
111Lisp Library Modules, Medley Release 1.15, GRAPHER

GRAPHER

Grapher contains a collection of functions and an interface for laying out, displaying,

and editing graphs, that is, networks of nodes connected by links. Graphs have node

labels but not link labels. Links are drawn by default as straight lines without

arrowheads, but you can control the appearance of individual links. Node labels can be

single lines of text, bitmaps of arbitrary size, or image objects. Facilities exist for

calling functions at the nodes in a graph, and image objects containing graphs can be

constructed so you can include graphs in documents and other image structures.

For instance, the Browser module uses graphs to represent function-calling structures

(from MasterScope). Such a partially specified node list need have only the graph labels

and the links specified. It is given to the LAYOUTGRAPH function along with some

formatting information. LAYOUTGRAPH is a Grapher function which assigns a position

to each node. There are formats for laying out trees, lattices, and cyclic graphs.

LAYOUTGRAPH returns an instance of the GRAPH record, which is usually given to the

function SHOWGRAPH. SHOWGRAPH displays a graph in a window.

Installation

Load GRAPHER.LCOM from the library.

User Interface

A typical way to use Grapher is to implement a function that creates a partially

specified list of graph nodes representing some user data (or control) structure. Then

you can use Grapher to display and manipulate or explore that structure.

Displayed graphs can be edited using the right button on the mouse. Nodes can be

added, deleted, moved, enlarged, or shrunk. Links can be added or deleted.

Displayed graphs are often used as menus: selecting a node with the left or middle

button can cause user-provided functions to be called on that node.

Functions

Grapher functions perform the following tasks:

• Creating a graph

• Laying out a graph for display

• Displaying a graph

• Editing a graph

• Inserting a graph into a document

These tasks are described in the following subsections. An additional subsection

describes Grapher functions that perform other tasks.

112 Lisp Library Modules, Medley Release 1.15, GRAPHER

GRAPHER

Creating a Graph

Start by creating a list of nodes for the graph. You can create them directly (see the

GRAPHNODE Record section), or you can use the NODECREATE function.

(NODECREATE ID LABEL POSITION TONODEIDS FROMNODEIDS

FONT BORDER LABELSHADE) [Function]

This function returns a GRAPHNODE record. The arguments of this function are

the same as the corresponding fields of the GRAPHNODE record, as follows:

Argument GRAPHNODE Field

ID NODEID

LABEL NODELABEL

POSITION NODEPOSITION

TONODEIDS TONODE

FROMNODEIDS FROMNODE

FONT NODEFONT

BORDER NODEBORDER

LABELSHADE NODELABELSHADE

ID and LABEL are required; BORDER defaults to 0, LABELSHADE defaults to

WHITESHADE, and POSITION defaults to wherever it seems convenient.

You need to specify how the nodes are connected by providing a list of

TONODEIDS and FROMNODEIDS for each node.

Laying Out a Graph for Display

(LAYOUTGRAPH NODELST ROOTIDS FORMAT FONT

MOTHERD PERSONALD FAMILYD) [Function]

Lays out a partially specified graph by assigning positions to its graph nodes. It

returns a GRAPH record suitable for displaying with SHOWGRAPH. An example

appears after the description of the arguments.

NODELST Is a list of partially specified GRAPHNODEs: only their

NODELABEL, NODEID, and TONODE fields need to be filled in.

NODEFONT fields may also contain font specifications to be used

instead of the default supplied by the FONT argument. These

optional fields are filled in appropriately if they are NIL. All

other fields are ignored and/or overwritten.

ROOTIDS Is a list of the node identifiers of the nodes that become the

roots.

The rest of the arguments are optional and control the format of

the layout.

FORMAT Controls the layout of the graph. It is an unordered list of atoms

or lists. The following options control the structure of the graph:

• COMPACT, the default, which lays out the graph as a forest

(that is, a set of disjoint trees) using the minimal amount of

screen space.

113Lisp Library Modules, Medley Release 1.15, GRAPHER

GRAPHER

• FAST, which lays out the graph as a forest, sacrificing screen

space for speed.

• LATTICE, which lays out the graph as a directed acyclic

graph, that is, a lattice.

In addition, the following options control the direction of the

graph:

• HORIZONTAL, the default, has roots at the left and links that

run left-to-right.

• VERTICAL has roots at the top and links that run top-to-

bottom.

