
289Lisp Library Modules, Medley Release 1.15, TEXTMODULES

TEXTMODULES

TEXTMODULES converts source code files from File Manager format to Common Lisp

style plain text and back again. When exporting to plain text, a small number of File

Manager coms types are supported. When importing from a plain text file, several

convenience features are available including comment upgrade and conversion of

specific named defmacros into defdefiners.

Note: The Text File Translator changes source code format only; this is not an

Interlisp to Common Lisp translator.

All symbols described in this section are in the TEXTMODULES package, nicknamed TM.

This section describes the load and make processes, and the static format of text files

and their File Manager counterparts. The File Manager counterparts are discussed in

increasing detail until their programmability is covered.

Overview

The Text File Translator supports the development of portable Common Lisp source

code in the Lisp Environment. It brings portable Common Lisp sources into the File

Manager without losing any of their contents. It also makes new text files based on the

File Manager’s "filecoms."

The original file’s function and ordering are retained, but exact formatting is not. The

pretty printer causes all comments and expressions on the text file to be uniformly

formatted.

Exporting a source file into text and back again will lose grouping of definitions under

their coms.

Installation

Load TEXTMODULES.DFASL from the library.

Dependencies

Special support for editing and printing of comments is required. This are provided by

the SEDIT-COMMONLISP file. Some caveats on the editing of presentations are

mentioned below.

The support file is automatically loaded by the TEXTMODULES file. SEDIT-COMMONLISP

cannot operate without TEXTMODULES and must be loaded by it or after it.

File Manager source files created with load-textmodule depend on having

TEXTMODULES and SEDIT-COMMONLISP loaded.

290 Lisp Library Modules, Medley Release 1.15, TEXTMODULES

TEXTMODULES

Programmer’s Interface

load-textmodule pathname &key module install package upgrade-comment-length

join-comments convert-loaded-files defdefiner-macros

[Function]

Like lisp:load; the file indicated by pathname is loaded, but in addition

filecoms ar created and other information is stored for the File Manager. Key

arguments are described below.

(See below under Text File Format for a description of the format of text files

which can be read by load-textmodule).

Local bindings of reader affecting variables are established and set to Common

Lisp defaults, except for the readtable.

A special readtable is used which creates internal representations for objects

normally lost during reading (see below under Presentation types).

If there are some simple forms to set up the read environment at the front of the

file, they are recognized and moved into a newly created makefile environment

(see below under Makefile Environment for a complete description of this).

Each form is read from the file (one at a time). If the form is recognized a

description of it is given to the File Manager and its definition is installed. If

the form is not recognized it is wrapped in a "top level form" filecom and then

installed by stripping presentation objects and evaluating.

defun in a let at top-level is treated like any top-level form. Such forms should

be edited directly in the filecoms. Not doing this can have curious

consequences, since calling ed on the function name will not modify the

definition in the let (which remains in the FILECOMS as a top level form).

No forms after the read environment forms should change the reader’s

environment.

When the file has been completely read its content description is given to the

File Manager. Also added to the content description are properties declaring its

il:filetype as :compile-file and makefile-environment as that of the text

file (whether given by setting forms at the front of the file or by default).

Several key options are available:

module A string or symbol used to create the symbol used as the

File Manager’s name of this module. Strings have their

case preserved. Symbols have their name strings taken.

Defaults to the uppercased root name of the path.

install T or NIL. Indicates whether the definitions in the file

should be installed in the running system. Any package

setup makes it mandatory to install the definitions in a

source file; e. g. since :INSTALL NIL means forms in the

file are not evaluated, any IN-PACKAGE form would not be

evaluated and the file would be read in the wrong package.

This can sometimes be worked around using the :PACKAGE

argument.

package A package name or package, defaults to USER. This is the

package the file will be read into.

