
235

en·vōs RPC

RPC

SUN REMOTE PROCEDURE

CALLS

By: JFinger

Supported by Atty Mullins (Mullins.pa@Xerox.com) and Bill Van Melle (vanMelle.pa@Xerox.com).

This document last edited on August 1, 1988.

INTRODUCTION

This module implements SUN remote procedure calls as specified in the Remote Procedure Call
Protocol Specification. The syntax is oriented toward Lisp users, differing greatly from Sun’s C-like
syntax.

RPC2 Package
All functions and variables mentioned in this document are defined as external variables in the
package RPC2, unless otherwise stated.

 REMOTE PROCEDURE DEFINITITION
Remote programs are defined via calls to define-remote-program.

define-remote-program name number version protocol &key :constants [Function]
:types :inherits :procedures

 Defines parameters and result types of the procedures of remote
program (number, version, protocol) . If successful, returns name,
otherwise nil.

name a string or symbol that may be used by other procedures (for
example, remote-procedure-call) to uniquely specify this remote
program.

number is the program number of this program on the remote machine. As
specified in Sun’s Remote Procedure Call Programming Guide,
programs 0 - #x1fffffff are defined by Sun, #x20000000 - #x3fffffff are
reserved for users, and #x40000000 - #x5ffffff are designated as
transient.

version a number, is the desired version of remote program.

protocol an atom,UDP or TCP.(At the moment TCP is not supported under
Medley 1.0-S).

constants a list of pairs (<constant-name> <constant-def>), where <constant-
name> is a symbol and a <constant-def> is an XDR constant (See
XDR Constant Definitions below) .

inherits a list of name ’s of other remote programs from which types and
constants are inherited. Inherited types and constants are resolved by
searching this list in order.

types a list of pairs (<type-name> <typedef>) , where a <type-name> is a
symbol and a <typedef> is an XDR type definition (defined below).

236

en·vōs RPC

procedures a list of 4-tuples of the form (<procname> <procnumber> <arg-types>
<result-types>), where <procname> is a symbol or string naming the
procedure, <procnumber> is the procedure number on the remote
machine, <arg-types> is a (possibly empty) list of XDR type
definitions (see below) of the arguments to be sent to the remote
procedure, and <result-types> is a (possibly empty) list of XDR type
definitions of data to be returned from this remote procedure.

XDR (EXTERNAL DATA REPRESENTATION) TYPE DEFINITIONS

Because the client and server machines may represent data in different ways, a data representation
common to both machines is necessary Remote procedure calls pass data between machines in
’External Data Representation’ (XDR). The XDR language implemented here is oriented toward Lisp in
its syntax and is not identical to the language spelled out in the Sun XDR Protocol Specification.

XDR data types may be defined in the :types keyword argument for later reference in the :types or
:procedures of this or later remote programs. When a remote program is defined (usually at load time),
the needed reading and writing functions are compiled for each constructed type referenced. Note that
all XDR calls are eventually resolved to a composition of Primitive and Constructed XDR Type
Definitions (see below).

SYNTAX
The keywords of the XDR language may be specified as symbols of the Keyword package.

All XDR Data Types Definitions (notated here as a <typedef>), used in Remote Procedure Calls are
from the following language:

1) Primitive Definition: One of the types in *xdr-primitive-types*,
:integer
:boolean
:unsigned
:hyperinteger
:hyperunsigned
:string
:float (not yet implemented)
:double (not yet implemented).

2) Constructed Definition:
One of the types in *xdr-constructed-types*,
(:enumeration (<symbol-1> <constant-1>) ...

(<symbol-n> <constant-n>))
(:union <enumeration-type> <typedef-1> ... <typedef-n>)
(:fixed-array <typedef> <constant>)
(:counted-array <typedef>)
(:opaque <constant>)
(:struct <defstruct-type> (<field-name-1> <typedef-1>) ...

(<field-name n> <typedef-n>))
(:sequence <typedef>)
(:list <typedef-1> ... <typedef-n>).

3) Local Definition: A symbol defined previously in the same remote program definition.

Example: :types ((nrec :unsigned)...) says that type ’nrec’ is
really only of type ’:unsigned’.

4) Qualified Definition: A dotted pair of the form (<RPC program name> . <type>), where
<type> is an XDR type local to <RPC program name>.

237

en·vōs RPC

Example: :types ((count (myprog . nrec))...) says that a ’count’ is
really whatever myprog defines a ’nrec’ to be.

