
206

en·vōs PRETTYFILEINDEX

PRETTYFILEINDEX

By: Bill van Melle (vanMelle.PA@Xerox.com)

INTRODUCTION

PRETTYFILEINDEX is a program for generating indexed listings for Lisp source files.

PRETTYFILEINDEX operates by reading expressions from the file and reprettyprinting them to

the output image stream, building up an index of the objects as it goes. The index is partitioned

by type (e.g. FUNCTIONS, VARIABLES, MACROS, etc.); within each type, the objects are listed

alphabetically by name along with the page number(s) on which their definitions appear in the

listing.

PRETTYFILEINDEX also modifies the Exec’s and the FileBrowser’s SEE command to prettyprint

the file being viewed, if it is a Lisp source file. It also modifies the PF and PF* commands to

prettyprint the requested function body. Together, these features mean you can use the NEW &

FAST options to MAKEFILE to speed up file creation without sacrificing the ability to get pretty

listings or see the files prettily inside Lisp.

PRETTYFILEINDEX performs some additional niceties in the listing: it prints bitmaps by

"displaying" them, rather than dumping their bits; it translates underscore to left arrow (for the

benefit of Interlisp listings); it prints quote and backquote in a font in which they are clearly

distinguishable; and it suppresses some of the "noise" in source files, such as the filemap.

The module also contains a function MULTIFILEINDEX that can be used to generate a merged

index of items from a whole set of files being listed.

PRETTYFILEINDEX subsumes, and is incompatible with, the modules SINGLEFILEINDEX and

PP-CODE-FILE. You can, however, load PRETTYFILEINDEX on top of either one, and it will

successfully wrest control of LISTFILES from them. PRETTYFILEINDEX has several

advantages over SINGLEFILEINDEX: the prettyprinter has fine control over positioning of the

output stream, so things that are supposed to line up do, despite font changes and variable-width

fonts; the entire page is used, rather than sacrificing the bottom quarter or so due to lack of

control over page breaks; and the use of an image stream allows bitmaps to be rendered directly.

USING PRETTYFILEINDEX

For ordinary use, just load PRETTYFILEINDEX.LCOM. This redefines LISTFILES1 so that

calling LISTFILES or using the File Browser’s Hardcopy command invokes PRETTYFILEINDEX

if the file is a Lisp source file. The listing is created by default in a single background process that

handles all LISTFILES requests. The file being indexed needn’t be loaded, or even noticed (in the

File Manager sense) as long as the file’s commands don’t require customized prettyprinting

defined by the file itself. The index is printed at the end of the listing; you are expected to

manually transpose the index to the front of the collection of paper that emerges from the printer.

PRETTYFILEINDEX normally assumes that you are printing one-sided listings. However, if your

global default is for two-sided (currently this means that EMPRESS#SIDES = 2) or you specified

two-sided in the options you passed to LISTFILES, it will prepare the output as if for two-sided

listing. For example, from an Interlisp exec,

207

en·vōs PRETTYFILEINDEX

(LISTFILES (SERVER "Perfector:" %#SIDES 2) FOOBAR)

causes the file FOOBAR to be listed two-sided on the print server Perfector: (the % is the Interlisp

reader’s escape character, needed to quote the special character #; in an XCL exec the escape

character is \, and from other packages you also have to qualify the symbols LISTFILES, SERVER

and #SIDES with the package prefix IL:).

For two-sided listings, the margins are symmetric, instead of being shifted a bit to the right, page

numbers appear on the outside edge of the page, and a blank page is inserted at the end of the

listing if necessary to ensure that the index starts on an odd page (and hence is transposable to

the front).

PRETTYFILEINDEX prettyprints the file’s contents and prints indexed names using the package

and read table specified in the file’s reader environment, which appears at the beginning of the

file. It assumes, as does most of the file manager, that the reader environment is sufficient to

read any expression on the file. If you have violated this assumption, for example, by referring in

the file to a symbol in another package that is defined on a file that is indirectly loaded by the file

somewhere in its coms, you will probably need to LOADFROM the file before you can list it.

INDEXING MULTIPLE FILES

Ordinarily, you list files and get one index per file. If a module is made up of several files, you

may want a master index of the whole set of files, so that you don’t have to remember which file

contains a function, macro, etc. that you are looking up. This job is handled by

MULTIFILEINDEX:

(MULTIFILEINDEX files printoptions) [Function]

This function lists each of the files in the list files using PRETTYFILEINDEX and then

produces a master index by merging all the individual indices. The master index is

appended to the output of the last file listed. The argument files can be a list of file names

and/or file patterns, such as "{FS:}<Carstairs>RED*", or a single such pattern. In the

pattern, unless explicitly specified, the extension defaults to null and the version to

"highest". The argument printoptions is a property-list of options, the same as the

printoptions argument to SEND.FILE.TO.PRINTER or PRETTYFILEINDEX, with the

addition of some options recognized by MULTIFILEINDEX, described further below.

