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VERSIONDEFS provides basic tools for working with (but keeping separate) the different definitions of an 
item on different Medley file-versions.  A version is specified as a positive or negative integer.  The 
positive integers count from the oldest file (version 1 is the oldest, version 2 is the second oldest) while 
negative integers count down from the most recent version (-1 is the newest, -2 is the next newest, 
etc.).  The atoms OLDEST, FIRST, F are synonyms for 1, NEWEST, N and the number 0 are synonyms for -1.  
(With a little more work, a version could be specified as before or after a particular date.)

Currently this operates on files that already exist in the local environment.  The shell utility 
scripts/restore-versions.sh can be used to recreate locally the medley-versions of files in a remote git 
repository, in the order of their commits. Those files could then be specified by their ordinal 
numbers.  A further extension would be to use git branch, commit, or PR identifiers to refer to 

specific file versions. 

(VERSIONP X) [Function]
 Returns the integer form of the version if X denotes a version, otherwise NIL.   

(FINDFILEVERSION FILE VERSION DIRLIST NOERROR)    [Function]

Returns the full directory name of the specified VERSION of FILE found somewhere in DIRLIST (or 
DIRECTORIES). If NOERROR, returns NIL if such a file does not exist, otherwise causes an error.

(GETVINFO NAME TYPE FILE VERSION DIRLIST)     [Function]
Retrieves the definition of NAME as TYPE on the specified VERSION of FILE, returning a 3-element list 
(VNAME TYPE DEF). VNAME is an annoated version of NAME that has the actual version of the file from 
which the definition was obtained. For example, if VERSIONDEFS;3 is the oldest version of that file, the 
VNAME returned for (GETVINFO ’VERSIONP NIL NIL 1) will be GETVINFO;3.

VERSIONDEFS includes three simple editing applications of these version primitives. These open SEDIT 
windows on versioned definitions without overwriting or otherwise confusing or interfering with the 
current in-memory definition. That is because the version-definitions are associated with the annotated 
VNAME’s and are not actually install in the environment.

(EDV NAME TYPE FILE VERSION DIRLIST)    [Nlambda no-spread Function]
A generic version-editor akin to ED:  brings up the definition from the version-file of NAME as TYPE. 
Expressions can be examined and copied, and even modified--but the modifications will fall on the 
floor.

(DFV NAME FILE VERSION DIRLIST) [Nlambda-nospread Function]
Calls EDV with NIL as the type, akin to DF. 