291Lisp Library Modules, Medley Release 1.15, TEXTMODULES

TEXTMODULES

upgrade-comment-length A number or NIL. Defaults to the value of *upgrade-

comment-length* (which defaults to 40). The length, in

characters, at which single semicolon comments are

upgraded to double semicolon comments.

join-comments T or NIL. Defaults to the value of *join-comments*

(which defaults to T). Causes comments of the same level

in the coms to be joined together. This makes for more

efficient editor operation, but loses all formatting inside of

comments; e.g. inter-comment line breaks are not

preserved.

convert-loaded-files T, :QUERY or NIL. Defaults to the value of *convert-

loaded-files* (which defaults to :QUERY). If a REQUIRE

or LOAD statement is noticed at top level a recursive call to

LOAD-TEXTMODULE will be made. With :QUERY turned on

the user is first prompted. If the pathname specified in the

LOAD or REQUIRE is computed based on variables in the file

being loaded :INSTALL must be true. Complex systems

that contain special loading functions will not be handled

by this mechanism.

defdefiner-macros A list of defmacro names. Defaults to the value of

defdefiner-macros (which defaults to NIL). If a top-

level defmacro is found whose name is on this list, the

defmacro will be translated into an IL:FUNCTIONS

defdefiner form. The defdefiner form then creates a macro

that builds definers. Definers are the basic definition units

maintained by the File Manager. DEFUN is itself a

defdefiner macro. A particular DEFUN form is a definer for

the named function (see the Lisp Release Notes, 4. Changes

to Interlisp-D in Lyric/Medley, Section 17.8.2 Defining

New File Manager Types, for more information on the

defdefiner form).

Warning: Names on this list must be in the correct

package, i.e. the one the file will be read in. A

typical way to use this feature is:

• Examine the text source file for DEFMACRO forms that

are used to create defdefiners.

• Make the package which the text file’s IN-PACKAGE

expression will later find.

• Do LOAD-TEXTMODULES, giving the :DEFDEFINER-

MACROS key argument a list of fully package qualified

symbols naming the defdefiners contained in the file.

make-textmodule module &key type pathname filecoms width [Function]

The File Manager’s description of the file module is used to create a text file.

module may be provided as either a string or a symbol. A string’s case will be

preserved. A symbol’s name string is used. Keyword arguments are described

below.

(See below under File manager description of contents for a description of

filecoms that can be written out by make-textmodule.)

292 Lisp Library Modules, Medley Release 1.15, TEXTMODULES

TEXTMODULES

Local bindings of printer affecting variables are established and set to Common

Lisp defaults, except for the readtable.

The file’s environment is written out, based on its makefile-environment

property (see below under File manager source file format for ways of

expressing the environment).

The specially made description of the file’s contents (from the File Manager) is

iterated over to write out each form in the file.

Several key options are availible:

type A string, defaults to ".LISP". The file type extension to be used

on the text file being written.

pathname A pathname, defaults to the module name merged with the

extension and *default-pathname-defaults*. The file which

will contain the new text file.

filecoms A list of file commands may be supplied here. Defaults to the

commands for the File Manager file named by module.

width A positive integer, defaults to 80. The width, in characters, of

lines in the text file. Used by the prettyprinting routines for

formatting.

Variables that Control Loading

join-comments [Variable]

T or NIL. Defaults to T. Causes comments of the same level in the file coms to

be joined together. This makes for more efficient editor operation, but loses any

formatting inside of comments, e.g. inter-comment line breaks are not

preserved.

convert-loaded-files [Variable]

NIL, :QUERY or T. Defaults to :QUERY. Controls whether a LOAD or REQUIRE

statement at top level in a loaded text file will cause the referred to file to be

recursively load-textmodule’d. If the pathname specified in the LOAD or

REQUIRE is computed based on variables in the file being loaded the :INSTALL

argument to load-textmodule must be true.

upgrade-semicolon-comments [Variable]