As each file is listed, its pages are numbered with an ordinal file number plus the page number

within the file; e.g., in the first file the pages are numbered 1-1, 1-2, ..., in the second file 2-1, 2-2,

etc. The master index then refers to page numbers in this form, although each individual file’s

own index shows only the file-relative page numbers. Alternatively, you can tell

MULTIFILEINDEX to number all the pages consecutively, rather than using "part numbers", by

giving the option :CONSECUTIVE, value T in printoptions.

In the event that some files in the set have different reader environments, the master index is

printed in the environment used by the majority of the files. More specifically,

MULTIFILEINDEX independently chooses the package used by the majority of the files and the

readtable used by the majority; in the case of a tie, the file later in the set wins. If this default is

not adequate, you can specify the environment yourself by giving the :ENVIRONMENT option. The

value should either be a reader environment object, such as produced by MAKE-READER-

ENVIRONMENT, or a property list of the form used by the MAKEFILE-ENVIRONMENT property.

For example,

208

en·vōs PRETTYFILEINDEX

(MULTIFILEINDEX "<Barney>Rub*"

 ’(:CONSECUTIVE T

 :ENVIRONMENT (:PACKAGE "JABBA" :READTABLE "XCL")))

would list each of the files matching "<Barney>Rub*.;", numbering the pages consecutively from

the first file through the last, and printing the master index with respect to the package JABBA

and read table XCL.

INCREMENTALLY REPRINTING MULTIPLE FILES

If you have used MULTIFILEINDEX to list a group of files, and later one of the files changes, or

maybe the printer just ate part of your listing, you might want to update your listing without

reprinting the entire set of files. You have two options.

(1) You can have PRETTYFILEINDEX reprint the one file that changed (or was eaten). Specify

the print option :PART n to have it treat the single file as the nth part of a multiple listing, or the

option :FIRSTPAGE n to have it start numbering the pages at n instead of 1 (for the case where

you used the :CONSECUTIVE option to MULTFILEINDEX). For example,

(LISTFILES (:PART 3) "<Barney>Rubric")

would reprint <Barney>Rubric as the third file in a group. Of course, this doesn’t reprint the

master index, but it only has to process the one file, which may be adequate for your needs if

things didn’t move around too much.

(2) You can have MULTIFILEINDEX process the entire set of files again, but only print some of

them. You specify this by parenthesizing the files you don’t want printed. That is, each element

of the files argument to MULTIFILEINDEX is a file name or a list of file name(s); those files

inside sublists are processed but not printed. You cannot specify patterns. The master index is

listed after the last file, as usual, except that if the last file was in a sublist, and hence not

printed, the master index will appear as a separate listing. Calling MULTIFILEINDEX in this

manner is nearly as computationally expensive as calling it to list the whole set for real (it omits

only the transportation to the printer), but it does save paper and printer time.

LISTING COMMON LISP FILES

Ordinarily, PRETTYFILEINDEX only processes files produced by the Lisp File Manager; it passes

all others off to the default hardcopy routines. However, you can tell it to process a plain Common

Lisp text file by passing the print option :COMMON; e.g.,

(LISTFILES (:COMMON T) "conjugate.lisp")

PRETTYFILEINDEX still processes the file by reading and prettyprinting, just as for Lisp files.

It starts in the default Common Lisp reading environment (package USER and read table LISP),

and evaluates top-level package expressions, such as in-package and import, in order to

continue reading correctly. The index is printed in whatever the environment was at the end of

the file.

Of course, this is of fairly limited utility, as all read-time conditional syntax is lost: comments, #+,

#o, etc. The one exception is that top-level semi-colon comments are preserved—they are copied to

the output directly, rather than being read.

Customizing PRETTYFILEINDEX

The remainder of this document describes various ways in which PRETTYFILEINDEX can be

customized.

209

en·vōs PRETTYFILEINDEX

HOW TO SPECIFY INDEXING TYPES

Initially, PRETTYFILEINDEX knows about most of the standard file manager types. In addition,

it handles all the types defined by DEFDEFINER. For definers with a :NAME option, it assumes

that the function is free of side effects. PRETTYFILEINDEX also notices (but does not evaluate)

DEFDEFINERs that appear on the file it is currently indexing, which should appear before any

instances of the type so defined in order for correct indexing to occur. Of course, it can’t know

about definer types that are defined on some other file unless you load it.