5) Inherited Definition: A symbol defined in the :types argument of a remote program R such
that R is on the list of remote programs passed as the :inherits
argument to the current remote program definition. The first such type
definition found is used, that is, the list of inherited programs is
scanned from left to right.

XDR CONSTANT DEFINITIONS

Constants in XDR are defined by the following grammar:

<constant-def> ::= <integer> | <defined-constant>

<defined constant> ::= <locally defined constant>
; Defined in the Remote Program
currently being defined.

| <inherited constant>
; Defined in a remote program
inherited by the current Remote
Program (searched from left to right).

| <qualified constant>
; A dotted pair (<rp> . <constant>),
where <constant> is defined in
remote program <rp>.

SEMANTICS
An XDR type can be defined by a bidirectional filter mapping a subset of Lisp onto a byte stream and
vice-versa.

For the XDR primitive type’s filter, a description is given of its argument on the Lisp and XDR sides.

:integer Lisp: an integer in range -2,147,483,648 to 2,147,483,648 inclusive.
XDR: a 4 byte two’s complement integer, high order to low order.

:unsigned Lisp: an integer in range 0 to 4,294,967,295 inclusive.
XDR: a 4 byte non-negative integer, high order to low order.

:boolean Lisp: NIL for false, non-NIL for true. (The Lisp symbol T is returned
when decoding a 1 from the XDR side.)
XDR: 0 for false, 1 for true.

:hyperinteger Lisp: an integer in range -(263) to 263 -1 inclusive.
XDR: a 8 byte two’s complement integer, high order to low order.

:hyperunsigned Lisp: an integer in range 0 to 264-1 inclusive.
XDR: a 8 byte non-negative integer, high order to low order.

:string Lisp: a string of any length.
XDR: Suppose the string is of length n. The XDR representation is an
:unsigned (the string length n) , followed by the n bytes of the string,
followed by enough 0 bytes to make a multiple of 4 bytes.

:string-pointer (UDP only)
Lisp: a dotted pair (addr . nbytes), where addr is a buffer’s address
and nbytes is the number of bytes in the buffer. (Should I add an offset

238

en·vōs RPC

argument?). This is a speed hack to avoid having to copy
VMEMPAGEP’s twice.
XDR: An XDR :string, as above.

:float Lisp: A floating point number. (NOT YET IMPLEMENTED).
XDR: A 4 byte floating point number in IEEE format.

:double Lisp: A floating point number. (NOT YET IMPLEMENTED).
XDR: A double precision floating point number in IEEE format.

:void Lisp: null
XDR: no bytes.

For each constructed XDR type, the declaration syntax is given along
with its corresponding mapping.

(:enumeration (<symbol> <integer>) ... (<symbol> <integer>))
Lisp: a symbol
XDR: an XDR :integer.
The Lisp symbol (Each symbol is the "discriminant" for that value of
the enumeration) and the XDR integer will be from a corresponding
pair in the declaration. It is an error to try to encode a symbol not in
the declaration or to try to decode an XDR integer for which there is
not a corresponding symbol in the declaration.

(:union <enumeration-type> (<symbol-1> <typedef-1>) ... (<symbol-n> <typedef-n>))
Lisp: A list of two elements, the first being a discriminant for the
enumeration type, and the second the appropriate Lisp input/output
for the typedef corresponding to that discriminant’s type..
XDR: An :integer discriminant followed by the XDR input/output for the
typedef corresponding to that discriminant’s type.

(:fixed-array <typedef> <constant>)
Lisp: An array of length <constant>, each element of which is an
object of type <typedefLisp>. Note that since the function elt is used in
encoding, any Lisp sequence could be used in place of an array.
XDR: A sequence of <constant> objects of type <typedefXDR>.

(:counted-array <typedef>)
Lisp: A list of two elements, the first of which is an integer (the number
of objects to be encoded/decoded), and the second of which is an
array of objects of type <typedefLisp>.
XDR: An integer (the number of objects to be encoded/decoded)
followed by that number of objects of type <typedefXDR>.

(:opaque <constant>) Lisp: A string of length <constant>.
XDR: A sequence of <constant> bytes followed by enough null bytes
to round <constant> up to a multiple of four.

(:struct <defstruct-type> (<field-name-1> <typedef-1>) ...(<field-name n> <typedef-n>))

Lisp: A struct of type <defstruct-type> such that each field mentioned
in the this XDR declaration has a value. Note that a separate defstruct
must be executed. The fields need not be named here in the same
order as those in the defstruct, nor must all the fields named in the
defstruct be used here.

XDR: A sequence of objects of types <typedef1 XDR>...<typedefn
XDR>.

