
133Lisp Library Modules, Medley Release 1.0,  HASH-FILE

HASH-FILE

Hash-File is similar to but not compatible with the library module, Hash.  Hash-File is 

modeled after the Common Lisp hash table facility, and Hash was modeled after the 

Interlisp hash array facility. 

Hash files, like hash tables, are objects which efficiently map from a given Lisp object, 

called the key, to another Lisp object, called the value.  Hash tables store this mapping 

in memory, while hash files store the mapping in a specially formatted file.  Hash files 

are generally slower to access than hash tables, but they do not absorb memory and 

they are persistent over Lisp images.  Hash files are recommended for large databases 

which do not change very often.

Since hash files are not stored in memory, hashing for EQ or EQL keys does not make 

sense.  Memory references written to file in one session will probably not be valid in 

another.  For this reason, the default hashing is for EQUAL keys, and then only those 

which can be dependably printed and read.

All of the code for Hash-File is in a package called Hash-File.  Througout this document 

Lisp symbols are printed as though in a package which uses the packages Hash-File 

and Lisp.

Requirements

Hash files must reside on a random-access device  (not a TCP/IP file server).

Installation

Load HASH-FILE.DFASL from the Library.

Functions

Hash-File has functions to create a new hash file, to open and close existing hash files, 

and to store and retrieve data in hash files.

Creating a Hash File

(make-hash-file file-name size &key . keys) [Function]

Creates and returns a new hash file in file-name opened for input and output.  

Size indicates the table size and should be an integer somewhat larger than the 

maximum number of keys under which you expect to store values in this hash 

file.  (The hash file grows as required, so this number need not be accurate.  See 

the section , "Rehashing," below.)  The keyword arguments are explained as this 

document progresses.

Opening and Closing Hash Files

(open-hash-file  file-name &key :direction . other-keys ) [Function]



134 Lisp Library Modules, Medley Release 1.0, HASH-FILE

HASH-FILE

Opens an existing hash file and returns it.  The :direction argument must be 

one of :input or :io.  If opened for :in put then storing values in the hash file 

is disallowed.  The default for :direction is :input.  Other key arguments are 

the same as for make-hash-file and are explained as this document progresses.

(close-hash-file  hash-file)  [Function]

Closes the file for hash-file, ensuring that all data has been saved.  The backing 

file is always kept coherent; thus the only reason to close the hash-file is to 

ensure that the backing file is properly written to disk.  All the functions 

mentioned in this document which operate on hash files open the file when 

necessary;  thus it is safe to call close-hash-file at almost any time.

Storing and Retrieving Data

(get-hash-file key hash-file &optional default) [Function]

Retrieves the value stored under key in hash-file.  Returns default if there is 

nothing stored under key.  The default for default is nil.  Also returns a second 

value which is true if something was found under key and false otherwise.   

(get-hash-file key hash-file) [Setf place]

Values can be stores in a hash file with:

(setf (get-hash-file key hash-file) new-value)

Accordingly, incf, decf, push, pop and any other macro that accepts 

generalized variables work with get-hash-file.

(map-hash-file function hash-file) [Function]

For each entry in hash-file, function is called with the key and value stored.

Note: It is unsafe to change a hash file while mapping over it.  The integrity of 

the file may be lost.

(rem-hash-file key hash-file) [Function]

Removes any entry for key in hash-file.  Returns t if there was such an entry, 

nil otherwise.

Other Functions

(copy-hash-file hash-file file-name &optional new-size) [Function]

Makes and returns a hash file in file-name with the same contents as hash-file.  

Much slower than il:copyfile, but performs garbage collection, often 

resulting in a smaller file.

(hash-file-count hash-file) [Function]

Returns the number of entries in hash-file.

(hash-file-p object) [Function]

Returns t if object is a hash file, nil otherwise.

(hash-file-p object) ≡(typep object ’hash-file)



135Lisp Library Modules, Medley Release 1.0,  HASH-FILE

HASH-FILE

File Format

Hash-File uses a linked bucket implementation as illustrated in Figure 3.  

1

key-1
value-1

key-3
value-3

key-2
value-2

Figure 3.  Hash File Format   

Pointers are 32-bit integers written as four 8-bit bytes.  There are two pointers of 

header (holding the size and count) followed by size pointers of table.  Except for in the 

header and null pointers, all pointers are file-positions in bytes.   Every such pointer 

points to the position on the file of the next pointer in the bucket.  Immediately 

following the next pointer on the file are the printed representation of the key and value 

for the entry.  New entries, including ones for old keys, are always added at the end of 

the file.

Rehashing

When the number of keys with values in the file reaches a threshold, rehashing is 

performed to keep bucket lengths from getting too long.  This threshold is expressed as 

a fraction of the table size.

rehash-threshold [Keyword argument]

Should be floating point number between zero and one.  When the product of 

the table size and the rehash threshold of a hash file is greater than its hash-

file-count then the hash file is automatically rehashed.  The default for this 



136 Lisp Library Modules, Medley Release 1.0, HASH-FILE

HASH-FILE

keyword argument is the value of the special variable hash-file::*rehash-

threshold* whose global binding is by default 0.875.

