODE OR-NODE (OR-LEVELS TREE))))

(DEFUN PREDICATE (WFF)
(COND

((LISTP WFF)
(CAR WFF))

(T WFF)))

(DEFUN PROVE (CONJ THS)
(LET [(RESULT (LOGIC-PROVE (MAKE-TREE (MAKE-AND-NODE CONJ NIL (APPEND (LIST ’*BACKGROUND-THEORY*)

THS))
NIL]

(COND
((NULL RESULT)
NIL)

(T T))))

(DEFUN RENAME-CUT (ANTECS)

;; This function returns a CONS with CAR as the renamed cut and CDR as the list of antecs with the cut renamed

(DO ((TEMPVAR ANTECS (CDR TEMPVAR))
(RESULTS NIL)
(CUT-RENAMED NIL))

((NULL TEMPVAR)
(CONS CUT-RENAMED RESULTS))

[COND
[(EQ (CAR TEMPVAR)

’!)
(SETF CUT-RENAMED (GENSYM "!"))
(SETF RESULTS (APPEND RESULTS (LIST CUT-RENAMED]

(T (SETF RESULTS (APPEND RESULTS (LIST (CAR TEMPVAR]))

(DEFUN SAVE-THEORY (THEORY-NAME &OPTIONAL WINDOW)
[LET ((THEORY (GET-THEORY THEORY-NAME WINDOW)))

(COND
((NOT (THEORYP THEORY))
’ERROR)

(T (WITH-OPEN-FILE (FILE (MERGE-PATHNAMES (MAKE-PATHNAME :NAME THEORY-NAME :TYPE ’LGC))
:DIRECTION :OUTPUT :IF-EXISTS :NEW-VERSION :IF-DOES-NOT-EXIST :CREATE)

(LET [(PREDS (SORT (ALL-PREDS THEORY)
#’STRING-LESSP))

(SAS (SORT (ALL-SAS THEORY)
#’SORT-LESSP]

(PROGN (FORMAT FILE "~S~%%" THEORY-NAME)
(FORMAT FILE "~D~%%" (LENGTH SAS))
(DO ((SA-NAME SAS (CDR SA-NAME)))

((NULL SA-NAME)
NIL)

(FORMAT FILE "~S ~S ~%%" (CAR SA-NAME)
(GETHASH (CAR SA-NAME)

THEORY)))

{MEDLEY}<lispusers>logic>LOGIC.;1 (SAVE-THEORY cont.) Page 7

(FORMAT FILE "~D~%%" (LENGTH PREDS))
(DO ((PRED-NAME PREDS (CDR PRED-NAME)))

((NULL PRED-NAME)
NIL)

(FORMAT FILE "~S ~S ~%%" (CAR PRED-NAME)
(GETHASH (CAR PRED-NAME)

THEORY)))
’SAVED])

(DEFUN SHOW-DEFINITION (ELEMENT THEORY-NAME &OPTIONAL WINDOW)
[FORMAT (OR (AND WINDOW *TRACE-OUTPUT*)

T)
"~S~%%"
(PROG [(DEF (GETHASH ELEMENT (GET-THEORY THEORY-NAME WINDOW]

(OR (AND (SEMANTIC-ATTACHMENT-P DEF)
(RETURN (CDR DEF)))

(RETURN DEF])

(DEFUN SHOW-THEORY (THEORY-NAME &OPTIONAL VERBOSE WINDOW)
[LET* ((THEORY (GET-THEORY THEORY-NAME))

(PREDICATES (SORT (ALL-PREDS THEORY)
#’STRING-LESSP))

(SAS (SORT (ALL-SAS THEORY)
#’STRING-LESSP))

(STREAM (OR (AND WINDOW *TRACE-OUTPUT*)
T)))

[OR (AND SAS (PROGN (FORMAT STREAM "Semantic attachments: ~%%")
(DO ((PP SAS (CDR PP)))

((NULL PP)
NIL)

(PROGN (FORMAT T "~%%~S ~%% " (CAR PP))
(AND VERBOSE (FORMAT T "Definition: ~S ~%%" (CDR (GETHASH (CAR PP)

THEORY))
" "))))

(FORMAT STREAM "~%% ~%%"]
(OR (AND PREDICATES (PROGN (FORMAT STREAM "Predicates: ~%%")

(DO ((PP PREDICATES (CDR PP)))
((NULL PP)
NIL)

(PROGN (FORMAT T "~%%~S ~%%" (CAR PP))
(AND VERBOSE (FORMAT STREAM "Clauses: ~S ~%%" (GETHASH

(CAR PP)
THEORY)

" "))))
(FORMAT STREAM "~%% ~%%"])

(DEFUN SOLVE (TREE FORMULA CLAUSES &OPTIONAL CUT WINDOW)
[PROG NIL
JUMP

(AND WINDOW (SOLVE-DEBUGGER TREE FORMULA CLAUSES WINDOW))
(COND

((NULL CLAUSES) ; demo is failed
(RETURN (CLEAR-AND-LEVEL TREE)))

((DIRECTLY-IMPLEMENTED CLAUSES) ; clauses from the main theory
(RETURN (FUNCALL (CDR CLAUSES)

TREE FORMULA CLAUSES WINDOW)))
[(SEMANTIC-ATTACHMENT-P CLAUSES) ; Semantic attachment defined by the user
(LET [(EXPANDED-FORMULA (LOOKUP FORMULA (UNIFICATION-ENV (AND-LEVEL TREE]