The directions can be reversed by including the atom REVERSE

in FORMAT.

 For example:

• FORMAT=(LATTICE HORIZONTAL REVERSE) lays out

horizontal lattices that have the roots on the right, with the

links running right-to-left.

• FORMAT=(VERTICAL REVERSE) lays out vertical trees that

have the roots at the bottom, with links running bottom-to-

top.

• FORMAT=NIL lays out horizontal trees that have the roots

on the left.

LAYOUTGRAPH creates virtual graph nodes to avoid drawing a

tangle of messy lines in cases where the graph is not a forest or

a lattice to begin with. It modifies the nodes of NODELST, which

may involve changing some of the TONODEs fields to point to new

nodes. The modified NODELST is set into the GRAPHNODEs field

of a newly created GRAPH record, which is returned as the value

of LAYOUTGRAPH. The creation of virtual nodes depends on

whether LATTICE is a member of FORMAT.

In a forest, nodes are laid out by traversing the forest top-down,

depth-first. If a node already has been laid out, LAYOUTGRAPH

creates a copy of the node (the same NODELABEL, different

NODEID, and no TONODEs), lays it down, and marks both it and

the original node by setting their NODEBORDER fields and

NODELABELSHADE fields. This occurs instead of drawing a link

that might cut across arbitrary parts of the graph. Hence, a

marked node occurs at least twice in the forest.

The default for marked nodes is to leave the shade alone and set

the border to 1. To alter this appearance, add the (MARK .

PROPS) to the FORMAT argument. PROPS is a property list. If it

is NIL, marking is suppressed altogether. If it contains BORDER

or LABELSHADE properties, those values are used in the

corresponding fields of marked nodes. For example, a format of

(MARK BORDER 5) would cause duplicated nodes to be boxed

with borders 5 points wide.

114 Lisp Library Modules, Medley Release 1.15, GRAPHER

GRAPHER

FORMAT adds a few enhancements to this basic marking

strategy, and can include one or both of these atoms:

• COPIES/ONLY—Only the new virtual nodes are marked. The

original is left unmarked.

• NOT/LEAVES—Marking is suppressed when the node has no

daughters.

For example:

• FORMAT=(COPIES/ONLY NOT/LEAVES) marks nodes that

are copies of nodes that have daughters (for example, if you

see a mark, the node has daughters that are not drawn).

• FORMAT=(NOT/LEAVES) marks both copies and originals,

but only when they have daughters.

• FORMAT=NIL marks originals and copies regardless of

progeny.

If FORMAT includes LATTICE, then a node that is the daughter

of more than one node is not marked. Instead, links from all its

parents are drawn to it. No attempt is made to avoid drawing

lines through nodes or to minimize line crossings. However, in

HORIZONTAL format, nodes are positioned so that From is

always left of To.

Similar conventions hold for the other formats. In VERTICAL

format, for instance, the TONODEs of a node are positioned

beneath it, and the FROMNODEs are positioned above it.

Cyclic graphs cannot be drawn using this convention, since a

node cannot be left of itself. When LAYOUTGRAPH detects a node

that points to itself, directly or indirectly, it creates a virtual

node, as described above, and marks both the original and the

copy. If FORMAT includes COPIES/ONLY, then only the newly

created node is marked.

FONT Is a font specification for use as the default NODEFONT.

The remaining three arguments control the distances between

nodes. NILs cause ‘‘pretty’’ defaults based on the size of FONT.

PERSONALD Is specified in points; it controls the minimum distance between

any two nodes.

MOTHERD Is the minimum distance between a mother and her daughters.

FAMILYD Controls the minimum distance between nodes from different

nuclear families. The closest two sister nodes can be is

PERSONALD. The closest that two nodes that are not sisters

can be is PERSONALD+FAMILYD.

LAYOUTGRAPH reads but does not change the fields NODEBORDER

and NODELABELSHADE of the nodes given it. The marked nodes

are an exception. Thus, if you plan to install black borders

around the nodes after the nodes have been laid out (for

example, by RESET/NODE/BORDER, described in the Performing

Other Tasks section), it is a good idea to give LAYOUTGRAPH

nodes that have white borders. This causes the nodes to be laid

115Lisp Library Modules, Medley Release 1.15, GRAPHER

GRAPHER

out far enough apart that when you blacken the borders later,

the labels of adjacent nodes are not overwritten.

