
File created: 17-Aug-87 14:00:19 {DSK}<LISPFILES>DEV>NEATICONS.;2

changes to: (IL:ADVICE IL:SHRINKW)
(IL:VARS IL:NEATICONSCOMS)

previous date: 17-Aug-87 13:51:56 {DSK}<LISPFILES>DEV>NEATICONS.;1

Read Table: XCL

Package: NEATICONS

Format: XCCS

; Copyright (c) 1967, 1986, 1987 by Quintus Computer Systems, Inc. All rights reserved.

(IL:RPAQQ IL:NEATICONSCOMS
(

;; This file makes sure that all icons (shrunken windows) created after this file is loaded are neat. This means that when an icon is near
;; another window it is neatly placed NEATICONS:DEFAULT-SPACING (defaults to 5) pixels away, or the edge of the screen flushed with
;; the edge of the screen, or if one of its edges is near the corresponding edge of another window, the edges will be perfectly aligned. It’s
;; a lot easier to understand what this means by trying it. An icon will be moved at most NEATICONS:DEFAULT-TOLERANCE (defaults
;; to 100) pixels horizontally or vertically in order to make it neat. So if you put an icon in the middle of nowhere, it will stay there.

;; This is done by advising SHRINKW to make newly generated icons neat. The function NEATICONS.NEATEN.WINDOW, when applied
;; to a window, will make that window always neat. So after loading this file, newly created icons will always be neat; and users can
;; make any window neat by calling (NEATICONS:NEATEN window). Note that existing icons can be made neat by expanding and
;; re-shrinking them.

;; Exported variables and functions

(IL:VARIABLES DEFAULT-SPACING DEFAULT-TOLERANCE)
(IL:FUNCTIONS NEATEN UNNEATEN)

;; Private stuff

(IL:ADVISE IL:SHRINKW)
(IL:FUNCTIONS BETWEEN MIN-ABSOLUTE MIN-SUM-SQUARES NEAT-POSITION)
(IL:PROP IL:MAKEFILE-ENVIRONMENT IL:NEATICONS)))

;; This file makes sure that all icons (shrunken windows) created after this file is loaded are neat. This means that when an icon is near another window
;; it is neatly placed NEATICONS:DEFAULT-SPACING (defaults to 5) pixels away, or the edge of the screen flushed with the edge of the screen, or if
;; one of its edges is near the corresponding edge of another window, the edges will be perfectly aligned. It’s a lot easier to understand what this means
;; by trying it. An icon will be moved at most NEATICONS:DEFAULT-TOLERANCE (defaults to 100) pixels horizontally or vertically in order to make it
;; neat. So if you put an icon in the middle of nowhere, it will stay there.

;; This is done by advising SHRINKW to make newly generated icons neat. The function NEATICONS.NEATEN.WINDOW, when applied to a window,
;; will make that window always neat. So after loading this file, newly created icons will always be neat; and users can make any window neat by calling
;; (NEATICONS:NEATEN window). Note that existing icons can be made neat by expanding and re-shrinking them.

;; Exported variables and functions

(DEFGLOBALPARAMETER DEFAULT-SPACING 5
"Number of pixels between neat icons.")

(DEFGLOBALPARAMETER DEFAULT-TOLERANCE 100
"How far an icon will be moved to be neat.")

(DEFUN NEATEN (&OPTIONAL (WINDOW (IL:WHICHW)))
"Makes WINDOW (default: (WHICHW)) always neatly aligned with nearby windows"

;;; Makes WINDOW neat, i.e., makes it neatly aligned on the screen, and makes sure that wherever it is moved, it will remain neatly placed. Also makes
;;; sure that any existing MOVEFN on the window will still get called when the window is moved, and that function has the final decision as the window’s
;;; actual new position. WINDOW defaults to (WHICHW)

;;; For more on what it means to be neat, and how a neat postion for a window is determined, see NEATICONS::NEAT-POSITION

(|if| (IL:WINDOWP WINDOW)
|then| (LET ((OLDMOVEFN (IL:WINDOWPROP WINDOW ’IL:MOVEFN ’NEAT-POSITION)))

(|if| (NOT (IL:EQMEMB ’NEAT-POSITION OLDMOVEFN)) ; If it’s not already neat ...
|then| (IL:WINDOWPROP WINDOW ’USERMOVEFN OLDMOVEFN)

(IL:RELMOVEW WINDOW ’(0 . 0))) ; invokes NEAT-POSITION to neaten WINDOW
WINDOW)))

