
183Lisp Library Modules, Medley Release 1.0, MATCH

MATCH

Match provides a fairly general pattern match facility that allows you to specify certain
tests that would otherwise be clumsy to write, by giving a pattern which the datum is
supposed to match.

Essentially, you write "Does the (expression) X look like (the pattern) P?"

For example, (MATCH X WITH (& ’A -- ’B)) asks whether the second element of X

is an A, and the last element a B.

Requirements

DWIM must be enabled.

Installation

Load MATCH.LCOM from the library.

Programmer’s Interface

(MATCH OBJECT WITH PATTERN) [CLISP operator]

Matches the OBJECT with the PATTERN.

The implementation of the matching is performed by computing (once) the
equivalent Lisp expression whichperforms the indicated operation, and
substituting this for the pattern (rather than by invoking each time a general
purpose capability such as that found in the AI languages FLIP or PLANNER).

For example, the translation of

(MATCH X WITH (& ’A -- ’B)) is:

(AND (EQ (CADR X) ’A)

 (EQ (CAR (LAST (CDDR X))) ’B))

Thus the pattern match facility is really a pattern match compiler, and the
emphasis in its design and implementation has been more on the efficiency of
object code than on generality and sophistication of its matching capabilities.
The goal was to provide a facility that could and would be used even where
efficiency was paramount, e.g., in inner loops. Wherever possible, already
existing Lisp functions are used in the translation, e.g., the translation of ($ ’A

$) uses MEMB, ($ (’A $) $) uses ASSOC, etc.

The syntax for pattern match expressions is (MATCH FORM WITH PATTERN),

where PATTERN is a list as described below. If FORM appears more than once
in the translation, and it is not either a variable or an expression that is easy to
(re)compute, such as (CAR Y), (CDDR Z), etc., a dummy variable is generated

and bound to the value of FORM so that FORM is not evaluated a multiple
number of times.

184 Lisp Library Modules, Medley Release 1.0, MATCH

MATCH

For example, the translation of

(MATCH (FOO X) WITH ($ ’A $))

is simply

(MEMB ’A (FOO X)),

while the translation of

(MATCH (FOO X) WITH (’A ’B --)) is:

[PROG ($$2)

(RETURN

(AND (EQ (CAR (SETQ $$2 (FOO X))) ’A)

 (EQ (CADR $$2) ’B]

In the interests of efficiency, the pattern match compiler assumes that all lists
end in NIL, i.e., there are no LISTP checks inserted in the translation to check

tails.

For example, the translation of

(MATCH X WITH (’A & --))

is

(AND (EQ (CAR X) (QUOTE A)) (CDR X)),

which matches with (A B) as well as (A . B).

Similarly, the pattern match compiler does not insert LISTP checks on
elements, e.g.,

(MATCH X WITH ((’A --) --))

translates as

(EQ (CAAR X) ’A),

and

(MATCH X WITH (($1 $1 --) --))

translates as

(CDAR X)

Note that you can explicitly insert LISTP checks yourself by using @, as

described below, e.g.,

(MATCH X WITH (($1 $1 --)@LISTP --))

translates as

(CDR (LISTP (CAR X)))

PATLISPCHECK [Variable]

The insertion of LISTP checks for ELEMENTS is controlled by the variable
PATLISTPCHECK. When PATLISTPCHECK is T, LISTP checks are inserted, e.g.,

(MATCH X WITH ((’A --) --))

translates as:

(EQ (CAR (LISTP (CAR (LISTP X)))) ’A)

185Lisp Library Modules, Medley Release 1.0, MATCH

MATCH

PATLISTPCHECK is initially NIL. Its value can be changed within a particular

function by using a local CLISP declaration (see IRM).

PATVARDEFAULT [Variable]

Controls the treatment of !ATOM patterns (see below).

If PATVARDEFAULT is ’ or QUOTE, !ATOM is treated the same as

’ATOM.

If PATVARDEFAULT is = or EQUAL, same as =ATOM.