As an example, to create and display the following parse tree for

the sentence "The program displays a tree.", enter the following:

116 Lisp Library Modules, Medley Release 1.15, GRAPHER

GRAPHER

(SETQ Snode (NODECREATE ’S ’S NIL ’(NP1 VP)))
(SETQ NP1node (NODECREATE ’NP1 ’NP NIL ’(DET1 NOUN1) ’(S)))
(SETQ DET1node (NODECREATE ’DET1 ’DET NIL ’(THE) ’(NP1)))
(SETQ THEnode (NODECREATE ’THE ’The NIL NIL ’(DET1)))
(SETQ NOUN1node (NODECREATE ’NOUN1 ’NOUN NIL ’(PROGRAM) ’(NP1)))
(SETQ PROGRAMnode (NODECREATE ’PROGRAM ’program NIL NIL ’(NOUN1)))
(SETQ VPnode (NODECREATE ’VP ’VP NIL ’(VERB NP2) ’(S)))
(SETQ VERBnode (NODECREATE ’VERB ’VERB NIL ’(DISPLAYS) ’(VP)))
(SETQ DISPLAYSnode (NODECREATE ’DISPLAYS ’displays NIL NIL ’(VERB)))
(SETQ NP2node (NODECREATE ’NP2 ’NP NIL ’(DET2 NOUN2) ’(VP)))
(SETQ DET2node (NODECREATE ’DET2 ’DET NIL ’(A) ’(NP2)))
(SETQ Anode (NODECREATE ’A ’a NIL NIL ’(DET2)))
(SETQ NOUN2node (NODECREATE ’NOUN2 ’NOUN NIL ’(TREE) ’(NP2)))
(SETQ TREEnode (NODECREATE ’TREE ’tree NIL NIL ’(NOUN2)))

(SHOWGRAPH (LAYOUTGRAPH (LIST Snode NP1node DET1node THEnode NOUN1node
PROGRAMnode VPnode VERBnode DISPLAYSnode NP2node DET2node Anode NOUN2node
TREEnode) ’(S) ’(VERTICAL)))

(LAYOUTSEXPR SEXPR FORMAT BOXING FONT MOTHERD PERSONALD

FAMILYD) [Function]

Is just like LAYOUTGRAPH, except it gets its graph as an s-expression rather

than a list of GRAPHNODEs. Its first argument is recursively interpreted as

follows: If the s-expression is a non-list, its NODELABEL is itself and it has no

TONODEs; else its CAR is taken as its NODELABEL and its CDR, which must be a

list of s-expressions, is taken as its TONODEs.

Note: Circular s-expressions are allowed.

For example, to display the following parse tree for the sentence "The program

displays a tree.", enter:

[SHOWGRAPH (LAYOUTSEXPR ’(S (NP (DET The)(NOUN program)) (VP

(VERB displays) (NP (DET a)(NOUN tree)))) ’(VERTICAL) NIL

’(HELVETICA 12 BRR]

117Lisp Library Modules, Medley Release 1.15, GRAPHER

GRAPHER

Displaying a Graph

(SHOWGRAPH GRAPH W LEFTBUTTONFN MIDDLEBUTTONFN TOPJUSTIFYFLG

ALLOWEDITFLG COPYBUTTONEVENTFN) [Function]

Displays the nodes in GRAPH.

If W is a window, the graph is displayed in it. If the graph is larger than the

window, the window is made a scrolling window. If W is NIL, the graph is

displayed in a window large enough to hold it. If W is a string, the graph is

displayed in a window large enough to hold it, and the window uses the string

for the window title. The graph is stored on the GRAPH property of the window.

SHOWGRAPH returns the window.

If either LEFTBUTTONFN or MIDDLEBUTTONFN is non-NIL, the window is

given a BUTTONEVENTFN that, in effect, turns the graph into a menu.

Whenever you press left or middle mouse button and the cursor is over a node,

that node is displayed inverted, indicating that it is selected. Releasing the

mouse button calls either the LEFTBUTTONFN or the MIDDLEBUTTONFN

with two arguments: the selected node and the window. The node is a

GRAPHNODE, or NIL if the cursor was not over a node when the button was

released. The function can access the graph via the window’s GRAPH property.

The graph’s initial position in the window is determined by TOPJUSTIFYFL. If

T, the graph’s top edge is positioned at the top edge of the window; if NIL, the

graph’s bottom edge is positioned at the bottom edge of the window.