NIL or a positive integer. Defaults to 40. Controls whether and at what length

(in characters) a single semicolon comment is upgraded to a double semicolon

comment. NIL inhibits upgrading.

defdefiner-macros [Variable]

A list of defmacro names. Defaults to NIL. If a top-level defmacro is found by

LOAD-TEXTMODULES whose name is on this list, the defmacro will be translated

into an IL:FUNCTIONS defdefiner form. The defdefiner form creates a macro

that builds definers. Definers are the basic definition units maintained by the

File Manager. DEFUN is itself a defdefiner macro. A particular DEFUN form is a

definer for the named defun (see the Lisp Release Notes, 4. Changes to Interlisp-

D in Lyric/Medley, Section 17.8.2 Defining New File Manager Types, for more

information on the defdefiner form).

Warning: Names on this list must be in the correct package, i.e. the one the file

will be read in. A typical way to use this feature is:

293Lisp Library Modules, Medley Release 1.15, TEXTMODULES

TEXTMODULES

• Examine the text source file for DEFMACRO forms that are used to

create defdefiners.

• Make the package which the file’s IN-PACKAGE expression will

later find.

• Do LOAD-TEXTMODULES giving the :DEFDEFINER-MACROS

keyword argument a list of fully package qualified symbols naming

the defdefiners contained in the file.

Text File Format

TextModules creates and understands the format of portable pure Common Lisp text

files with very simple and constrained package setup information. The overall form of

these files is described here as a guide to what sort of files may be imported.

An EMACS style mode line comment may optionally be present as the file’s first item.

It corresponds to the makefile-environment in the file manager.

; -*- Mode: LISP; Package: (FOO GLOBAL 1000); Base:10 -*-

mode For some versions of the EMACs editor this will declare the

major mode, which arranges key to command bindings for LISP

instead of documents.

package Name, used packages and initial space for symbols.

base Numeric "ibase"

The mode line is generated by TextModules and is provided purely as a convenience in

transporting code to EMACS based environments. It has no effect on the File Manager.

The makefile-environment is actually instated using expressions directly following the

mode line.

The Common Lisp community has agreed that portable text files will use only one

reader environment and hence not switch packages or alter the readtable partway

through. TextModules assumes that the reader environment is set up by the seven

(plus two) standard environment modifying forms. These forms are recognized by the

TextModules parser only if they appear at the front of the file and in order (comments

being ignored):

Put provide

In in-package

Seven shadow

Extremely export

Random require (or il:filesload)

User use-package

Interface import

... shadowing-import

... setf *read-base*
Commands Contents of module

Portable files may optionally add *read-base* setting and shadowing-import

expressions. Also, il:filesload may be used in place of require, when a Lisp file (not

containing a provide form) must be loaded.

Any one of these forms is optional, but they must appear first in the file (and in order)

to be parsed into a makefile-environment when load-textmodule is called.

294 Lisp Library Modules, Medley Release 1.15, TEXTMODULES

TEXTMODULES

Warning: this software applies heuristics to the package forms to make them

independent of the package environment they are read in. These may not work and it is

recommended that the makefile-environment be checked for correctness after load-

textmodule brings in the file. Complex package setups will almost certainly not be

handled correctly and should be created in a separate file which the main text file can

REQUIRE.

The contents of a text file are a sequence of forms. Certain forms are understood by the

File Manager and hence specially recognized. These recognized forms include:

Comments which are translated into Interlisp style comments

Definers such as defun or defvar

eval-when which is translated into a File Manager eval-when

Read time conditionals which may become "unread objects"

All other forms are considered top level forms and simply saved as is.

Definers hold onto presentations, e.g., read time conditionals, as well as comments.

Comments and presentations are always available to be edited.

To see if something is a definer form, examine the property list of its name (like defun).

Use the Exec’s pl (print property list) command to look for the property :definer-for.

Note that only the above kinds of forms will be recognized by the TextModules parser

on a portable Common Lisp file.