If PATVARDEFAULT is == or EQ, same as ==ATOM.

If PATVARDEFAULT is _ or SETQ, same as ATOM_&.

PATVARDEFAULT is initially ’ (quote).

PATVARDEFAULT can be changed within a particular function by using a local

CLISP declaration (see IRM).

Note: Numbers and strings are always interpreted as though PATVARDEFAULT

were =, regardless of its setting. EQ, MEMB, and ASSOC are used for

comparisons involving small integers.

Note: Pattern match expressions are translated using the DWIM and CLISP
facilities, using all CLISP declarations in effect (standard/fast/undoable;
see IRM).

Pattern Elements

A pattern consists of a list of pattern elements. Each pattern element is said to match
either an element of a data structure or a segment.

For example, in the TTY editor’s pattern matcher (see IRM), "--" matches any arbitrary

segment of a list, while & or a subpattern match only one element of a list. Those

patterns which may match a segment of a list are called segment patterns; those that
match a single element are called element patterns.

Element Patterns

There are several types of element patterns, best given by their syntax:

$1 or & Matches an arbitrary element of a list.

’EXPRESSION Matches only an element which is equal to the given expression
e.g., ’A, ’(A B).

EQ, MEMB, and ASSOC are automatically used in the translation

when the quoted expression is atomic, otherwise EQUAL,

MEMBER, and SASSOC.

=FORM Matches only an element which is EQUAL to the value of FORM;

e.g., =X, =(REVERSE Y).

==FORM Same as =, but uses an EQ check instead of EQUAL.

ATOM The treatment depends on setting of PATVARDEFAULT (see

above).

(PATTERN1 ... PATTERNn) Matches a list which matches the given patterns; e.g.,

186 Lisp Library Modules, Medley Release 1.0, MATCH

MATCH

(& &), (-- ’A).

ELEMENT-PATTERN@FN Matches an element if ELEMENT-PATTERN matches it,

and FN (name of a function or a LAMBDA expression)
applied to that element returns non-NIL.

For example, &@NUMBERP matches a number, and (’A --

)@FOO matches a list whose first element is A and for

which FOO applied to that list is non-NIL.

For simple tests, the function-object is applied before a
match is attempted with the pattern, e.g.,

((-- ’A --)@LISTP --)

translates as

(AND (LISTP (CAR X)) (MEMB ’A (CAR X))),

not the other way around. FN may also be a FORM in
terms of the variable @, e.g., &@(EQ @ 3) is equivalent to

=3.

* Matches any arbitrary element. If the entire match

succeeds, the element which matched the * is returned as
the value of the match.

Note: Normally, the pattern match compiler constructs
an expression whose value is guaranteed to be non-
NIL if the match succeeds and NIL if it fails.

However, if a * appears in the pattern, the
expression generated could also return NIL if the

match succeeds and * was matched to NIL.

For example,

(MATCH X WITH (’A * --))

translates as

(AND (EQ (CAR X) ’A) (CADR X)),

so if X is equal to (A NIL B) then (MATCH X WITH (’A * --

)) returns NIL even though the match succeeded.

~ELEMENT-PATTERN Matches an element if the element is not (~) matched by

ELEMENT-PATTERN, e.g., ~’A, ~=X, ~(-- ’A --).

(*ANY* ELEMENT-PATTERN ELEMENT-PATTERN ...)

Matches if any of the contained patterns match.

Segment Patterns

$ or -- Matches any segment of a list (including one of zero length).

The difference between $ and -- is in the type of search they
generate.

For example,

(MATCH X WITH ($ ’A ’B $))

translates as

187Lisp Library Modules, Medley Release 1.0, MATCH

MATCH

(EQ (CADR (MEMB ’A X)) ’B)

188 Lisp Library Modules, Medley Release 1.0, MATCH

MATCH

whereas

(MATCH X WITH (-- ’A ’B $))

translates as:

[SOME X (FUNCTION (LAMBDA ($$2 $$1)

 (AND (EQ $$2 ’A)

 (EQ (CADR $$1) ’B]

Thus, a paraphrase of ($ ’A ’B $) would be "Is B the element

following the first A?", whereas a paraphrase of (-- ’A ’B $)

would be "Is there any A immediately followed by a B?"