239

en·vōs RPC

(:sequence <typedef>) This is fashioned after Courier ’s method for encoding/decoding linked
lists. This type can often be used to get around clumsy recursive
definitions involving :union’s of enumeration type :boolean.

Lisp: A list of objects of type <typedefLisp>.

XDR: A sequence of objects, each preceded by an XDR :boolean
encoding of true. The last object in the sequence is followed by the
XDR :boolean encoding of false.

Note: (:sequence <typedef>) produces the same encoding (but not
the same decoding) as
(defstruct astructure this-element the-rest)
along with the declaration

(:recursive (:union :boolean
(T (:struct astructure (this-
element <typedef>)

(the-rest
astructure)))
(NIL :void))),

(:list <typedef-1> ... <typedef-n>)

Lisp: A list , the ith element of which is of type <typedefi Lisp>.

XDR: A sequence of objects, the ith of which is of type <typedefi
XDR>.

(:skip <unsigned>) (For decoding only)

Lisp: Nothing

XDR: Any n bytes of data, where <unsigned> = n.

Note: This is a klooge for not having to decode the fattr’s that NFS
returns with every single cotton-pickin’ memory read.

EXAMPLE OF A REMOTE PROGRAM DEFINITION

The following call to define-remote-program defines the portmapper remote procedures described in
Sun’s Remote Procedure Call Specification. Note that there are two definitions of procedure 4 given.
Since remote procedures may be invoked by name, it is reasonable for there to be more than one
definition for how to decode and encode the arguments to a given routine. In this case, both a
recursive and non-recursive definition is given for the values returned from procedure 4. Note also that
mapstruct and mapsequence must be defstruct’ed before this call to define-remote-procedure.

(define-remote-program ’portmapper 100000 2 ’udp
:types ’((mapstruct (:union :boolean

(nil :void)
(t (:struct mapstruct

(program :unsigned)
(vers :unsigned)
(prot :unsigned)
(port :unsigned)
(therest mapstruct)))))

(mapsequence (:sequence (:struct mapsequence
(program :unsigned)

240

en·vōs RPC

(vers :unsigned)
(protocol :unsigned)
(port :unsigned)))))

:procedures
’((null 0 nil nil)

(lookup 3 (:unsigned :unsigned :unsigned :unsigned)
(:unsigned))

(gooddump 4 nil (mapsequence))
(dump 4 nil (mapstruct))
(indirect 5 (:unsigned :unsigned :unsigned

:string)
(:unsigned :string))))

UNDEFINING REMOTE PROGRAMS

undefine-remote-program name number version [Function]

MAKING REMOTE PROCEDURE CALLS

remote-procedure-call destination program procid arglist [Function]
&key destsocket version credentials protocol
dynamic-prognum dynamic-version
msec-until-timeout msec-between-tries noerrorflg

Performs a remote procedure call to program on destination. Returns
a list of the returned values.

destination Designates the host to which the procedure call is made. If Destination
 is a number it is interpreted to be the il:iphostadress of the host; if a
symbol or string, it is a name from which the net address of the host
may be found.

program Designates the remote program to be called. If Program is a number,
it is interpreted to be the remote program number. If a symbol, in
which case it is assumed to be the name of the remote procedure (as
defined in define-remote-procedure. If :version is non-nil, then
program is treated as a number rather than as a name. If version is nil
and program is a number, then the latest version of that program is
used.

procid Designates the procedure number from program to be called. If Procid
is a number it is interpreted to be the remote procedure number; if a
symbol, it is the name given that procedure in define-remote-
procedure.

arglist A list of the arguments to be serialized into XDR representation and
passed as the arguments of the remote procedure call.

:destsocket Normally, the remote socket must be looked up in the local caches
(See *rpc-socket-cache* and *rpc-well-known-sockets*) or else found
by making a call to the Portmapper on the remote machine. If
:destsocket is non-nil, its value is used as the remote socket.

:version If non-nil designated the desired version of program as well as
causing program to be interpreted as a number rather than a name.
See program above.

241

en·vōs RPC

:credentials An object of type authentication to be passed as the credentials of the
remote procedure call. (See create-unix-authentication).

:protocol A symbol specifying the transport protocol. Currently only UDP is
implemented. Defaults to UDP. The only reason for using this
parameter is to specify (along with the program and version), which
known remote program is to be used.

:dynamic-prognum If you really can’t live without it, dynamic-prognum is used as the
remote program number in spite of treating the arglist and returned
values exactly as in program. Don’t ask why.