There are a few somewhat common problems that can arise when importing a text file.

Chief among these are "bootstrapping definitions" and circularity.

Known Problems

Occasionally, when starting up a complex software system, it is useful to install a

temporary definition until the mechanism required by the actual definition is in place.

This can cause a definition by the same name to appear in more than one place in a text

file. The Textmodules system will simply use the latter definition in the file, causing

the next loading of it to fail for lack of the lost bootstrap definition. It is recommended

that bootstrap definitions be made into "top level forms", e.g. a DEFUN can become a

(SETF (SYMBOL-FUNCTION <name>) ...) form, DEFPARAMETER can become (SETF

<name> ...), etc.

Also, some styles of programming may encourage creation of circular structure.

Textmodules must map over top level forms to install presentations that contain

comments, etc. Circular structures can cause these routines to fill memory with list

structure.

File Manager Source Files

Unlike standard Common Lisp, the File Manager is designed to keep all of a file’s

contents resident in memory as structure, rather than text. This scheme allows very

fast update and editing of definitions. To maintain its own source files the File

Manager keeps descriptions of the format (makefile-environment) and contents

(filecoms) of a file.

The makefile-environment of the file is used to note the readtable and package the rest

of the file to be read and printed in, and any file dependencies.

295Lisp Library Modules, Medley Release 1.15, TEXTMODULES

TEXTMODULES

The filecoms maintain a description of the top-level defining forms in a file, like

function and variable definitions. They also store plain top-level forms. Within any

form there can appear lisp data, like vectors or "number in a radix." How these are

read and printed are controlled by presentation types (described separately; see below).

It is important to separate the environment of the file from its contents because the

File Manager (not TextModules) first reads all the forms in the file, and then evaluates

them. Text based source files sometimes change the package as needed. This cannot

work for the File Manager since the file’s forms are all read and then executed, i.e. the

package changes would not occur until after the entire file had been read, and forms

after any IN-PACKAGE form would have been read incorrectly.

The File Manager first reads the makefile-environment forms in a well known

environment (INTERLISP package, INTERLISP readtable) evaluates them to find the

environment of the rest of the source file, then reads the rest of the source file in that

environment. This is why the package environment setup forms are so carefully parsed

out of text files being imported into the environment.

File Manager source files created by load-textmodule depend on both the

TEXTMODULES & SEDIT-COMMONLISP modules. These must be loaded before

source files created with them can be reloaded.

File Manager Source File Format

The makefile-environment of a "managed" source file is used to control both how the

exported text file and managed source files are printed. It is kept in a property named

il:makefile-environment on the symbol with the root name of the file (in the

INTERLISP package). This property is automatically generated when a portable text

file is imported. The property is itself a plist containing :readtable, :package and :base

values. The readtable used is called "LISP-FILE", a readtable defined by the

TextModules program (hence File Manager source files created by load-textmodules

depend on TextModules). The part of the makefile-environment of main interest is the

:package. It sets the package in which the exported text file is printed.

Three forms of the makefile-environment’s :package property are recognized.

• a string or symbol naming a package

• a defpackage statement

• a let statement

A string or symbol is simply taken to name a package.

A defpackage statement will have its portable components translated into a let

statement as described below.

A let used for the makefile-environment should bind *package* and contain some form

of the standard seven package and module setup forms (See above under "Text file

format"). It should finally return the altered value of *package*. For example:

(let ((*package* *package*))

 ...environment setup forms.

 package

)

The forms in this expression must be written in a standard, pre-existing package, such

as USER or XCL-USER. This is to break the circularity of writing a package defining

form in the package it defines.

The package defining expressions in the let should follow all of the rules for portable

text files (See above under "Text file format"), e.g., they should appear in order.

296 Lisp Library Modules, Medley Release 1.15, TEXTMODULES

TEXTMODULES

File Manager Description of Contents

When a portable text file is imported its contents are parsed to produce the File

Manager’s filecoms (File Commands). File commands are a high-level way of viewing

and controlling the ordering of definitions in a file. The following describes the filecoms

produced when a text file is imported.