ALLOWEDITFLG and COPYBOTTONFLG are described under "Editing a

Graph," below.

Note: The node labels are reprinted whenever the graph is redisplayed. If this

makes scrolling of a large graph unacceptably slow, some speedup may

be achieved by instructing Grapher to cache bitmaps of the labels with

the nodes so they can be rapidly BITBLTed to the screen (set the

variable CACHE/NODE/LABEL/BITMAPS to T). The possible gain in time,

118 Lisp Library Modules, Medley Release 1.15, GRAPHER

GRAPHER

however, may be offset by the increased storage required for the cached

bitmaps.

(DISPLAYGRAPH GRAPH STREAM CLIP/REG TRANS) [Function]

Displays the specified graph on STREAM, which can be any image stream, with

coordinates translated to TRANS. Some streams might also implement

CLIP/REG as a clipping region. This is primarily to improve efficiency for the

display.

(HARDCOPYGRAPH GRAPH/WINDOW FILE IMAGETYPE TRANS)

[Function]

Produces a file containing an image of GRAPH, that is, like SHOWGRAPH, but for

files. If GRAPH/WINDOW is a window, HARDCOPYGRAPH operates on its GRAPH

window property. The FILE and IMAGETYPE argument are given to

OPENIMAGESTREAM to obtain a stream on which the graph is displayed. TRANS

is the position in screen points (that is, it is scaled by the image stream’s

DSPSCALE) of the lower-left corner of the graph relative to the lower-left corner

of the piece of paper.

GRAPH/HARDCOPY/FORMAT [Variable]

Is used to control the format of the graph when printing to paper. It is a

property list that contains the following properties.

• MODE

Determines the orientation of the hardcopy of the graph. The value can be

LANDSCAPE, or PORTRAIT (the default). If LANDSCAPE, the graph is shown

with the longer paper edge as the major axis. If PORTRAIT, graph is shown

with the shorter paper edge as the major axis. If you use the window menu

command to hardcopy, the graph is shown in PORTRAIT mode.

• PAGENUMBERS

Determines whether to print the page number. The value can be T or NIL. If

T, GRAPHER prints the page number in X-Y format on the upper right corner

of each page. If NIL, no page number is printed.

• TRANS

Determines where to position the graph on paper. The value can be NIL or a

position. If NIL, each graph is positioned at the center of the paper. If a

position, GRAPHER determines the location in screen points of the lower left

corner of the graph relative to the lower left corner of the paper.

The initial value of GRAPH/HARDCOPY/FORMAT is set to

(MODE PORTRAIT PAGENUMBERS T TRANS NIL)

DEFAULT.GRAPH.WINDOWSIZE [Variable]

Contains a list of two numbers in screen points. The first number indicates the

window width. The second number indicates the window height. This

variable is used to control the maximum size of a graph window when it first

gets displayed.

119Lisp Library Modules, Medley Release 1.15, GRAPHER

GRAPHER

Editing a Graph

If ALLOWEDITFLG in the SHOWGRAPH function is non-NIL, you can position the cursor

over a node and use the right mouse button to edit the graph. (The normal window

commands can be accessed by right-clicking (pressing the right mouse button) in the

border or title regions.) Holding down the CONTROL key and simultaneously pressing

the right mouse button allows you to position nodes by tracking the cursor. Pressing

the right mouse button without the control key pops up the following menu of edit

operations.

The edit operations allow moving, adding, and deleting of nodes and links.

• Adding a node prompts for a NODELABEL creates a new node with that label, adds it

to the graph, and allows you to position it.

• Deleting a node removes it (using DREMOVE) from the graph after deleting all of the

links to and from it.

• Selecting Directed or Sides allows you to control how links are drawn between nodes.

See the section "Graph Record" for more information.

• Selecting Border allows you to invert the border around a node’s label.

• Selecting Shades allows you to invert a node’s label.

When you select the STOP menu command, the graph window is closed.

COPYBUTTONEVENTFN is a function to be run when you copy-select from the

Grapher window. If this is not specified, the default simply COPYINSERTs a Grapher

image object.

Certain fields of the GRAPH record contain functions that are called from the graph

editor menu to perform actions on an element in the displayed graph. They allow the

graph to serve as a simple edit interface to the structure being graphed.