You can augment the set of indexing types, or override the default handling of definers, by adding

elements to the following variable:

PFI-TYPES [Variable]

A list of entries describing types to be indexed and a way of testing whether an expression

on the file is of the desired type. Each entry is a list of up to 4 elements of the form (type

dumpfn namefn ambiguous), the first two of which are required:

type The name of the type, e.g., MACRO. This name will appear as the name of

the index for this type, e.g., "MACRO INDEX". type is usually the name of

a file package type, though it need not be. It must be a symbol.

dumpfn The name of the function that appears as the CAR of the form that defines

objects of type type on the file, or a list of such names. E.g., for type

TEMPLATE it is SETTEMPLATE; for type VARIABLES it is (RPAQ RPAQQ

RPAQ? ADDTOVAR).

namefn A function that tests whether the expression that starts with dumpfn

really is of the desired type, and returns the name of the object defined in

the expression. The function takes as arguments (expr entry), where expr

is the expression whose CAR matched the entry. The testfn should return

one of the following:

NIL the expression is not of the desired type.

name the expression defines a single object of this name and of

the type given in the entry.

a list the value is either a single list or a list of lists, each of the

form (type . names), meaning that the expression defines

each of the names as having the specified type.

If the namefn is NIL or omitted, the name of the object is obtained from the

second element of the expression. If that element is a list, the name is

taken to be its CAR, or its CADR if the element is a quoted atom.

ambiguous True if the expression is ambiguous, in the sense that even if namefn

returns a non-NIL value, it is possible for this expression to also satisfy

other entries in *PFI-TYPES*. E.g., the expression (RPAQ --) is

ambiguous, because it could define either a variable or a constant. If

ambiguous is true, you usually want a corresponding entry on *PFI-

FILTERS* (below).

210

en·vōs PRETTYFILEINDEX

PFI-PROPERTIES [Variable]

A list used by the default handler for the PUTPROPS form. It associates property names

with a type (something more specific than the type PROPERTY) under which objects having

this property should be indexed. Each element is of the form (propname type). If type is

NIL or omitted, then objects having this property are ignored. In addition, the default

PUTPROPS handler treats all elements of the list MACROPROPS as implying type MACRO.

The initial value of *PFI-PROPERTIES* is

((COPYRIGHT)

 (READVICE ADVICE)),

meaning that the COPYRIGHT property should be ignored, and the READVICE property

implies that the object should be indexed as type ADVICE.

PFI-FILTERS [Variable]

A list describing potential index entries that should be filtered out of the final index. Each

element of *PFI-FILTERS* is a list (type filterfn), where type is one of the types in *PFI-

TYPES* and filterfn is a function of one argument, an index entry. If filterfn returns true,

then the index entry is discarded. An index entry is of the form (name . pagenumbers).

For convenience, an element of *PFI-FILTERS* can also take the form (type . subtype),

meaning that if an object is already indexed as a subtype then it should not also be

indexed as a type.

The initial value of *PFI-FILTERS* is

((VARIABLES . CONSTANTS)),

meaning that "variables" that successfully index as constants should not also be listed in

the VARIABLES index. This extra pass is needed because the CONSTANTS File Manager

command causes expressions of the form (RPAQ var value) to be dumped on the file, and

at the time this expression is read, it is not known whether there will later on appear a

CONSTANTS form for the same variable.

Filter functions may want to call the following function:

(PFI.LOOKUP.NAME name type) [Function]

Looks up name in the index being built for type type. If it finds an entry, it returns it.

Index entries are of the form (name . pagenumbers). It is permissible for a filter function

as a side effect to destructively change another index entry by adding page numbers to it.

You might want to do so, for example, in the case where there is a kind of object that

dumps two expressions on a file, each of which is a different type (according to *PFI-

TYPES*), but you want both occurrences indexed as a single type.

MORE EXPLICIT EXPRESSION HANDLING

The functions and variables described below allow you to completely control how certain

expressions in the input file are handled. You can use these hooks to perform custom

211

en·vōs PRETTYFILEINDEX

prettyprinting, to suppress the printing of some expressions, or to perform indexing more complex

than that supported by *PFI-TYPES*.

