
1

Medley GITFNS

GITFNS

By Ron Kaplan

This document was last edited in February 2023.

GITFNS provides a Medley-oriented interface for comparing the files in two different branches of a git

repository. This makes it easier to understand what functions or other definitions have changed in a
Lisp source file, or what text has changed in a Tedit file. This may be particularly helpful in evaluating
the changes in a pull request.

Separately, GITFNS also provides tools and conventions for bridging between git’s file-oriented style of

development and version control and Medley’s residential development style with its own version
control conventions. GITFNS allows for intelligent comparisons between Lisp source files, Tedit files,

and text files in a local git clone and a local Medley-style working directory, and for migrating files to
and from the git clone and the working directory.

Git projects: Connecting git clones to GITFNS capabilities

The GITFNS capabilities operate on pre-existing clones of remote git repositories that have been

installed at the end of some path on the local disk. The path to a clone can be used to create a
GITFNS "project" for that clone:

(GIT-MAKE-PROJECT PROJECTNAME CLONEPATH WORKINGPATH EXCLUSIONS
 DEFAULTSUBDIRS) [Function]

where

 PROJECTNAME is the name of the project (e.g. MEDLEY, NOTECARDS, LOOPS...)

 CLONEPATH specifies the local path to the clone

 e.g. {dsk}<users>...>git-medley

 WORKINGPATH is optionally the local path to a corresponding Medley-residential working directory

(e.g. {dsk}<users>...>working-medley>)

When the project has a WORKINGPATH:

 EXCLUSIONS is a list of files and directories to be excluded from comparisons (including what its

.gitignore specifies)

 DEFAULTSUBDIRS is a list of subdirectories to be use in working-path comparisons when directories

are not otherwise specified.

For convenience, if CLONEPATH is NIL or T (and not a path), then a sequence of probes based on

PROJECTNAME attempts to find a clone directory (with a .git subdirectory):

 (UNIX-GETENV PROJECTNAME) e.g. (UNIX-GETENV ’LOOPS)

2

Medley GITFNS

 (UNIX-GETENV (CONCAT PROJECTNAME "DIR") e.g.{UNIX-GETENV ’LOOPSDIR)

 (MEDLEYDIR PROJECTNAME)) a subdirectory of MEDLEYDIR

 (MEDLEYDIR (CONCAT "../" PROJECTNAME)) a sister of MEDLEYDIR

 (MEDLEYDIR (CONCAT "../git-" PROJECTNAME)
 (a sister of MEDLEYDIR named git-PROJECTNAME, e.g. git-notecards)

Thus:

If MEDLEYDIR is defined,

 (GIT-MAKE-PROJECT ’MEDLEY) will make the MEDLEY project

If NOTECARDS is defined
 (GIT-MAKE-PROJECT ’NOTECARDS) will make the NOTECARDS project

If NOTECARDS is not defined but the clone >git-notecards> is a sister of MEDLEYDIR, then the

NOTECARDS project will still be created.

If a clone is discovered and a project is created, the value of GIT-MAKE-PROJECT is PROJECTNAME.

Otherwise, NIL will be returned if CLONEPATH is T (= no-error), and CLONEPATH=NIL will result in an

error.

When they are created, git projects are registered by name on the a-list GIT-PROJECTS, and they can

otherwise be referenced by their names.

The variable GIT-DEFAULT-PROJECT, initially MEDLEY, contains the project name used by the

commands below when the optional PROJECTNAME argument is not provided.

GIT-MAKE-PROJECT creates a pseudohost {projectname} whose path prefix is the path that

resolved to the clone. The file GITFNS in the clone LISPUSERS directory, for example, can be

referenced as {MEDLEY}<LISPUSERS>GITFNS.

GIT-MAKE-PROJECT will also create a pseudohost {Wprojectname} for the user’s working

environment for the project. If WORKINGPATH is provided, that will be the prefix for that pseudohost. If

WORKINGPATH is NIL and a directory named working-projectname> is a sister to the clone

directory, the pseudohost will point to that.

(GIT-INIT EVENT) [Function]

GIT-INIT creates the default set of projects when GITFNS is loaded, as specified in the variable

GIT-DEFAULT-PROJECTS, initially containing MEDLEY NOTECARDS LOOPS TEST. GIT-INIT is

added to AROUNDEXITFNS so that new pseudohost bindings for the default projects will be created if

the sysout or makesys is started on a new machine.

GIT-DEFAULT-PROJECTS [Variable]

Determines the projects that are created (or recreated) by GIT-INIT. This is initialized for the MEDLEY

NOTECARDS LOOPS TEST projects, with CLONEPATH=NIL

GITFNS also defines two directory-connecting commands for conveniently connecting to the git and

working pseudohosts of a project:

cdg (projectname) (subdir) [Command]

cdw (projectname) (subdir) [Command]

3

Medley GITFNS

For example, cdg notecards library connects to {NOTECARDS}/library/.

Comparing directories and files in different git branches

In its simplest application, GITFNS is just an off-to-the-side add-on to whatever work practices the user

has developed with respect to a locally installed git project. Its only advantage is to allow for more
interpretable git-branch comparisons, especially for pull-request approval. These comparisons are
provided by the prc ("pull request compare") Medley executive command:

prc (branch) (DRAFTS|NODRAFTS) (projectname) [Command]

This compares the files in branch against the files in the main branch of the project

(origin/master or origin/main). Thus, suppose that a pull request has been issued on github

for a particular branch, say branch rmk15 of the default project. Then

 prc rmk15

brings up a lispusers/COMPAREDIRECTORIES browser for the files that currently differ between

origin/rmk15 and origin/master. If the selected files are Lisp source files, the Compare item on

the file browser menu will show the differences in a lispusers/COMPARESOURCES browser. The

differences for other file types will be shown in a lispusers/COMPARETEXT browser.