The following fields of a graph contain editing functions and the arguments that are

passed to those functions when they are called. In all cases, GRAPH is the graph being

displayed, and WINDOW is the window in which it is displayed.

Even if you do not specify any of the following fields (except GRAPH.ADDNODEFN), the

system provides a set of functions which allows you to edit the graph. Any functions

you specify are executed after the default function is executed. For example, if you

supply the ADDLINKFN and then add a link using the edit menu, your function is called

after the link is added. Exception: for ADDNODEFN, the function is called and must

return a node to be added to the graph; this function is executed instead of the default

function.

120 Lisp Library Modules, Medley Release 1.15, GRAPHER

GRAPHER

GRAPH.MOVENODEFN NODE NEWPOS GRAPH WINDOW OLDPOS [Record field]

Contains a function that is called with the arguments shown after you have

stopped moving a node interactively; that is, it is not called as the node is being

moved. NEWPOS is the new position of the node, OLDPOS its original position.

The difference between them can be used, for example, to move other related

nodes by the same distance.

GRAPH.ADDNODEFN GRAPH WINDOW [Record field]

Is called when you select ADD A NODE. Returns a node, or NIL if no new

node is to be added. A node-moving operation is called on the new node after it

is created to determine its position.

GRAPH.DELETENODEFN NODE GRAPH WINDOW [Record field]

Is called when a node is deleted. Before this function is called, all of the links to

or from the node are deleted.

GRAPH.ADDLINKFN FROM TO GRAPH WINDOW [Record field]

Is called when a link is added.

GRAPH.DELETELINKFN FROM TO GRAPH WINDOW [Record field]

Is called when a link is deleted, which can be either directly or from deleting a

node.

GRAPH.FONTCHANGEFN HOW NODE GRAPH WINDOW [Record field]

Is called for side effect only when you ask for the label on a node to be made

larger or smaller. HOW is either LARGER or SMALLER.

GRAPH.CHANGELABELFN GRAPH NODE [Record field]

Is called for side effect only when you ask to change the label of a node, for

example, using EDITGRAPH.

GRAPH.INVERTBORDERFN NODE GRAPH [Record field]

Is called for side effect only when you ask to invert the border of a node, for

example, using EDITGRAPH.

GRAPH.INVERTLABELFN NODE GRAPH [Record field]

Is called for side effect only when you ask to invert the label of a node, for

example, using EDITGRAPH.

Editing Menu

The editing menu is controlled by the following two variables:

EDITGRAPHMENU [Variable]

Contains the editing menu, if it exists, or NIL. If you press the right button and

it is NIL, a fresh menu is created from EDITGRAPHMENUCOMMANDS.

121Lisp Library Modules, Medley Release 1.15, GRAPHER

GRAPHER

EDITGRAPHMENUCOMMANDS [Variable]

A list of menu items used to create EDITGRAPHMENU. The contents of

EDITGRAPHMENUCOMMANDS must be a list that can be used as the ITEMS field of

a MENU; see MENU in the Interlisp-D Reference Manual for details.

Inserting a Graph into a TEdit Document

A graph data structure can be encapsulated in a Grapher image object so that it can be

inserted in a TEdit document or other image structure. Grapher image objects are

constructed by the following function.

(GRAPHEROBJ GRAPH HALIGN VALIGN) [Function]

Returns a Grapher-type image object that displays GRAPH.

HALIGN and VALIGN specify how the graph is to be aligned with respect to the

reference point in its host, for example, a TEdit file or image object window.

They can be numbers between zero and one, specifying as a proportion of the

width/height of the graph the point in the graph that overlays the reference

point; zero means that the graph sits completely above and to the left of the

reference point, and one means it sits completely below and to the right.

They can also be pairs of the form (NODESPEC POS), where

NODESPEC specifies a node that the graph is to be aligned by, and POS

specifies where in the node the alignment point is. The NODESPEC can be

either a NODEID or one of the atoms *TOP*, *BOTTOM*, *LEFT*, or *RIGHT*,

indicating the topmost, bottommost, etc., node of the graph.

POS can be a number specifying proportional distances from the lower-left

corner of the node, or the atom BASELINE, indicating the character baseline (for

VALIGN, or simply zero for HALIGN).

For example, to align a linguistic tree so that the baseline of the root node is at

the reference point, VALIGN is (*TOP* BASELINE).