(COND
((APPLY (CDR CLAUSES)

(CDR EXPANDED-FORMULA))
(RETURN TREE))

(T (RETURN (CLEAR-AND-LEVEL TREE]
(T (LET* ((CANDIDATE (FIRST CLAUSES))

(ASSERT (RENAME CANDIDATE))
(NEWENV (UNIFY FORMULA (CONSEQ ASSERT)

(UNIFICATION-ENV (AND-LEVEL TREE))
WINDOW)))

(COND
((FAILEDP NEWENV)
(SETF CLAUSES (REST CLAUSES))
(GO JUMP))

[(ATOMIC-FORMULAP ASSERT)

;; If a cut has been discovered in the previous procedure, it is necessary not to instantiate alternatives for the clause in
;; a or-level

(RETURN (UPDATE-ENV NEWENV (OR (AND CUT TREE)
(ADD-OR-LEVEL FORMULA (REST CLAUSES)

TREE]
((IMPLICATIONP ASSERT)

;; If there is a cut, it is necessary to mark the alternatives for that clause; if the cut will be proved, then these
;; alternatives will be eliminated

(RETURN (COND

{MEDLEY}<lispusers>logic>LOGIC.;1 (SOLVE cont.) Page 8

[(IS-THERE-CUT (ANTEC ASSERT))
(LET* ((RENAMED-STRUCTURE (RENAME-CUT (ANTEC ASSERT)))

(RENAMED-CUT (CAR RENAMED-STRUCTURE))
(RENAMED-ASSERT (CDR RENAMED-STRUCTURE)))

(SUBSTITUTE-LEVEL NEWENV RENAMED-ASSERT (ADD-OR-LEVEL FORMULA
(REST CLAUSES)
TREE RENAMED-CUT]

(T (SUBSTITUTE-LEVEL NEWENV (ANTEC ASSERT)
(ADD-OR-LEVEL FORMULA (REST CLAUSES)

TREE])

(DEFUN SUBSTITUTE-LEVEL (ENV ANTECS TREE)
(PROGN [RPLACA TREE (MAKE-AND-NODE (APPEND ANTECS (CONJ (AND-LEVEL TREE)))

ENV
(GET-AND-NODE-THEORIES (AND-LEVEL TREE]

TREE))

(DEFUN UPDATE-ENV (ENV TREE)
(SETF (SECOND (AND-LEVEL TREE))

ENV)
TREE)

(DEFUN UPDATE-LEVEL (LEVEL FORMULA)
(MAKE-AND-NODE (CDR (CONJ LEVEL))

(UNIFICATION-ENV LEVEL)
(GET-AND-NODE-THEORIES LEVEL)))

(DEFUN UPDATE-TREE (LEVEL TREE)
(MAKE-TREE LEVEL (OR-LEVELS TREE)))

(IL:RPAQQ *PRINT-PRETTY* T)

(IL:FILESLOAD LOGIC-UNIFIER)

(IL:PUTPROPS IL:LOGIC IL:COPYRIGHT ("Roberto Ghislanzoni" 1988))

{MEDLEY}<lispusers>logic>LOGIC.;1 9-Oct-2024 02:37:44
-- Listed on 9-Oct-2024 02:46:34 --

FUNCTION INDEX

ADD-OR-LEVEL2 CREATE-THEORY4 LOGIC-DELETE-FACT5 SAVE-THEORY6
ALL2 DELETE-OR-NODE4 LOGIC-PROVE5 SHOW-DEFINITION7
ALL-PREDICATES3 DELETE-OR-NODE-WITH-CUT .4 MAKE-AND-NODE5 SHOW-THEORY7
ALL-PREDS3 FIND-CLAUSES4 MAKE-OR-NODE5 SOLVE7
ALL-SAS3 IS-THERE-CUT4 MAKE-TREE6 SUBSTITUTE-LEVEL8
ALL-SEMANTIC-ATTACHMENTS 3 LIST-ALL-THEORIES4 MERGE-INTERNAL6 UPDATE-ENV8
ANY3 LOAD-THEORY4 MERGE-THEORIES6 UPDATE-LEVEL8
ATTACH3 LOGIC-ADDA5 NEW-TREE6 UPDATE-TREE8
CLEAR-AND-LEVEL3 LOGIC-ADDZ5 PREDICATE6
CONSEQ3 LOGIC-ASSERT5 PROVE6
CREATE-BACKGROUND-THEORY 3 LOGIC-DELETE5 RENAME-CUT6

MACRO INDEX

AND-LEVEL1 DIRECTLY-IMPLEMENTED1 GET-THEORY2 SEMANTIC-ATTACHMENT-P ...2
ANTEC1 FAILEDP1 IMPLICATIONP2 THEORYP2
ATOMIC-FORMULAP1 FORMULA-OR1 NULL-AND-LEVELP2 UNIF-ENV-OR2
CLAUSES-OR1 GET-AND-NODE-THEORIES ...1 NULL-OR-LEVELP2 UNIFICATION-ENV2
CONJ1 GET-CUT1 NULL-TREEP2
CONSEQP1 GET-OR-NODE-THEORIES1 OR-LEVELS2

VARIABLE INDEX

PRINT-PRETTY8

