
23

en·vōs BACKGROUNDMENU

BACKGROUNDMENU

By: Mike Dixon

New Owner: Burwell (Burwell.pa@Xerox.com)

INTRODUCTION

If you love to load all those fun LispUsers packages but can’t deal with background menus that look

like this:

don’t despair! With just a few quick calls you can have a background menu that looks like this:

(don’t worry, they didn’t disappear, they’re just hiding under "Exec").

DESCRIPTION

BackgroundMenu defines several functions for rearranging your background menu to suit your taste.

24

en·vōs BACKGROUNDMENU

(BkgMenu.rename.item item newname) [Function]

changes the name of a background menu entry

(BkgMenu.move.item item superitem atend) [Function]

makes item a subitem of superitem. If atend it is placed after any subitems of superitem; otherwise it

is placed before them. If superitem is NIL item is placed at the top level of the menu.

(BkgMenu.reorder items superitem atend) [Function]

just like BkgMenu.move.item but moves a list of items. Useful for changing the order of the items in a

menu.

(BkgMenu.remove.item item) [Function]

throws item out of your background menu.

(BkgMenu.fixup) [Function]

BackgroundMenuTopLevelItems [Variable]

BackgroundMenuFixupMode [Variable]

each top level item which isn’t on the global BackgroundMenuTopLevelItems is made a subitem of

BackgroundMenuSuperItem. If BackgroundMenuFixupMode is ’top they’re added before any subitems

of BackgroundMenuSuperItem, if it’s ’bottom they’re added after, and if it’s NIL items moved from the

top are added at the top and items moved from the bottom are added to the bottom.

(BkgMenu.subitems item) [Function]

returns a list of the subitems of item (or the top level items, if item is NIL).

(BkgMenu.add.item item superitem atend) [Function]

adds a new menu item item as a subitem of superitem. If atend it is placed after any subitems of

superitem; otherwise it is placed before them. If superitem is NIL item is placed at the top level of the

menu

EXAMPLES

As an example of using BackgroundMenu, this is what I’ve got in my init file (which produces the

changes shown above) (note that i’ve already loaded LISTEN):

 (BkgMenu.rename.item "Lisp Listener" " Exec ")

(* "Lisp Listener" is just too long. the blanks before and after Exec are just there to
improve the spacing)

 (SETQ BackgroundMenuTopLevelItems ’(Idle Snap " Exec " Chat PSW TEdit))

 (SETQ BackgroundMenuSuperItem " Exec ")

 (BkgMenu.fixup)

(* Push everything i don’t use regularly under the now-renamed Lisp Listener)

 (BkgMenu.reorder.items BackgroundMenuTopLevelItems)

(* and put the top level items in the order i prefer)

If I later add more packages which add junk to the top level of my background menu, just calling

(BkgMenu.fixup) again will hide anything new under " Exec " with the rest of the junk.

25

en·vōs BACKGROUNDMENU

When any of the above functions (except BkgMenu.add.item) require you to specify an item, you can

usually just give a string with the menu entry (or an atom, which is coerced to a string). The case has

to be correct, and blanks have to be in the right place. The function will do a breadth first search of the

background menu and all its submenus to find such an entry. If for some reason you have the same

entry in more than one menu, you’ll have to disambiguate it. To do this, you pass a list for the item,

where the first thing in the list is the menu entry, and the rest of the list is a path through the tree to find

it. For instance, the item (one two three) means find an entry whose text is "three", then find an entry

in the tree underneath it whose text is "two", and the find an entry under that whose text is "one".

The item argument to BkgMenu.add.item is a standard menu item, i.e. a list of (label form help.string).

All of the functions return T if they were able to do as asked and NIL otherwise (you tried to do

something with a menu entry which isn’t there, or you tried to make a circular menu structure). The

only exception to this rule is BkgMenu.subitems, which as previously mentioned returns a list of the

subitems, or the atom NotAnItem if it’s given a nonitem.