(DEFUN UNNEATEN (&OPTIONAL (WINDOW (IL:WHICHW)))
"Makes WINDOW (default: (WHICHW)) a normal, non-neat window"

;;; undoes the effect of NEATICONS:NEATEN. WINDOW becomes a normal, sloppy, window. WINDOW defaults to (WHICHW)

(|if| (NOT (IL:WINDOWP WINDOW))
|then| (IL:ERROR "Not a window" WINDOW))

(IL:WINDOWPROP WINDOW ’IL:MOVEFN (IL:WINDOWPROP WINDOW ’USERMOVEFN NIL))
WINDOW)

;; Private stuff

(REINSTALL-ADVICE ’IL:SHRINKW :AROUND ’((:LAST (LET ((IL:ICON IL:*))
(NEATEN IL:ICON)

{MEDLEY}<lispusers>NEATICONS.;1 (IL:SHRINKW cont.) Page 2

IL:ICON))))

(IL:READVISE IL:SHRINKW)

(DEFMACRO BETWEEN (X LOWER UPPER)
"X is between LOWER and UPPER?"
‘(LET ((XVALUE ,X))

(AND (>= XVALUE ,LOWER)
(<= XVALUE ,UPPER))))

(DEFMACRO MIN-ABSOLUTE (ARG1 ARG2 &OPTIONAL ARG3)
"Returns whichever arg has the smallest absolute value"
‘(LET* ((ARG1-VALUE ,ARG1)

(ARG2-VALUE ,ARG2)
(BEST-OF-TWO (|if| (< (ABS ARG2-VALUE)

(ABS ARG1-VALUE))
|then| ARG2-VALUE

|else| ARG1-VALUE)))
,(|if| ARG3

|then| ‘(LET ((ARG3-VALUE ,ARG3))
(|if| (< (ABS ARG3-VALUE)

(ABS BEST-OF-TWO))
|then| ARG3-VALUE

|else| BEST-OF-TWO))
|else| ‘BEST-OF-TWO)))

(DEFMACRO MIN-SUM-SQUARES (&REST PAIRS)

;;; (min-sum-squares (deltax-1 deltay-1) (deltax-2 deltay-2) ...)

;;; returns the (x,y) pair (2 values) that have the smallest deltax^2 + deltay^2

‘(PROG ((BEST-DX ,(CAAR PAIRS))
(BEST-DY ,(CADAR PAIRS))
BEST-SUMSQ TEMP-SUMSQ)

(SETQ BEST-SUMSQ (+ (* BEST-DX BEST-DX)
(* BEST-DY BEST-DY)))

,@(|for| PR |in| (CDR PAIRS)
|collect| ‘(|if| (< (SETQ TEMP-SUMSQ (+ (* ,(CAR PR)

,(CAR PR))
(* ,(CADR PR)

,(CADR PR))))
BEST-SUMSQ)

|then| (SETQ BEST-SUMSQ TEMP-SUMSQ)
(SETQ BEST-DX ,(CAR PR))
(SETQ BEST-DY ,(CADR PR))))

(RETURN (VALUES BEST-DX BEST-DY))))

(DEFUN NEAT-POSITION (WINDOW-TO-MOVE TENTATIVE-POSITION &OPTIONAL (TOLERANCE DEFAULT-TOLERANCE)
(SPACING DEFAULT-SPACING))

"Returns the position nearest to TENTATIVE-POSITION that is neat."
(|bind|

;; Variables describing the window we’re moving and its new place:

(USERMOVEFN _ (IL:WINDOWPROP WINDOW-TO-MOVE ’USERMOVEFN))
(MYREG _ (IL:WINDOWPROP WINDOW-TO-MOVE ’IL:REGION))
(MYLEFT _ (|fetch| (IL:POSITION IL:XCOORD) |of| TENTATIVE-POSITION))
(MYBOTTOM _ (|fetch| (IL:POSITION IL:YCOORD) |of| TENTATIVE-POSITION))
MYWIDTH MYHEIGHT MYRIGHT

;; These describe the region WINDOW-TO-MOVE can be placed within and still meat the constraints imposed by TOLERANCE:

MYTOP MINLEFT MAXRIGHT MINBOTTOM MAXTOP

;; Variables to keep track of the best new place we’ve found so far:

BEST-DELTAX BEST-DELTAY BEST-CORNER-DELTAX BEST-CORNER-DELTAY CORNER-DELTAX-WINDOW CORNER-DELTAY-WINDOW

;; Variables holding information about each window in turn:

