
1

XEROX LAMBDATRAN

LAMBDATRAN

By: Ron Kaplan

The purpose of this package is to facilitate defining new LAMBDA words in such a way that a variety of

other system packages will respond to them appropriately. A LAMBDA word is a word that can appear

as the CAR of a function definition, like LAMBDA and NLAMBDA. New LAMBDA words are useful

because they enable the user to define his or her own conventions about such things as the

interpretation of arguments, and to build in certain defaults about how values are returned. For

example, the DECL package defines DLAMBDA as a new LAMBDA word with unconventional

arguments such as the following:

(DLAMBDA ((A FLOATP) (B FIXP) (RETURNS SMALLP))

(FOO A B))

In order for such an expression to be executable and compilable, a mechanism must be provided for

translating this expression to an ordinary LAMBDA or NLAMBDA, with the special behavior associated

with the arguments built into the function body. The LambdaTran package accomplishes this via an

appropriate entry on DWIMUSERFORMS that computes the translation.

Besides executing and compiling, Interlisp applies a number of other operations to function definitions

(e.g., breaking, advising), many of which depend on the system being able to determine certain

properties of the function, such as the names of its arguments, their number, and the type of the

function (EXPR, FEXPR, etc.). The LambdaTran package also provides new definitions for the

functions FNTYP, ARGLST, NARGS, and ARGTYPE which can be told how to compute properties for

the user’s LAMBDA-words.

A new LAMBDA-word is defined in the following way:

1. Add the LAMBDA-word itself (e.g., the atom DLAMBDA) to the list LAMBDASPLST. This

suppresses attempts to correct the spelling of the LAMBDA-word.

2. Add an entry for the LAMBDA-word to the association list LAMBDATRANFNS, which is a list of

elements of the form: (LAMBDA-WORD TRANFN FNTYP ARGLIST), where (LAMBDA-WORD is the

name of the LAMBDA-word (e.g., DLAMBDA).

TRANFN is a function of one argument that will be called whenever a real definition is needed for the

LAMBDA-word definition. Its argument is the LAMBDA-word definition, and its value should be a

conventional LAMBDA or NLAMBDA expression which will become the translation of the Lisp

2

XEROX LAMBDATRAN

LAMBDA-word form. The free variable FAULTFN is bound to the name of the function in which the

LAMBDA-word form appeared (or TYPE-IN if the form was typed in).

FNTYP determines the function type of a definition beginning with LAMBDA-WORD. It is consulted if

the definition does not already have a translation from which the function type may be deduced. If

FNTYP is one of the atoms EXPR, FEXPR, EXPR*, or FEXPR*, then all definitions beginning with

LAMBDA-word are assumed to have that type. Otherwise, FNTYP is a function of one argument that

will be applied to the LAMBDA-word definition. Its value should be one of the above four function

types.

ARGLIST determines the argument list of the definition if it has not already been translated (if it has,

the ARGLIST is simply the ARGLIST of the translation). It is also a function of one argument, the

LAMBDA-word definition, and its value should be the list of arguments for the function (e.g., (A B) in

the DLAMBDA example above). If the LAMBDA-word definition is ill formed and the argument list

cannot be computed, the function should return T. If an ARGLIST entry is not provided in the

LAMBDATRANFNS element, then the argument list defaults to the second element of the definition.

As an example, the LAMBDATRANFNS entry for DLAMBDA is (DLAMBDA DECL EXPR

DLAMARGLIST), where DECL and DLAMARGLIST are functions of one argument.

Note: if the LAMBDA-word definition has an argument list with argument names appearing either as

literal atoms or as the first element of a list, the user should also put the property INFO with value

BINDS on the property list of the LAMBDA-word in order to inform DWIMIFY to take notice of the

names of the arguments when DWIMIFYing.