Note that the pattern using $ results in a more efficient search

than that using --. However, ($ ’A ’B $) does not match

with (X Y Z A M O A B C), but (-- ’A ’B $) does.

Essentially, once a pattern following a $ matches, the $ never

resumes searching, whereas -- produces a translation that

always continues searching until there is no possibility of
success. However, if the pattern match compiler can deduce
from the pattern that continuing a search after a particular
failure cannot possibly succeed, then the translations for both --

and $ is the same.

For example, both

(MATCH X WITH ($ ’A $3 $))

and

(MATCH X WITH (-- ’A $3 --))

translate as

(CDDDR (MEMB (QUOTE A) X))

because if there are not three elements following the first A,

there certainly will not be three elements following subsequent
A’s, so there is no reason to continue searching, even for --.

Similarly, ($ ’A $ ’B $) and (-- ’A -- ’B --) are

equivalent.

$2, $3, etc. Matches a segment of the given length.

Note that $1 is not a segment pattern.

!ELEMENT-PATTERN Matches any segment which ELEMENT-PATTERN would

match as a list.

For example, if the value of FOO is (A B C), !=FOO matches

the segment ... A B C ... etc.

Note: Since ! appearing in front of the last pattern specifies a

match with some tail of the given expression, it also
makes sense in this case for a ! to appear in front of a

pattern that can only match with an atom, e.g., ($2

!’A) means match if CDDR of the expression is the atom

A.

189Lisp Library Modules, Medley Release 1.0, MATCH

MATCH

Similarly,

(MATCH X WITH ($! ’A))

translates to

(EQ (CDR (LAST X)) ’A).

!ATOM The treatment depends on setting of PATVARDEFAULT.

If PATVARDEFAULT is ’ or QUOTE, same as !’ATOM (see above

discussion).

If PATVARDEFAULT is = or EQUAL, same as !=ATOM.

If PATVARDEFAULT is == or EQ, same as !==ATOM.

If PATVARDEFAULT is _ or SETQ, same as ATOM_$.

. The atom "." is treated exactly like "!". In addition, if a pattern

ends in an atom, the "." is first changed to "!", e.g., ($1 . A)

and ($1 ! A) are equivalent, even though the atom "." does

not explicitly appear in the pattern.

One exception where "." is not treated like "!" is when "."

preceding an assignment does not have the special
interpretation that "!" has preceding an assignment (see below).

For example,

(MATCH X WITH (’A . FOO_’B))

translates as:

(AND (EQ (CAR X) ’A)

 (EQ (CDR X) ’B)

 (SETQ FOO (CDR X)))

but

(MATCH X WITH (’A ! FOO_’B))

translates as:

(AND (EQ (CAR X) ’A)

 (NULL (CDDR X))

 (EQ (CADR X) ’B)

 (SETQ FOO (CDR X)))

SEGMENT-PATTERN@FUNCTION-OBJECT

Matches a segment if the segment-pattern matches it, and the
function object applied to the corresponding segment (as a list)
returns non-NIL.

For example, ($@CDDR ’D $) matches (A B C D E) but not

(A B D E), since CDDR of (A B) is NIL.

Note: An @ pattern applied to a segment requires computing

the corresponding structure (with LDIFF) each time the
predicate is applied (except when the segment in
question is a tail of the list being matched).

190 Lisp Library Modules, Medley Release 1.0, MATCH

MATCH

Assignments

Any pattern element may be preceded by "VARIABLE_", meaning that if the match

succeeds (i.e., everything matches), VARIABLE is set to the thing that matches that
pattern element.

For example, if X is (A B C D E), (MATCH X WITH ($2 Y_$3)) sets Y to (C D E).