PFI-HANDLERS [Variable]

An association list specifying explicit "handlers" for expressions that appear on the input

file. Each element is a pair (car-of-form . handler), where handler is a function of one

argument, an expression read from the file whose first element is car-of-form. The

handler is completely in charge of indexing the expression and/or printing it to

STANDARD-OUTPUT. Unless the handler chooses to suppress the printing altogether, it

is expected to print at least one blank line first, so that expressions are attractively

separated in the listing (see PFI.MAYBE.NEW.PAGE).

PFI-PREVIEWERS [Variable]

This list is used when PRETTYFILEINDEX is used by the SEE command. During the

SEE command, real-time performance is important, so it is undesirable to have long

delays while reading a very large expression. For example, all the functions in an

Interlisp FNS command appear on the file inside a single DEFINEQ expression. If

handled in the obvious way, the user would have to wait for the entire expression to be

read before any output appeared. A previewer has the opportunity to read the expression

in pieces and prettyprint it as it goes.

Each element of *PFI-PREVIEWERS* is a pair (car-of-form . previewer), where previewer

is a function of one argument, the car-of-form. The previewer is called when

PRETTYFILEINDEX encounters an expression of the form "(car-of-form " on the file. Its

job is to read expressions from *STANDARD-INPUT* (currently positioned after the car of

form) until it encounters the closing right parenthesis, which it should consume, and

prettyprint the elements appropriately to *STANDARD-OUTPUT*. *PFI-PREVIEWERS* is

used only from the SEE command, so indexing is not necessary (but also not harmful,

other than to waste some time).

If an expression does not have a previewer, PRETTYFILEINDEX reads the reset of the

expression itself and handles it normally, i.e., performs (PFI.HANDLE.EXPR (CONS car-

of-form (CL:READ-DELIMITED-LIST #\)).

(PFI.DEFAULT.HANDLER expr) [Function]

This is the function PRETTYFILEINDEX uses to process expressions that have no explicit

handler. It indexes the expression according to *PFI-TYPES* and then prettyprints the

expression. You can call this function from your handler if you decide you have an

expression you didn’t want to handle specially.

(PFI.HANDLE.EXPR expr) [Function]

Performs PRETTYFILEINDEX’s normal handling of the expression expr, including

looking on *PFI-HANDLERS*. Handlers and previewers of forms that encapsulate

arbitrary expressions, such as DECLARE:, typically call this to process subexpressions.

212

en·vōs PRETTYFILEINDEX

(PFI.ADD.TO.INDEX name type/entry) [Function]

Adds an entry to the index for type/entry specifying that name occurs on the current page.

type/entry is either a type or an entry from *PFI-TYPES* from which the type will be

extracted.

(PFI.PRETTYPRINT expr name formflg) [Function]

Prettyprints expr. Optional name is the name of the object being printed; if a page

crossing occurs in the middle of the prettyprinting, this name will be displayed in the page

header. If formflg is true, print the expression as code; otherwise as data.

(PFI.MAYBE.NEW.PAGE expr minlines) [Function]

Starts a new page if the listing is currently near the bottom of the page and expr won’t fit,

else performs a single (TERPRI). If minlines is specified, it is an explicit estimate of how

much space the expression will require, in which case expr can be NIL; otherwise, the

function estimates the size. Handlers should call this before calling PFI.ADD.TO.INDEX,

so that the page number in the index is correct. The typical handler calls

PFI.MAYBE.NEW.PAGE, then PFI.ADD.TO.INDEX, then prints the expression, possibly

via PFI.PRETTYPRINT.

OTHER VARIABLES

PFI-INDEX-ORDER [Variable]

A list of types (as in *PFI-TYPES*) in the order in which the various types should appear

in the index. Types not in this list are printed in an order of the program’s choosing,

currently a "best fit" algorithm (print the largest type index that will fit on the page). The

initial value is (FUNCTIONS), meaning that the function index will appear first, with no

constraints on the order of other types.

PFI-PRINTOPTIONS [Variable]

A plist of print options that PRETTYFILEINDEX appends to the list of print options passed

to LISTFILES, thus supplying some printing defaults. The initial value is (REGION (72

54 504 702)), which on standard letter size paper in portrait mode results in left,

bottom, top, and right margins of 1", 3⁄4", 1⁄2" and 1⁄2", respectively. If the print options

passed to LISTFILES call for a two-sided listing, the default region is shifted 1⁄4" to the

left. If the print options specify LANDSCAPE mode, the default region is ignored. Any

REGION option specified in *PFI-PRINTOPTIONS* must be in points; it is scaled

appropriately to the actual hardcopy device being used.

