
127

Lisp Library Modules, Medley Release 1.0, HASH

HASH

Note: This module is provided for backwards compatibility. New applications should

use the HASH-FILE Library Module instead of this module.

Hash permits information associated with string or atom keys to be stored on and

retrieved from files. The information (or values) associated with the keys in a file may

be numbers, strings, or arbitary Lisp expressions. The associates are maintained by a

hashing scheme that minimizes the number of file operations it takes to access a value

from its key.

Information is saved in a hash file, which is analogous to a hash array. Actually, a

hash file can be either the file itself, or the handle on that file which is used by the

Hash module. The latter, of data type HashFile, is the datum returned by

CREATEHASHFILE or OPENHASHFILE, currently an array record containing the hash file

name, the number of slots in the file, the used slots, and other details. All other

functions with hash file arguments use this datum.

In older implementations (e.g., for Interlisp-10), hash files came in several varieties,

according to the types of value stored in them. The EMYCIN system provided even

more flexibility.

This system only supports the most general EXPR type of hash files and EMYCIN-style

TEXT entries, in the same file. The VALUETYPE and ITEMLENGTH arguments are

for the most part ignored. Two-key hashing is supported in this system, but it is

discouraged as it is only used in EMYCIN, not in the Interlisp-10 system. The functions

GETPAGE, DELPAGE, and GETPNAME, which manipulate secret pages, do not exist in this

implementation. However, it is permissible to write data at the end of a hash file. That

data will be ignored by the Hash module, and can be used to store additional data.

The Hash module views files as a sequence of bytes, randomly accessible. No notice is

made of pages, and it is assumed that the host computer buffers I/O sufficiently.

Hash files consist of a short header section (8 bytes), a layer of pointers

(4*HASHFILE:Size bytes), followed by ASCII data. Pointers are 3 bytes wide, preceded

by a status byte. The pointers point to key PNAMES in the data section, where each

key is followed by its value.

Deleted key pointers are reused but deleted data space is not, so rehashing is required

if many items have been replaced.

The data section starts at 4*HASHFILE: Size + 9, and consists of alternating keys and

values. As deleted data is not rewritten, not all data in the data section is valid.

When a key hashes into a used slot, a probe value is added to it to find the next slot to

search. The probe value is a small prime derived from the original hash key.

Requirements

Hash files must reside on a random-access device (not a TCP/IP file server).

Installation

Load HASH.LCOM from the Library.

128 Lisp Library Modules, Medley Release 1.0, HASH

HASH

Functions

Creating a Hash File

(CREATEHASHFILE FILE VALUETYPE ITEMLENGTH #ENTRIES SMASH

COPYFN) [Function]

Creates a new hash file named FILE. All other arguments are optional.

VALUETYPE is ignored in this implementation; any hash file can

accommodate both Lisp expressions and text.

ITEMLENGTH is not used by the system but is currently saved on the file (if

less than 256) for future use.

#ENTRIES is an estimate of the number of entries the file will have. (This

should be a realistic guess.)

SMASH is a hash file datum to reuse.

COPYFN is a function to be applied to entries when the file is rehashed (see the

description of REHASHFILE below).

Opening and Closing Hash Files

Before you can use a hashfile with this module, you have to open it using the following

function.

(OPENHASHFILE FILE ACCESS ITEMLENGTH #ENTRIES SMASH) [Function]

Reopens the previously existing hash file FILE.

Access may be INPUT (or NIL), in which case FILE is opened for reading only, or

BOTH, in which case FILE is open for both input and output. Causes the error

"not a hashfile" if FILE is not recognized as a hash file.

ITEM LENGTH and #ENTRIES are for backward compatibility with EMYCIN

where OPENHASHFILE also created new hash files; these arguments should be

avoided.

SMASH is a hash file datum to reuse.

If ACCESS is BOTH and FILE is a hash file open for reading only,

OPENHASHFILE attempts to close it and reopen it for writing. Otherwise, if

FILE designates an already open hash file, OPENHASHFILE is a no-op.

OPENHASHFILE returns a hash file datum.

(CLOSEHASHFILE HASHFILE REOPEN) [Function]

Closes HASHFILE (when you are finished using a hash file, you should close it).

If REOPEN is non-NIL, it should be one of the accepted access types. In this

case, the file is closed and then immediately reopened with ACCESS =

REOPEN. This is used to make sure the hash file is valid on the disk.

Storing and Retrieving Data

(PUTHASHFILE KEY VALUE HASHFILE KEY2) [Function]

129

Lisp Library Modules, Medley Release 1.0, HASH

HASH

Puts VALUE under KEY in HASHFILE. If VALUE is NIL, any previous entry

for KEY is deleted. KEY2 is for EMYCIN two-key hashing; KEY2 is internally

appended to KEY and they are treated as a single key.

(GETHASHVILE KEY HASHFILE KEY2) [Function]

Gets the value stored under KEY in HASHFILE. KEY2 is necessary if it was

supplied to PUTHASHFILE.

(LOOKUPHASHFILE KEY VALUE HASHFILE CALLTYPE KEY2) [Function]

A generalized entry for inserting and retrieving values; provides certain options

not available with GETHASHFILE or PUTHASHFILE. LOOKUPHASHFILE looks up

KEY in HASHFILE.