The BUTTONEVENTINFN of the image object pops up a single-item menu,

which, if selected, causes the graph editor to be run.

Performing Other Tasks

Grapher functions also allow you to return the smallest region containing all nodes,

invert a node region, reset fields in a node, print a graph to a stream, read a graph from

a stream, and edit a graph.

(GRAPHREGION GRAPH) [Function]

Returns the smallest region containing all of the nodes in GRAPH.

(FLIPNODE NODE DS) [Function]

Inverts a region in the stream DS that is one pixel bigger all around than NODE’s

region. This makes it possible to see black borders after the node has been

flipped.

(RESET/NODE/BORDER NODE BORDER STREAM GRAPH) [Function]

and

(RESET/NODE/LABELSHADE NODE SHADE STREAM) [Function]

122 Lisp Library Modules, Medley Release 1.15, GRAPHER

GRAPHER

Reset the appropriate fields in the node. If STREAM is a display stream or a

window, the old node is erased and the new node is displayed. Changing the

border may change the size of the node, in which case the lines to and from the

node are redrawn. The entire graph must be available to RESET/NODE/BORDER

for this purpose, either supplied as the GRAPH argument or obtained from the

GRAPH property of STREAM, if it is a window. Both functions take the atom

INVERT as a special value for BORDER and SHADE. They read the node’s

current border or shade, calculate what is needed to invert it, and do so.

(DUMPGRAPH GRAPH STREAM) [Function]

Prints GRAPH out on STREAM in a special, relatively compact encoding that

can be interpreted by the function READGRAPH, below. Graphs cannot be saved

on files simply by ordinary print functions such as PRIN2. This is because the

Grapher functions use FASSOC (that is, EQ, not EQUAL) to fetch a graph node

given its ID, so reading it back in gives the right result only if the IDs are

atomic. HPRINT resolves this problem, but it tends to dump too much

information: it dumps a complete description of the node font, for example,

including the character bit maps. DUMPGRAPH and READGRAPH are used in the

implementation of Grapher image objects.

(READGRAPH STREAM) [Function]

Reads information from STREAM starting at the current file pointer and

returns a graph structure equivalent to the one that was given to DUMPGRAPH.

(EDITGRAPH GRAPH WINDOW) [Function]

Enables editing GRAPH in WINDOW. If GRAPH is NIL, an empty graph is

created for editing. If WINDOW is NIL, a window of appropriate size is created.

(GRAPHERPROP GRAPH PROP NEWVALUE) [Function]

Accesses GRAPH.PROPS field of GRAPH record. The function returns the

previous value of GRAPH’s PROP aspect. If NEWVALUE is given, it is stored

as the new PROP aspect.

Grapher Record Structure

Grapher has GRAPH records which represent graphs. Within these records are

GRAPHNODE records which are lists of graph records.

GRAPH Record

A graph is represented by a GRAPH record, which has the following fields:

GRAPHNODE

DIRECTEDFLG

SIDESFLG

GRAPH.MOVENODEFN

GRAPH.ADDNODEFN

GRAPH.DELETENODEFN

GRAPH.ADDLINKFN

GRAPH.DELETELINKFN

123Lisp Library Modules, Medley Release 1.15, GRAPHER

GRAPHER

GRAPH.CHANGELABELFN

GRAPH.INVERTBORDERFN

GRAPH.INVERTLABELFN

GRAPH.FONTCHANGEFN

GRAPH.PROPS

GRAPHNODE is a list of graph nodes, and is described below.

DIRECTEDFLG and SIDESFLG are flags that control how links are drawn between the

nodes. If DIRECTEDFLG is NIL, Grapher draws each link in such a way that it does not

cross the node labels of the nodes it runs between. Often, this leaves some ambiguity,

which is settled by SIDESFLG. If SIDESFLG is NIL, Grapher prefers to draw links that

go between the top and bottom edges of nodes. If SIDESFLG is non-NIL, Grapher

prefers to draw links between the sides of the nodes.

If DIRECTEDFLG is non-NIL, the edges are fixed, for example, always to the left edge of

the To node. This can cause links to cross the labels of the nodes they run between. In

this case, if SIDESFLG is NIL, the From end of the link is attached to the bottom edge of

the From node; the To end of the link is attached to the top edge of the To node. If

DIRECTEDFLG is non-NIL and SIDESFLG is non-NIL, the From end of the link is

attached to the right edge of the From node; the To end of the link is attached to the left

edge of the To node.