REGION LEFT RIGHT BOTTOM TOP

;; When we’re all done, these hold information needed to compute the final value:

BEST-POSITION USER-MOVE-VALUE |first| (SETQ MYWIDTH (|fetch| (IL:REGION IL:WIDTH) |of| MYREG))
(SETQ MYHEIGHT (|fetch| (IL:REGION IL:HEIGHT) |of| MYREG))
(SETQ MYRIGHT (+ MYLEFT MYWIDTH -1))
(SETQ MYTOP (+ MYBOTTOM MYHEIGHT -1))
(SETQ MINLEFT (- MYLEFT TOLERANCE))
(SETQ MAXRIGHT (+ MYRIGHT TOLERANCE))
(SETQ MINBOTTOM (- MYBOTTOM TOLERANCE))
(SETQ MAXTOP (+ MYTOP TOLERANCE))

;; First guess at best position is nearest corner of the screen

(SETQ BEST-CORNER-DELTAX (SETQ BEST-DELTAX
(MIN-ABSOLUTE (- IL:SCREENWIDTH

MYRIGHT 1)
(- MYLEFT))))

{MEDLEY}<lispusers>NEATICONS.;1 (NEAT-POSITION cont.) Page 3

(SETQ BEST-CORNER-DELTAY (SETQ BEST-DELTAY
(MIN-ABSOLUTE (- IL:SCREENHEIGHT

MYTOP 1)
(- MYBOTTOM))))

|for| WINDOW |in| (IL:OPENWINDOWS) |unless| (EQ WINDOW WINDOW-TO-MOVE)
|do| (SETQ REGION (IL:WINDOWPROP WINDOW ’IL:REGION))

(SETQ LEFT (|fetch| (IL:REGION IL:LEFT) |of| REGION))
(SETQ RIGHT (|fetch| (IL:REGION IL:RIGHT) |of| REGION))
(SETQ BOTTOM (|fetch| (IL:REGION IL:BOTTOM) |of| REGION))
(SETQ TOP (|fetch| (IL:REGION IL:TOP) |of| REGION))
MYLEFT-LEFT
(LET ((LEFT-MYLEFT (- LEFT MYLEFT))

(LEFT-MYRIGHT (- (- LEFT MYRIGHT)
SPACING))

(RIGHT-MYLEFT (+ (- RIGHT MYLEFT)
SPACING))

(RIGHT-MYRIGHT (- RIGHT MYRIGHT))
(BOTTOM-MYBOTTOM (- BOTTOM MYBOTTOM))
(BOTTOM-MYTOP (- (- BOTTOM MYTOP)

SPACING))
(TOP-MYBOTTOM (+ (- TOP MYBOTTOM)

SPACING))
(TOP-MYTOP (- TOP MYTOP)))

;; First, see if we can align with a corner of a window

(|if| (AND (OR (BETWEEN BOTTOM MINBOTTOM MAXTOP)
(BETWEEN TOP MINBOTTOM MAXTOP))

(OR (BETWEEN LEFT MINLEFT MAXRIGHT)
(BETWEEN RIGHT MINLEFT MAXRIGHT)))

|then| (MULTIPLE-VALUE-SETQ (BEST-CORNER-DELTAX BEST-CORNER-DELTAY)
(MIN-SUM-SQUARES (BEST-CORNER-DELTAX BEST-CORNER-DELTAY)

(LEFT-MYRIGHT TOP-MYTOP)
(LEFT-MYRIGHT BOTTOM-MYBOTTOM)
(RIGHT-MYLEFT BOTTOM-MYBOTTOM)
(RIGHT-MYLEFT TOP-MYTOP)
(LEFT-MYLEFT BOTTOM-MYTOP)
(LEFT-MYLEFT TOP-MYBOTTOM)
(RIGHT-MYRIGHT BOTTOM-MYTOP)
(RIGHT-MYRIGHT TOP-MYBOTTOM))))

;; Now see if we can align with a side of a window

(|if| (OR (BETWEEN MYBOTTOM BOTTOM TOP)
(BETWEEN MYTOP BOTTOM TOP))

|then| (SETQ BEST-DELTAX (MIN-ABSOLUTE BEST-DELTAX LEFT-MYRIGHT RIGHT-MYLEFT)))
(|if| (OR (BETWEEN MYLEFT LEFT RIGHT)

(BETWEEN MYRIGHT LEFT RIGHT))
|then| (SETQ BEST-DELTAY (MIN-ABSOLUTE BEST-DELTAY BOTTOM-MYTOP TOP-MYBOTTOM))))

|finally| (|if| (AND (IL:WINDOWP CORNER-DELTAX-WINDOW)
(EQ CORNER-DELTAX-WINDOW CORNER-DELTAY-WINDOW))

|then|
;; we might be putting my window in the corner of another window. This code is meant to prevent the window from getting
;; thrown on top of another window by preventing it from aligning two of its edges with the two corresponding edges of
;; another window. But it doesn’t work very well.