CALLTYPE is an atom or a list of atoms. The keywords are interpreted as

follows:

RETRIEVE If KEY is found, then if CALLTYPE is or contains RETRIEVE the

old value is returned from LOOKUPHASHFILE; otherwise returns

T.

DELETE If CALLTYPE is or contains DELETE, the value associated with

KEY is deleted from the file.

REPLACE If CALLTYPE is or contains REPLACE, the old value is replaced

with VALUE.

INSERT If CALLTYPE is or contains INSERT, LOOKUPHASHFILE inserts

VALUE as the value associated with KEY.

Combinations are possible. For example, (RETRIEVE DELETE) deletes a key

and returns the old value.

(PUTHASHTEXT KEY SRCFIL HASHFILE START END) [Function]

Puts text from stream SRCFIL onto HASHFILE under KEY. START and END

are passed directly to COPYBYTES.

(GETHASHTEXT KEY HASHFILE DSTFIL) [Function]

Uses COPYBYTES to retrieve text stored under KEY on HASHFILE. The bytes

are output to the stream DSTFIL.

Functions for Manipulating Hash Files

(HASHFILEP HASHFILE WRITE?) [Function]

Returns HASHFILE if it is a valid, open hash file datum, or returns the hash

file datum associated with HASHFILE if it is the name of an open hash file. If

WRITE? is non-NIL, HASHFILE must also be open for write access.

(HASHFILEPROP HASHFILE PROPERTY) [Function]

Returns the value of a PROPERTY of a HASHFILE datum. Currently accepted

properties are: NAME, ACCESS, VALUETYPE, ITEMLENGTH, SIZE, #ENTRIES,

COPYFN and STREAM.

130 Lisp Library Modules, Medley Release 1.0, HASH

HASH

(HASHFILENAME HASHFILE) [Function]

Same as (HASHFILEPROP HASHFILE ’NAME).

131

Lisp Library Modules, Medley Release 1.0, HASH

HASH

(MAPHASHFILE HASHFILE MAPFN DOUBLE) [Function]

Maps over HASHFILE applying MAPFN. If MAPFN takes two arguments, it is

applied to KEY and VALUE. If MAPFN only takes one argument, it is only

applied to KEY and saves the cost of reading the value from the file. If

DOUBLE is non-NIL, then MAPFN is applied to (KEY1 KEY2 VALUE), or

(KEY1 KEY2) if the MAPFN only takes two arguments.

(REHASHFILE HASHFILE NEWNAME) [Function]

As keys are replaced, space in the data section of the file is not reused (through

space in the key section is). Eventually the file may need rehashing to reclaim

the wasted data space. REHASHFILE is really a special case of COPYHASHFILE,

and creates a new file. If NEWNAME is non-NIL, it is taken as the name of the

rehashed file.

The system automatically rehashes files when 7/8 of the key section is filled.

The system prints a message when automatically rehashing a file if the global

variable REHASHGAG is non-NIL.

Certain applications save data outside Hash’s normal framework. Hash files for

those applications need a custom COPYFN (supplied in the call to

CREATEHASHFILE), which is used to copy data during the rehasing process.

The COPYFN is used as the FN argument to COPYHASHFILE during the

rehashing.

(COPYHASHFILE HASHFILE NEWNAME FN VALUETYPE LEAVEOPEN) [Function]

Makes a copy of HASHFILE under NEWNAME.

Each key and value pair is moved individually, and, if FN is supplied, is applied

to (KEY VALUE HASHFILE NEWHASHFILE).

What is returned is used as the value of the key in the new hash file. (This lets

you intervene, perhaps to copy out-of-bank data associated with VALUE.)

VALUETYPE is a no-op.

If LEAVEOPEN is non-NIL, the new hash file datum is returned open.

Otherwise, the new hash file is closed and the name is returned.

(HASHFILEPLST HASHFILE XWORD) [Function]

Returns a Lisp generator for the keys in HASHFILE, usable with the spelling

corrector. If XWORD is supplied, only keys starting with the prefix in XWORD

are generated.

Global Variables of Hash

HASHFILEDEFAULTSIZE [Variable]

Size used when #ENTRIES is omitted or is too small. Default is 512.

HASHFILEDTBL [Variable]

The hash file read table. Default is ORIG.

HASHLOADFACTOR [Variable]

The ration, used slots/total slots, at which the system rehashes the file. Default

is ↑A.

132 Lisp Library Modules, Medley Release 1.0, HASH

HASH

HFGROWTHFACTOR [Variable]

The ratio of total slots to used slots when a hash file is created. Default is 3.

REHASHGAG [Variable]

Flags whether to print message when rehashing; initially off. Default is NIL.

SYSHASHFILE [Variable]

The current hash file. Default is NIL.

SYSHASHFILELST [Variable]

An Alist of open hash files. Default is NIL.

Limitations

The system currently is able to manipulate files on CORE, DSK, FLOPPY, and over the

network, via leaf servers. Hash files can be used with NS servers only if they support

random access files.

Due to the pointer size, only hash files of less than 6 million initial entries can be

created, though these can grow to 14 million entries before automatic rehashing exceeds

the pointer limit. The total file length is limited to 16 milion bytes. No range checking

is done for these limits.

Two-key files operate on pnames only, without regard to packages.

133

Lisp Library Modules, Medley Release 1.0, HASH

HASH

[This page intentionally left blank]