:dynamic-version If you really can’t live without it, dynamic-version is used as the
remote program version in spite of treating the arglist and returned
values exactly as specified in program (and possibly version). Don’t
ask why. Defaults to 1.

:msec-until-timeout Total number of milliseconds of waiting for a reply packet before
giving up on this remote procedure call. Defaults to value of *rpc-
msec-until-timeout*.

:msec-between-tries Number of milliseconds between outgoing UDP packets. Defaults to
rpc-msec-between-tries.

:errorflg If :noerrors, ignores remote procedure call errors. If :returnerrors,
returns the error as an s-expression. Otherwise, signals a Lisp error.
Default t.

LOW-LEVEL REMOTE PROCEDURE CALL FUNCTIONS

setup-rpc destination program procid [Function]
&optional destsocket version protocol dynamic-prognum dynamic-
version

Returns four values destaddr, socket, program and procedure (Yes,
this is real, live multiple value return requiring a multiple-value-bind or
something similar.) for consumption by perform-rpc. The arguments to
setup-rpc are identical in meaning to the identically named arguments
to remote-procedure-call.

open-rpc-stream protocol destaddr destsocket [Function]

Returns an rpcstream for use by perform-rpc. Destaddr and
destsocket are as returned by setup-rpc and protocol is identical to the
protocol argument to remote-procedure-call.

close-rpc-stream rpcstream protocol [Function]

Closes rpcstream, an rpc-stream of protocol protocol created by open-
rpc-stream .

perform-rpc destaddr destsocket program procedure rpcstream [Function]
arglist credentials protocol &key errorflg leave-stream-open msec-
until-timeout msec-between-tries

Performs a remote procedure call returning a list of the values
retruned by the remote procedure.

242

en·vōs RPC

LISTING REMOTE PROGRAMS CURRENTLY DEFINED

list-remote-programs [Function]

Returns a list of 4-tuples (name number version protocol) for each
remote program currently defined.

CREATION OF CREDENTIALS

create-unix-authentication
stamp machine-name uid gid gids [Function]

Returns a Unix-type authentication suitable for use as the credentials
of a call to remote-procedure-call or perform-rpc.

stamp An arbitrary unsigned integer.

machine-name A string containing the name of the calling machine.

uid User id number on the remote machine.

gid Group id number on the machine.

gids A list or array of group id numbers (on the remote machine) that
contain the caller as a member.

GLOBAL VARIABLES

xdr-primitive-types An a-list of keywords and the corresponding function that
implements that XDR primitive type.

xdr-constructed-types An a-list of keywords and the corresponding function that
generates code to implement that XDR constructed type.

msec-until-timeout Number of milliseconds before giving up on receiving a
reply packet. Default 1000.

msec-between-tries Number of milliseconds to wait before resending UDP
packet. Default 100.

rpc-ok-to-cache If non-nil, uses *rpc-socket-cache* as a cache of socket
numbers found to date.

rpc-well-known-sockets A list of well-known sockets. Format is
(<host address>

<remote program number>
<remote program version>
<protocol>
<socket>)

rpc-socket-cache A list of non-well-known sockets. Format is same as *rpc-
well-known-sockets*.

debug If non-nil prints out debugging information. If a number, the
higher the number, the more information is printed. Default
nil.

243

en·vōs RPC

RPC FILES

RPC Sets up the RPC2 Package and loads other RPC files.
Loads Portmapper remote program definition and executes
it.

RPCLOWLEVEL Super low-level UDP/TCP functions added to Eric Schoen’s
TCPUDP code.

RPCOS Low-level interface to Sun OS networking code .

RPCSTRUCT Structure definitions used by the other files. These are in a
separate file because they take so long to compile.

RPCCOMMON Common lookup functions and stream i/o functions used by
the other files.

RPCXDR External Data Representation (XDR). Code Generation for
XDR constructed types and XDR primitive functions.

RPCRPC Remote program definition and remote procedure calls.

RPCPORTMAPPER Definition of portmapper in UDP and TCP.

KNOWN DEFICIENCIES

Floating point XDR types are not implemented.

The view-packet utility is not documented and needs to be smarter about authentications.

Fall through cases of XDR types UNION and ENUMERATE should be added.

TCP is not supported under Medley 1.0-S, this should be in the next release.

COPYRIGHT INFORMATION
Copyright (c) 1987,1988 Leland Stanford Junior University and Envos Corporation.

Written by Jeff Finger under support of National Institutes of Health Grant NIH 5P41 RR00785

to the SUMEX-AIM Computing Resource at Stanford University.

Modified to work under Medley 1.0-S by Atty Mullins.