PFI-MAX-WASTED-LINES [Variable]

If an expression looks like it won’t fit on the current page and there are no more than this

many lines remaining on the page, PRETTYFILEINDEX starts a new page before printing

the expression. A floating-point value indicates a fraction of the page; an integer indicates

an absolute number of lines. The initial value is 12.

PFI-CHARACTER-TRANSLATIONS [Variable]

A list specifying how certain characters should be rendered on the output stream. This is

used to get around the poor rendering of certain characters in the default font. Each

213

en·vōs PRETTYFILEINDEX

element is of the form (imagetype . charpairs), where imagetype is the type of image

stream being printed to and each element of charpairs is an alist whose elements are of

the form (sourcecode destcode . looks-plist), specifying the character code to use on the

destination image stream for a specified character code in the input stream. If looks-plist

is non-NIL, destcode is printed in a font obtained by applying FONTCOPY to the current

font and looks-plist.

The initial value is

((INTERPRESS (95 172)

 (96 169 FAMILY CLASSIC)

 (39 185 FAMILY CLASSIC)))

meaning if the output stream is an Interpress stream the lister should turn character 95

(underscore) into 172 (left arrow), backquote into left single quote in the Classic font (of

the same size and weight), and single quote into right single quote in Classic.

PRINT-PRETTY-FROM-FILES [Variable]

If true, the SEE (in the Exec and Filebrowser), PF and PF* commands attempt to

prettyprint to the display, rather than copying the file as it is currently formatted. The

initial value is T.

PRINT-PRETTY-BITMAPS [Variable]

If true, then when *PRINT-ARRAY* is true and a bitmap is to be printed to an image

stream, the bitmap itself is displayed as an image on the stream, rather than as the

machine-readable representation of its bits (of the form #*(16 16)H@@@L...). This

variable has no effect on printing to files, such as in MAKEFILE, nor on

PRETTYFILEINDEX, which binds it true; thus, changing the value mainly affects the

display. The initial value is T.

PFI-DONT-SPAWN [Variable]

If NIL, LISTFILES arranges for a separate process to do the hardcopying (whether using

PRETTYFILEINDEX or not) and returns immediately; if T, it makes the listing directly,

not returning until it is finished. The initial value is NIL.

LISTING ELSEWHERE THAN THE PRINTER

Ordinarily, you call LISTFILES (or uses the File Browser) to create listings. However, you can

also call PRETTYFILEINDEX directly if you want to direct the output elsewhere, such as to an

Interpress file:

(PRETTYFILEINDEX filename printoptions outstream dontindex) [Function]

Lists filename, the name of a Lisp source file or a stream open for input on such a file,

printing it and its index to outstream. outstream is either an open image stream, or NIL,

in which case the output goes to (OPENIMAGESTREAM) and the stream is closed

afterwards, which results in it being sent to the default printer. If filename or outstream

is open on entry, it is left open on exit. printoptions is a plist of options of interest to

either LISTFILES or OPENIMAGESTREAM. If dontindex is true, no index is produced;

this argument is used by the SEE command.

214

en·vōs PRETTYFILEINDEX

If the file is not a File manager file, PRETTYFILEINDEX takes no action and returns NIL;

otherwise, it returns the full file name. However, if filename is an open stream, then

PRETTYFILEINDEX copies the remainder of the stream to outstream (which must be given)

using PFCOPYBYTES, and returns the full file name. This is so that the stream does not

need to be backed up after discovering that the file is not a File Manager file, an operation

not possible for a sequential-access stream.

LIMITATIONS

PRETTYFILEINDEX assumes that the default font, which is used to print the index, is fixed-

width.

PRETTYFILEINDEX uses the regular Interlisp prettyprinter. This means that if you have File

Manager commands that produce their output in a customized way, e.g., by printing inside the E

command, then the output will look different between MAKEFILE and PRETTYFILEINDEX.

You can usually remedy this by supplying PRETTYPRINTMACROS for the types of expressions your

command dumps (which may also let you replace the E with a simpler P command), or by defining

handlers for the expressions (see *PFI-HANDLERS*). PRETTYFILEINDEX already supplies

PRETTYPRINTMACROS for most of the customized printing done by the current File Manager:

RPAQ, RPAQQ, RPAQ?, ADDTOVAR, PUTPROPS and COURIERPROGRAM.

With the exception of noticing the reader environment and DEFDEFINER expressions,

PRETTYFILEINDEX does not interpret the contents of the file. If your file depends on itself for

proper prettyprinting or indexing, you need to LOAD (or possibly just LOADFROM) the file first.