If branch is not specified and the shell command gh is available, then a menu of open pull-request

branches will be provided. If gh is not available, the menu will offer all known branches. If the optional

DRAFTS is provided, then the menu will show only draft PRs prefixed with "D". If NODRAFTS, then

draft PRs are suppressed. Otherwise, the default is to show both draft and non-draft PRs.

If one PR, say rmk15, contains all the commits of another (rmk14), then the menu will indicate this by

 rmk15 > rmk14

Note that the prc comparison is read-only: any comments, approvals, or merges of the branch must

be specified using the normal Medley-external git interfaces and commands.

prc is the special case of the more general bbc command ("branch-branch compare") for comparing

the files in any two branches:

bbc branch1 branch2 (project) [Command]

This compares the files in branch1 and branch2, for example

 bbc rmk15 lmm12 (local)

This will compare the files in origin/rmk15 and origin/lmm12 in the GIT-DEFAULT project.

branch1 defaults to the origin files of the currently checked out branch, the second defaults to

origin/master. If local is non-NIL, then a branch that has neither local/ or origin/
prepended will default to local (e.g. local/rmk15) instead of origin/. Local refers to the files that

are currently in the clone directory, which may not be the same as the origin files, depending on the
push/pull status.

Either of the branches can be specified with an atom LOCAL, REMOTE, or ORIGIN, in which case bbc

will offer menus listing the currently existing branches of that type.

NOTE: Branch comparison makes use of a git command that has a limit (diff.renameLimit) on the
number of files that it can successfully compare. A message will be printed if that limit is exceeded,
asking whether a larger value for that limit should be applied globally.

4

Medley GITFNS

The command cob ("check out branch") checks out a specified branch:

cob branch (next-title-string) (project) [Command]

This checks out branch of project and then executes git pull. The branch parameter may also be a

local branch, T (= the current working branch), or NEW/NEXT (= the next working branch). The current

working branch is the branch named <initials>nnn, e.g. rmk15. The initials are the value of

INITIALS as used for SEDIT time stamps, and nnn is the largest of the integers of all of the

branches beginning with those initials.

If branch is NEW or NEXT, then a new initialed branch is created and becomes the user’s current

branch. Its number is one greater than the largest number of previous initialed branches. If next-
title-string is provided, then that string will be appended to the name of the branch, after the

initials and next number, and two hyphens. Spaces in next-title-string will also be replaced by

hyphens, according to git conventions.

If branch is not provided, a menu of locally available branches pops up.

The currently checked out branch is obtained by the b? command:

b? (project) [Command]

Correlating git source control with separate Medley development

It is generally unsafe to do Medley development by operating with files in a local clone repository.
Medley provides a residential development environment that integrates tightly with the local file system.
It is important to have consistent access to the source files of the currently running system, especially
for files whose contents have been only partially loaded. A git pull or a branch switch that introduces
new versions of some files or removes old files altogether can lead to unpredictable disconnects that
are hard to recover from. This is true also because development can go on in the same Medley
memory image for days if not weeks, so it is important to have explicit control of any file version
changes.

GITFNS mitigates the danger by conventions that separate the files in the git clone from the files in the
working Medley development directory. The location of the Medley development source tree for a
project is given by the WORKINGPATH argument to GIT-MAKE-PROJECT. If WORKINGPATH is T or NIL

and there exists a directory >working-projectname> as a sister to the clone, then that is taken to be the
WORKINGPATH and thus the prefix for a pseudohost {Wprojectname}.

When Medley development is carried out in the WORKINGPATH, the variable MEDLEYDIR should point

initially to the working directory, and the directory search paths (DIRECTORIES,

LISPUSERSDIRECTORIES, FONTDIRECTORIES, etc.) all have MEDLEYDIR (or {WMEDLEY}) as a

prefix. In that case, the clone for the project, if PROJECTPATH doesn’t specify it explicitly, should be

located at the >git-medley> sister directory of MEDLEYDIR.

Any back and forth transfer of information between the git clone and Medley development must be
done by explicit synchronization actions. Crucially, Medley-updated files do not appear in the clone
directories and new clone files do not move to the Medley directories without user intervention.

The files in Medley working tree and the git clone of a project can be compared with the gwc ("git-

working-compare") command:

gwc subdirectories (project) [Command]

5

Medley GITFNS

This produces a browser for all the files in the corresponding WORKINGPATH subdirectories that differ

from the files in the currently checked out branch of the git clone. If subdirectories is omitted, it
defaults to the DEFAULTSUBDIRS of the project. If it is ALL, then files in all subdirectories that are not

found in the project’s EXCLUSIONS are compared.

In addition to the commands for comparing and viewing files, the menu for this browser also has
commands for copying files from the git clone {projectname} to {Wprojectname} and deleting

files from {Wprojectname}.

If the master/main branch is the current branch then the menu has no commands to change the clone
directory. The browser will show those files that have been updated from a recent merge, and they can
individually be copied from the git branch to realign the two source trees with incremented Medley
version numbers. If the comparison is with a different branch, say the user’s current staging branch,
copying files from the working Medley to the git clone or deleting git files will set git up for future
commits.

Note that the menu item for deleting Medley files will cause all versions to be removed, not just the
latest one, to avoid the possibility that an earlier one is revealed. Deletion for Medley files is also
accomplished by renaming to a {Wprojectname}<deleted> subdirectory so that they can be

recovered if a deletion is in error. Files in the git-clone are removed from the file system immediately,
since git provides its own recovery mechanism for those files.

GITFNS does not (yet?) include functions for commits, pushes, or merge for updating the remote
repository. Those have to be done outside of Medley through the usual github interfaces, as guided by
the information provided by the comparisons.