Rehashing is accomplished by having copy-hash-file make a new hash file 

with a larger size in a new version of the file.  The new hash file structure is 

then smashed into the old one so that pointers to the old one are still valid. 

rehash-size [Keyword argument]

Should be floating point number larger than one.  The next prime larger than 

the product of this and the old table size is used to as the size for the new table.  

The default for this keyword argument is the value of the special variable 

hash-file::*rehash-size* whose global binding is by default 2.0.

hash-file::*delete-old-version-on-rehash* [Special variable]

If true, when rehashing generates a new version of the backing file the old 

version is automatically deleted.  The default top-level value for this variable is 

nil.

Rehashing is very expensive.  Thus, when possible, you should attempt to make 

good estimates for the size argument to make-hash-file.  

Programmer’s Interface

There may be applications in which you  want to store things in hash files but which 

could not be printed and read by the functions print and read.  The following hooks 

are provided for this purpose.

value-read-fn [Keyword argument]

Called by get-hash-file with one argument of a stream to read a value.  The 

file position is set to the same position as it was when this value was written.   

Default is hash-file::default-read-fn which binds *package* to the 

XCL package and *readtable* to the XCL readtable before calling read.

value-print-fn [Keyword argument]

Called by the setf method for get-hash-file with the object to be stored and the 

stream to print it on.  The file position of the stream will be at the end of the file 

and there are no limitations as to how much can be printed.  Default is hash-

file::default-print-fn which binds *package* to the XCL package, 

*readtable* to the XCL readtable and *print-base* to 10 before calling 

print.

Example:  A hash file with circular values.

(defun print-circular-object (object stream)

   (let ((*print-circle* t))

      (hash-file::default-print-fn object stream)))

(setq hash-file-with-circular-values 

   (make-hash-file "{core}foo" 10

                   :value-print-fn #’print-circular-object))

(setq l (list "foo"))

(setf (cdr l) l) ⇒ #1= ("foo" . #1#)



137Lisp Library Modules, Medley Release 1.0,  HASH-FILE

HASH-FILE

(setf (get-hash-file "bar" hash-file-with-circular-values) l)

(get-hash-file "bar" hash-file-with-circular-values)

   ⇒  #1= ("foo" . #1#)

(eq * l) ⇒ nil

key-read-fn [Keyword argument]

Called by get-hash-file with one argument of a stream to read a key.  The 

file postion is set to the same position as it was when this key was written.   

Default is hash-file::default-read-fn, described above.

key-print-fn [Keyword argument]

Called by the setf method for get-hash-file with the object to be stored and 

the stream to print it on.  The file position of the stream is at the end of the file 

and there are no limitations as to how much can be printed.  Default is hash-

file::default-print-fn, described above.

Note: The value reader is called immediately after the key reader.  Thus, the 

key reader must be sure to read all that the key printer printed so that 

the file position is appropriate for the value reader.  However, the value 

reader is free to not read all that the value printer printed.  

You might now think that you could make a hash file whose keys were circular 

by simply specifying our circular reader and printer for the key print and read 

functions, but this would not be sufficient.  You also need the following hooks:

key-compare-fn [Keyword argument]

Called when searching a bucket to determine whether the correct key/value pair 

has been reached yet.  Default is equal.

key-hash-fn [Keyword argument]

Called with a key and a range.  Should return an integer between zero and 

range-1 with the following property:

key-hash-fn(x) = key-hash-fn(y) iff key-compare-fn(x,y) 

The default key-hash-fn is hash-file::hash-object which works on 

symbols, strings, lists, bit-vectors, pathnames, characters and numbers.  (Any 

object whose printed representation can be dependably read in as an object 

equal to the original.)  

Note: This function will work on circular lists, as it only proceeds a fixed depth 

down a structure.  Thus to hash on circular keys you also need to 

provide a key comparer which is able to compare circular keys, as most 

defintions of equal are not.

Performance

A linked bucket implementation generally gives shorter bucket lengths, but uses more 

file space.  The effects of this upon performance are difficult to judge.

The following table shows the distribution of bucket lengths in a Where-Is hash file 

containing 27,157 entries with a table size of 50,021.



138 Lisp Library Modules, Medley Release 1.0, HASH-FILE

HASH-FILE



139Lisp Library Modules, Medley Release 1.0,  HASH-FILE

HASH-FILE

length            number of buckets this length

0 29,279 (empty buckets)

1 15,461

2 4334

3 794

4 125

5 23

6 4

7 1

This information was gathered by the function hash-file::histogram.



140 Lisp Library Modules, Medley Release 1.0, HASH-FILE

HASH-FILE

[This page intentionally left blank]