GRAPH.PROPS is a list in property-list format, and is accessed by the function

GRAPHERPROP.

The remaining fields give you hooks into the graph editor, and are described in the

section "Editing a Graph".

GRAPHNODE Record

The GRAPHNODE record has the following fields of interest:

NODELABEL Is what gets displayed as the node. If this is a bit map,

BITBLT is used; if it is an image object, its IMAGEBOXFN

and DISPLAYFN are used. Anything else is printed with

PRIN3; see the Interlisp-D Reference Manual. Image objects

can be used to give a node a larger-than-normal margin

around its text label.

NODEID Is a unique identifier. NODEIDs are used in the link fields

instead of pointers to the nodes themselves, so that circular

Lisp structures can be avoided. NODEIDs are often used as

pointers to the structure represented by the graph.

TONODE Is a list of NODEIDs. A link runs from the currently selected

node to each node in TONODEs. Entries in this field can be

used to specify properties of the lines drawn between nodes.

If an item in the TONODEs of the current node N1 is not a

NODEID but rather a list of the form:

(LINK% PARAMETERS TONODEID . PARAMLIST)

then PARAMLIST is interpreted as a property list specifying

properties of the link drawn from N1 to TONODEID.

124 Lisp Library Modules, Medley Release 1.15, GRAPHER

GRAPHER

Properties of PARAMLIST currently noticed are LINEWIDTH,

DASHING, COLOR, and DRAWLINKFN. The first three are

passed directly to DRAWLINE.

For example, if the TONODEs for A is:

((LINK% PARAMETERS B LINEWIDTH 4 DASHING (3 3))

(LINK% PARAMETERS C DASHING (5 1) COLOR 12))

then two dashed lines emanate from A, with the one to B

having width 4 and dashing (3 3), and the one to C having the

default width 1, dashing (5 1), and color (if implemented) 12.

If the property DRAWLINKFN is on the list, then its value must

be a function to be called instead of DRAWLINE. It is passed

all the arguments of DRAWLINE plus the PARAMLIST as a

last argument.

For convenience, the variable LINKPARAMS is set to the

constant value LINK% PARAMETERS. When DISPLAYGRAPH

scales the graph to the units of a particular output stream,

the properties whose names are found on SPECVAR

SCALABLELINKPARAMETERS are also scaled.

FROMNODE Is a list of NODEIDs. A link runs to the currently selected

node from each node in FROMNODEs.

NODEPOSITION Is the location of the center of the node (a POSITION).

NODEFONT Specifies the font in which this node’s label is displayed. It

can be any font specification acceptable to FONTCREATE,

including a FONTDESCRIPTOR. NODEFONT is changed by the

graph edit operations Larger and Smaller. When this

happens, the font family may be changed as well as the size.

Default is the value of DEFAULT.GRAPH.NODEFONT (initially

NIL, which specifies the system DEFAULTFONT).

NODEBORDER Specifies the shade and width of the border around a node via

the following values:

NIL,0 No border; equals border of width zero

T Black border, one pixel wide

1,2,3. . . Black border of the given width

-1,-2. . . White border of the given width

(W S) Where W is an integer and S is a texture or a shade;

yields a border W pixels wide filled with the given

shade S; see the Interlisp-D Referene Manual.

Default is the value of DEFAULT.GRAPH.NODEBORDER

(initially NIL).

NODELABELSHADE Contains the background shade of the node. If this field is

non-NIL, then when a node is displayed, the label area for

the node is first painted as specified by this field, then the

125Lisp Library Modules, Medley Release 1.15, GRAPHER

GRAPHER

label is printed in INVERT mode. This does not apply to

labels that are bit maps or image objects. The legal values

for the field are: NIL (same as WHITESHADE), T (same as

BLACKSHADE), a texture, or a bitmap. Default is the value

of DEFAULT.GRAPH.NODELABELSHADE, which is initially

NIL.

NODEWIDTH Are initially set by Grapher to be the width and height of the

and NODEHEIGHT node’s NODELABEL.

126 Lisp Library Modules, Medley Release 1.15, GRAPHER

GRAPHER

Limitations

Grapher does not work well with packages. Because the node labels are printed with

PRIN3, Grapher does not visually distinguish nodes whose labels are symbols in

different packages; you do not see that fact displayed in the graph.