Forms on the file are either recognized as top level defining forms or wrapped in a "top

level form" filecom. Several forms are recognized by TextModules itself and others can

be added (see below under "Making new specifiers"). The constructs that recognize

filecoms, both to export and import plain text, are called specifiers.

The following are placed in the filecoms based on the parsed contents of the text file:

(il:* type string) Contains a comment string. type is a symbol of one, two,

three or four semicolons, or a vertical bar. This handles

top level single, double or triple semicolon comments, as

well as balanced comments. When viewed in SEdit these

display in real comment format, instead of the internal

list representation.

(eval-when when . filecoms) Wrapper with an evaluation time and containing more

filecoms.

definers All definers are recognized, e.g. DEFUN, DEFMACRO,

DEFVAR, DEFPARAMETER, DEFSTRUCT, etc. The definer

specifier also converts DEFMACRO forms on the

defdefiner-macros list to defdefiners during loading,

and vice versa on printed to a text file.

(il:p (top-level-form form)) Top level form wrapper with a macro that calls the

presentation translator. This filecom contains

expressions which were not recognized and must be

evaluated at load time. This kind of filecom also handles

top level occurances of conditional read and read time

evaluations (hash comma and hash dot). The top-level-

form specifier also looks for LOADed or REQUIREd files

and, depending on the variable *convert-loaded-files*,

attempts to convert the loaded files as well.

When the file is loaded and before evaluating these forms

any presentation objects in them are stripped out (as for

comments) or installed (as for read time evaluations).

This is done by the TOP-LEVEL-FORM macro, which

dispatches to the translation functions for the particular

presentation objects. i.e., this allows comments to appear

anywhere in the forms and not affect evaluation.

The above coms are created when a text file is imported.

There are also a few specifiers provided to export filecoms,

but not create them on import. These are convenient for

exporting typical File Manager files. They are:

(il:coms . filecoms) Used to group together definitions in a File Manager

source file. The filecoms are dumped onto the text file in

order. No information is placed on the resulting text file

to preserve the grouping of the filecoms; if the exported

text file is later imported the coms grouping will not

reappear.

297Lisp Library Modules, Medley Release 1.15, TEXTMODULES

TEXTMODULES

(il:vars . descriptors) As described in the IRM. The descriptors are exported as

defparameter forms. If the exported text file is later

imported these vars coms will reappear under variables

coms.

(il:initvars . descriptors) As described in the IRM. The descriptors are exported as

defvar forms. If the exported text file is later imported

these initvars coms will reappear under variables coms.

(il:constants . descriptors) As described in the IRM. The descriptors are exported as

defconstant forms. If the exported text file is later

imported these constants coms will reappear under

variables coms.

(il:props . descriptors) As described in the IRM. The descriptors are exported as

(setf (getf ...) ...) forms. If the exported text file is later

imported these props coms will reappear under p coms

(top-level forms).

(il:prop props . symbols) As described in the IRM. The props and symbols

descriptors are used to generate forms for export, e.g.

(setf (getf ’foo ’bar) 21). If the exported text file is later

imported these prop coms will reappear under p coms

(top-level forms).

(il:files . items) As described in the IRM. The items are used to generate

forms for export, e.g. (load "Foo.lisp"). All options except

noerror are ignored, the latter will cause the :if-does-

not-exist nil key argument to be included in the load

expression. If the exported text file is later imported

these files coms will reappear under p coms (top-level

forms).