Note that assignments are not performed until the entire match has succeeded, so
assignments cannot be used to specify a search for an element found earlier in the
match. For example, (MATCH X WITH (Y_$1 =Y --)) does not match with (A A B

C ...), unless, of course, the value of Y was A before the match started. This type of

match is achieved by using place-markers, described below.

If the variable is preceded by a !, the assignment is to the tail of the list as of that point

in the pattern, i.e., that portion of the list matched by the remainder of the pattern.

For example, if X is (A B C D E), (MATCH X WITH ($!Y_’C ’D $)) sets Y to (C

D E), i.e., CDDR of X. In other words, when ! precedes an assignment, it acts as a

modifier to the _, and has no effect whatsoever on the pattern itself, e.g., (MATCH X

WITH (’A ’B)) and (MATCH X WITH (’A !FOO_’B)) match identically, and in the

latter case, FOO is set to CDR of X.

Note: *_PATTERN-ELEMENT and !*_PATTERN-ELEMENT are acceptable, e.g.,

(MATCH X WITH ($ ’A *_(’B --) --))

translates as:

[PROG ($$2) (RETURN

 (AND (EQ (CAADR (SETQ $$2 (MEMB ’A X))) ’B)

 (CADR $$2]

Place Markers

Variables of the form #N, where N is a number, are called place markers, and are
interpreted specially by the pattern match compiler. Place markers are used in a
pattern to mark or refer to a particular pattern element. Functionally, they are used
like ordinary variables, i.e., they can be assigned values, or used freely in forms
appearing in the pattern.

For example,

(MATCH X WITH (#1_$1 =(ADD1 #1)))

matches the list (2 3).

However, they are not really variables in the sense that they are not bound, nor can a
function called from within the pattern expect to be able to obtain their values. For
convenience, regardless of the setting of PATVARDEFAULT, the first appearance of a

defaulted place-marker is interpreted as though PATVARDEFAULT were _.

Thus the above pattern could have been written as

(MATCH X WITH (1 =(ADD1 1))).

Subsequent appearances of a place-marker are interpreted as though PATVARDEFAULT

were =.

191Lisp Library Modules, Medley Release 1.0, MATCH

MATCH

For example,

(MATCH X WITH (#1 #1 --))

is equivalent to

(MATCH X WITH (#1_$1 =#1 --))

and translates as

(AND (CDR X) (EQUAL (CAR X) (CADR X))

Note that (EQUAL (CAR X) (CADR X)) would incorrectly match with (NIL).

Replacements

The construct PATTERN-ELEMENT_FORM specifies that if the match succeeds, the
part of the data that matched is to be replaced with the value of FORM.

For example, if X =(A B C D E), (MATCH X WITH ($ ’C $1_Y $1)) replaces the

third element of X with the value of Y. As with assignments, replacements are not

performed until after it is determined that the entire match is successful.

Replacements involving segments splice the corresponding structure into the list being
matched, e.g., if X is (A B C D E F) and FOO is (1 2 3), after the pattern (’A

$_FOO ’D $) is matched with X, X is (A 1 2 3 D E F), and FOO is EQ to CDR of X, i.e.,

(1 2 3 D E F).

Note that ($ FOO_FIE $) is ambiguous, since it is not clear whether FOO or FIE is the

pattern element, i.e., whether _ specifies assignment or replacement.

For example, if PATVARDEFAULT is =, this pattern can be interpreted as ($ FOO_=FIE

$), meaning search for the value of FIE, and if found set FOO to it, or ($ =FOO_FIE $)

meaning search for the value of FOO, and if found, store the value of FIE into the

corresponding position. In such cases, you should disambiguate by not using the
PATVARDEFAULT option, i.e., by specifying ’ or =.

Note: Replacements are normally done with RPLACA or RPLACD. You can specify that

/RPLACA and /RPLACD should be used, or FRPLACA and FRPLACD, by means of

CLISP declarations (see IRM).