(|if| (<= (+ (* BEST-DELTAX BEST-DELTAX)
(* BEST-CORNER-DELTAY BEST-CORNER-DELTAY))

(+ (* BEST-CORNER-DELTAX BEST-CORNER-DELTAX)
(* BEST-DELTAY BEST-DELTAY)))

|then| (SETQ BEST-DELTAY BEST-CORNER-DELTAY)
|else| (SETQ BEST-DELTAX BEST-CORNER-DELTAX))

|else| (SETQ BEST-DELTAX (MIN-ABSOLUTE BEST-DELTAX BEST-CORNER-DELTAX))
(SETQ BEST-DELTAY (MIN-ABSOLUTE BEST-DELTAY BEST-CORNER-DELTAY)))

(SETQ BEST-POSITION (|create| IL:POSITION
IL:XCOORD _ (|if| (<= (ABS BEST-DELTAX)

TOLERANCE)
|then| (+ MYLEFT BEST-DELTAX)

|else| MYLEFT)
IL:YCOORD _ (|if| (<= (ABS BEST-DELTAY)

TOLERANCE)
|then| (+ MYBOTTOM BEST-DELTAY)

|else| MYBOTTOM)))
(SETQ USER-MOVE-VALUE ; find result of any other MOVEFNs

(|if| (NULL USERMOVEFN)
|then| NIL

|elseif| (EQ USERMOVEFN ’IL:DON\’T)
|then| ’IL:DON\’T

|elseif| (LISTP USERMOVEFN)
|then| (|bind| (VAL _ BEST-POSITION) |for| FN |in| USERMOVEFN |until| (EQ VAL ’IL:DON\’T)

|unless| (EQ FN ’NEAT-POSITION) |do| (SETQ VAL (OR (FUNCALL FN WINDOW-TO-MOVE VAL)
VAL))

|finally| (RETURN VAL))
|elseif| (AND (SYMBOL-FUNCTION USERMOVEFN)

(IL:NEQ USERMOVEFN ’NEAT-POSITION))
|then| (FUNCALL USERMOVEFN WINDOW-TO-MOVE BEST-POSITION)

|else| NIL))
(RETURN (|if| (OR (EQ USER-MOVE-VALUE ’IL:DON\’T)

(IL:POSITIONP USER-MOVE-VALUE))
|then| USER-MOVE-VALUE

{MEDLEY}<lispusers>NEATICONS.;1 (NEAT-POSITION cont.) Page 4

|else| BEST-POSITION))))

(IL:PUTPROPS IL:NEATICONS IL:MAKEFILE-ENVIRONMENT (:READTABLE "XCL" :PACKAGE
(PROG1

(DEFPACKAGE "NEATICONS" (:USE "LISP" "XCL")
(:IMPORT |bind| _ |first| |for| |in| |until|

|unless| |do| |collect| |finally|
|if| |then| |else| |elseif| |create|
|fetch| |of|))

(EXPORT (MAPCAR #’(IL:LAMBDA (STRING)
(INTERN STRING

"NEATICONS"))
’("DEFAULT-SPACING"

"DEFAULT-TOLERANCE"
"NEATEN" "UNNEATEN"
"USERMOVEFN"))

"NEATICONS"))))

(IL:PUTPROPS IL:NEATICONS IL:COPYRIGHT ("Quintus Computer Systems, Inc" 1967 1986 1987))

{MEDLEY}<lispusers>NEATICONS.;1 9-Oct-2024 02:37:44
-- Listed on 9-Oct-2024 02:41:45 --

FUNCTION INDEX

NEAT-POSITION2 NEATEN1 UNNEATEN1

MACRO INDEX

BETWEEN2 MIN-ABSOLUTE2 MIN-SUM-SQUARES2

VARIABLE INDEX

DEFAULT-SPACING1 DEFAULT-TOLERANCE1

PROPERTY INDEX

IL:NEATICONS4

ADVICE INDEX

IL:SHRINKW1