Making New Specifiers

Specifiers are the glue that relate forms on a plain text file to filecoms in a File

Manager source file. They can be considered addenda to the filepkgtype mechanism of

the File Manager.

specifiers [Variable]

A list of specifiers (its default contents are described below). New specifiers

should be added to this list. This list is searched linearly; its order is significant

mostly in that the default top-level form recognizer must always be last.

make-specifier &key name filecom-p form-p add-form install-form print-filecom [Func

tion]

This function creates new specifiers for inclusion on the *specifiers* list. A

specifier maps between the forms in a text file’s contents and filecoms. It is the

basis for importing and exporting top-level forms. Specifiers can be nested, as

for EVAL-WHEN.

To do all of this a specifer contains functions that recognize forms of its kind on

the text file and coms in filecoms, as well as functions that add the definition to

the filecoms and install the definition as the one to be used at runtime. Finally,

there is a function which prints a form onto a text file based on a com on the

fileoms.

298 Lisp Library Modules, Medley Release 1.15, TEXTMODULES

TEXTMODULES

name A string naming the specifier.

filecom-p Predicate on FILECOM which returns true if it is the one

used to represent this specifier in the filecoms of a

managed file.

form-p Predicate on FORM, a form read from a text file being

imported, which returns true if this is the specifier for the

definition in FORM.

add-form Function of FORM and FILECOMS. FORM is a form

read from a text file being imported, and which has

already been confirmed with the form-p method. Should

make the definition in FORM available (editable) in the

programming environment (File Manager). It should

make the definition editable and add a filecom for FORM

to the FILECOMS description. It should return the new

FILECOMS description. To add-form runs of subforms

use add-form and form-specifier (see below).

Care should be used when making a definition editable.

The simplest instance of this occurs when the FORM’s

definition is a definer. In this case its evaluation may be

wrapped in a binding of il:dfnflg to il:prop to ensure

that the definition form goes into the table of current

definitions without being evaluated.

Adding a filecom to the FILECOMS should be done in a

way that preserves ordering. The simplest way to do this

is to append the new filecom to the end of the current

FILECOMS.

install-form Function of a FORM which makes the definition in FORM

the current one to be used in execution. If the defining

mode flag indicates that the file is being loaded for editing

only this function will not be called during loading of the

form (il:dfnflg is set by the :install option to load-

textmodule). To install runs of subforms use install-

form and form-specifier (see below).

Care should be used when making a definition executable.

The simplest instance of this occurs when the FORM’s

definition is a definer. In this case its evaluation may be

wrapped in a binding of il:dfnflg to t to ensure that

the definition form is actually evaluated.

print-filecom Function of FILECOM and STREAM which should generate

a new line and pretty print a form, representing the

FILECOM, onto the stream. To print runs of subforms use

print-filecom and filecom-specifier (see below).

The semantics of the add-form and install-form methods

remove some confusion between loading a definition into

memory for editing (loading PROP) and installing that

definition as the currently executable one (loading T).

The add-form method makes the definition editable and

the install-form makes it executable.

The following functions are used to handle subforms EG. In the eval-when specifier

there are subforms that need to be parsed.

299Lisp Library Modules, Medley Release 1.15, TEXTMODULES

TEXTMODULES

form-specifier form [Function]

Searches the current list of specifiers in an attempt to recognize form (as read

from a text file being imported). Returns a specifier for form. If none is found a

warning is signalled and a "do nothing" specifier is returned.

filecom-specifier filecom [Function]

Searches the current list of specifiers in an attempt to recognize filecom (as

found in the filecoms of the managed file). Returns a specifier for filecom. If

none is found a warning is signalled and a "do nothing" specifier is returned.

add-form form filecoms &optional specifier [Function]

Adds the form to the filecoms description based on the add method in the

specifier. If specifier is not provided form-specifier will be used to get it

from form. Returns the new filecoms. nil is used as an empty contents

description.

install-form form &optional specifier [Function]

If the current definition mode (il:dfnflg) allows it, installs the form as

current and executable based on the specifier. If specifier is not provided form-

specifier will be used to get it from form.

print-filecom filecom stream &optional specifier [Function]

Prints a new line on stream and then pretty prints a form representing the

filecom onto the stream. If specifier is not provided filecom-specifier will

be used to get it from filecom.