Reconstruction

You can specify a value for a pattern match operation other than what is returned by
the match by writing (MATCH FORM1 WITH PATTERN => FORM2).

For example,

(MATCH X WITH (FOO_$ ’A --) => (REVERSE FOO))

translates as:

[PROG ($$2)

 (RETURN

 (COND ((SETQ $$2 (MEMB ’A X))

 (SETQ FOO (LDIFF X $2))

 (REVERSE FOO]

Place markers in the pattern can be referred to from within FORM, e.g., the above could
also have been written as

192 Lisp Library Modules, Medley Release 1.0, MATCH

MATCH

(MATCH X WITH (!#1 ’A --) => (REVERSE #1)).

If -> is used in place of =>, the expression being matched is also physically changed to

the value of FORM.

For example,

(MATCH X WITH (#1 ’A !#2) -> (CONS #1 #2))

would remove the second element from X, if it were equal to A.

In general, (MATCH FORM1 WITH PATTERN -> FORM2) is translated so as to

compute FORM2 if the match is successful, and then smash its value into the first node
of FORM1. However, whenever possible, the translation does not actually require
FORM2 to be computed in its entirety, but instead the pattern match compiler uses
FORM2 as an indication of what should be done to FORM1.

For example,

(MATCH X WITH (#1 ’A !#2) -> (CONS #1 #2))

translates as

(AND (EQ (CADR X) ’A) (RPLACD X (CDDR X)))

Limitation

The pattern match facility does not contain some of the more esoteric features of other
pattern match languages, such as repeated patterns, disjunctive and conjunctive
patterns, recursion, etc. However, you can be confident that what facilities it does
provide results in Lisp expressions comparable to those you would generate by hand.

Examples

(MATCH X WITH (-- ’A --))

-- matches any arbitrary segment. ’A matches only an A, and the second --

again matches an arbitrary segment; thus this translates to (MEMB ’A X).

(MATCH X WITH (-- ’A))

Again, -- matches an arbitrary segment; however, since there is no -- after the

’A, A must be the last element of X. Thus this translates to: (EQ (CAR (LAST

X)) ’A).

(MATCH X WITH (’A ’B -- ’C $3 --))

CAR of X must be A, and CADR must be B, and there must be at least three

elements after the first C, so the translation is:

(AND (EQ (CAR X) ’A)

 (EQ (CADR X) ’B)

 (CDDDR (MEMB ’C (CDDR X))))

193Lisp Library Modules, Medley Release 1.0, MATCH

MATCH

(MATCH X WITH ((’A ’B) ’C Y_$1 $))

Since (’A ’B) does not end in $ or --, (CDDAR X) must be NIL. The

translation is:

(COND

 ((AND (EQ (CAAR X) ’A)

 (EQ (CADAR X) ’B)

 (NULL (CDDAR X))

 (EQ (CADR X) ’C)

 (CDDR X))

 (SETQ Y (CADDR X)) T))

(MATCH X WITH (#1 ’A $ ’B ’C #1 $))

#1 is implicitly assigned to the first element in the list. The $ searches for the

first B following A. This B must be followed by a C, and the C by an expression

equal to the first element. The translation is:

[PROG ($$2)

 (RETURN

 (AND (EQ (CADR X) ’A)

 (EQ [CADR (SETQ $$2 (MEMB ’B (CDDR X] ’C)

 (CDDR $$2)

 (EQUAL (CADDR $$2) (CAR X]

(MATCH X WITH (#1 ’A -- ’B ’C #1 $))

Similar to the pattern above, except that -- specifies a search for any B followed

by a C followed by the first element, so the translation is:

[AND (EQ (CADR X) ’A)

 (SOME (CDDR X)

 (FUNCTION (LAMBDA ($$2 $$1)

 (AND (EQ $$2 ’B)

 (EQ (CADR $$1) ’C)

 (CDDR $$1)

 (EQUAL (CADDR $$1) (CAR X]

194 Lisp Library Modules, Medley Release 1.0, MATCH

MATCH

[This page intentionally left blank]