Presentation Objects

Presentation objects represent things that normally disappear during reading, like

comments or numbers written in a particular base. Each presentation object must be

capable of being read from a text file, edited with SEdit, installed as it would be when

normally read, and printed to a text file in its original form.

Presentations Supported by Lisp

Many presentations are already supported by SEdit :

#\character Character object

#:symbol Uninterned symbol

#’function Hash quote function abbreviation

; comment

;; comment

;;; comment

;;;; comment Semicolon comments. Internal formatting is preserved

when these are imported, including CRs and tabs, etc.

Adjacent comments are not smashed together so that line

breaks are preserved. A single leading space in a

comment is ignored, since comments are always printed

with a single leading space.

These comment types are represented internally in the

same way as in Lisp, i.e., a list beginning with the symbol

300 Lisp Library Modules, Medley Release 1.15, TEXTMODULES

TEXTMODULES

IL:*, following by a symbol (interned in the INTERLISP

package) containing one through four semicolons.

#|comment|# A balanced comment. Imported and exported by

TextModules. Directly supported by SEdit as though it

were a "level 5" semicolon comment.

This comment type is represented internally in a manner

similar to semicolon comments, but where the symbol

containing semicolons is replaced by a symbol whose

name is the vertical bar character.

Presentations Supported by SEDIT-COMMONLISP

Several presentations are specially supported by SEDIT-COMMONLISP. Any of these

can be created using the following commands in SEdit:

Read time conditionals Control-N Hash minus

Control-P Hash plus

Read time evaluation Control-Q Hash dot

Load time evaluation Control-F Hash comma

Octal notation Control-I Hash "O"

Hexidecimal notation Control-J Hash "X"

Binary notation Control-K Hash "B"

#+feature form

#-feature form Read time conditionals.

A conditional expression can be either unread or read

depending on whether the truth of its features expression

and sign parse true (see Common Lisp, the Language).

Read conditional expressions are stored as structure.

Unread conditional expressions are stored as strings due

to the potential inclusion of, e.g., numbers of higher

precision, symbols in unknown packages, or the inclusion

of unknown reader macros.

Unread read time conditionals are read by remembering

file position, doing a read suppress read, backing up to the

original position and saving all the characters between in

a string. This means that streams from which conditional

read presentations are read must be capable of random

access (the TTY is not).

These are represented by hash-plus and hash-minus

structures.

Editing of read time conditional presentations is not quite

WYSIWYG. Feature symbols should always be given as

keywords (this is done implicitly by the lisp reader, but

not in SEdit) and unread forms appear in strings and

must be edited as such.

#.form Read time evaluation. Hash dot is represented by the

hash-dot presentation.

#.form Load time evaluation. Hash comma is represented by the

hash-comma structure.

#Orational

301Lisp Library Modules, Medley Release 1.15, TEXTMODULES

TEXTMODULES

 #Xrational

#Brational Rational representations (Octal, heXidecimal, and

Binary). These are represented by the hash-o, hash-x and

hash-b structures.

Presentations Not Directly Supported

It is not possible to directly edit the following presentations in SEdit:

#(contents) Vectors

#rankA(contents) Arrays

#S(name field1 value1 ...) Structures

#*1010101 Bit vectors

Any of these may be edited by opening an inspector from SEdit:

selecting the object and using the Meta-E command on it. Any

of these may be created in SEdit by inserting the appropriate

make- expression, selecting it, and using the Meta-Z command

with cl:eval as the mutating function.

Presentations Not Supported

The following standard Common Lisp presentations are not supported by either SEdit

or TextModules:

#n=object and #n# Object tag and reference notation

#baseRnumber Radix notation

302 Lisp Library Modules, Medley Release 1.15, TEXTMODULES

TEXTMODULES

[This page intentionally left blank]

