
105Lisp Library Modules, Medley Release 1.0, GCHAX

GCHAX

GCHax contains functions that are useful for tracking down storage leaks, i.e., objects

that should be garbage but do not get garbage collected. There are functions for

examining reference counts, locating pointers to objects, and finding circularities (which

are among the chief culprits in storage leaks).

Typically, you might turn to GCHax when you notice that STORAGE claims there are

more instances of a data type in use than you believe there should be.

Installation

Load GCHAX.LCOM from the library.

Functions

Storage

The function STORAGE displays statistics on the amounts and distribution of the virtual

memory space that has been allocated. If you suspect your program may have storage

leaks (e.g., because (VMEMSIZE) keeps growing without obvious reason), this function

is the place to start to get an indication of which kinds of objects are not being

reclaimed. STORAGE is part of the standard Lisp sysout; you need not have loaded

GCHAX to use it.

(STORAGE TYPES PAGE-THRESHOLD IN-USE-THRESHOLD) [Function]

With no arguments, STORAGE displays statistics for all data types, along with

some summary information about the space remaining. The optional

arguments let you refine the display.

If TYPES is given, STORAGE only lists statistics for those types. TYPES should

be a type name or list of type names.

If PAGE-THRESHOLD is given, then STORAGE omits types that have fewer

than PAGE-THRESHOLD pages allocated to them. The default PAGE-

THRESHOLD is 2, so types that are not currently in use (consume no storage)

do not appear unless you specify a PAGE-THRESHOLD of zero.

If IN-USE-THRESHOLD is given, then STORAGE omits types that have fewer

than IN-USE-THRESHOLD instances in use (allocated and not yet freed).

For example, (STORAGE ’(ARRAYP BITMAP)) lists only statistics for the types

ARRAYP and BITMAP; (STORAGE NIL 6) lists only statistics for data types that

have at least six pages allocated. (STORAGE NIL NIL 100) lists only

statistics for data types that have at least 100 instances still in use.

The STORAGE function displays, for each Lisp data type, the amount of space

allocated to the data type, and how much is currently in use. The display looks

something like this:

Type Assigned Free items In use Total alloc
 pages [items]
FIXP 66 8448 7115 1333 447038

106 Lisp Library Modules, Medley Release 1.0, GCHAX

GCHAX

FLOATP 24 3072 2412 660 734877
LISTP 2574 ~298584 5294 ~293290 3545071
ARRAYP 8 512 245 267 48199

 . . .

Type Is the name of the data type, as given to DATATYPE or the Common

Lisp DEFSTRUCT.

Assigned Is how much of your virtual memory is set aside for items of this type.

Memory is allocated in quanta of two pages (1024 bytes). The

numbers under Assigned show the number of pages and the total

number of items that fit on those pages. The tilde (~) on the LISTP

line indicates that the number is approximate, since cdr-coding

makes the precise counting of lists impossible—the amount of

memory consumed by any particular list cell varies depending on its

contents and how it was allocated.

Free items Shows how many of the assigned items are available to be allocated

(by the Interlisp create or the Common Lisp make- constructs); these

constitute the free list for that data type.

In Use Shows how many items of this type are currently in use, i.e., have

pointers to them and hence have not been garbage collected. If this

number is higher than your program seems to warrant, you may want

to look for storage leaks. The sum of Free items and In Use is always

the same as the total Assigned items.

Total Alloc Is the total number of items of this type that you have ever allocated

(created), or at least since the last call to BOXCOUNT that reset the

counter.

STORAGE also prints some summary information about how much space is allocated and

available collectively for fixed-length items (mainly data types, both user and built-in),

variable-length items (arrays, bitmaps, strings), and symbols. The variable-length

items have fixed-length headers, which is why they also appear in the printout of fixed-

length items. For example, the line printed for the data type BITMAP says how many

bit maps have been allocated, but the figure displayed as "assigned pages" counts only

the headers, not the space used by the variable-length part of the bitmap. The variable

length portion is accounted in the summary statistics for "ArrayBlocks", where it is

lumped with all other users of variable-length space, as it is not possible for the system

to more finely discriminate the users of the space.

Data Spaces Summary
 Allocated Remaining
 Pages Pages

Datatypes (incl. LISTP etc.) 4370 \
ArrayBlocks (variable) 5770 -- 47758
ArrayBlocks (chunked) 2626 /
Symbols 1000 1048

variable-datum free list:
le 4 18 items; 72 cells.
le 16 84 items; 865 cells.
le 64 38 items; 1019 cells.
le 256 76 items; 7580 cells.
le 1024 2 items; 1548 cells.
le 4096 11 items; 18568 cells.
le 16384 1 items; 4864 cells.
others 2 items; 59565 cells.

107Lisp Library Modules, Medley Release 1.0, GCHAX

GCHAX

Total cells free: 94081 total pages: 736

In the summary, Remaining Pages indicates how many more pages are available to be

allocated to each type of datum. There is a single figure for both fixed- and variable-

length objects, because they are allocated out of the same pool of storage.

Variable-length objects are allocated in two different ways, reflected in the items

"variable" and "chunked." The distribution of the former among several different sized

free lists is shown next.

Storage Leak Tracking Functions

The functions in GCHax are oriented toward finding leaks that involve items of some

data type not getting garbage collected.

There are two main kinds of leaks:

• Items that are unintentionally being held onto

• Items that no user structure is pointing to but are not collected because of the nature

of the garbage collector

Examples of the former are structures assigned to global variables and left there after

the program finishes.

Examples of the latter are principally circular structures — structures where you can

follow a chain of pointers from an object that eventually returns to the same object.

Circular lists, such as you get from (NCONC A A), are a special case of circular

structures. See comments in the Limitations section below.

Note: All functions listed below have names beginning with \ to remind you that you

are dealing with system internals, and to proceed with at least a little caution.

Although these functions are generally safe, in that their casual use will not

cause arbitrary damage, you certainly can produce unintended side effects.

In particular, the functions \SHOWGC and \COLLECTINUSE have modes in which

they return a list of some kind of pointer; beware of unintentionally holding on

to such a list (e.g., by having it get onto the history list), thereby preventing the

eventual garbage collection of any of those pointers.

Useful for keeping values off the history list are the Executive command SHH for

completely inhibiting history list entry, and the idiom (PROG1 NIL operation), e.g.,

(PROG1 NIL (INSPECT value)) to inspect a structure without holding on to a

pointer to the inspect window. You may find it convenient to define your own Exec

command to do inspection, e.g.,

(DEFCOMMAND IN (OBJ TYPE)

(PROG1 NIL (INSPECT OBJ TYPE)))

The reference counts of all objects in the system are maintained in a global hash table,

called the GC reference count table. Some or all of its contents can be viewed with the

following function:

(\SHOWGC ONLYTYPES COLLECT FILE CARLVL CDRLVL MINCNT) [Function]

Displays on FILE (default T) all objects in the GC reference count table whose

reference count is at least MINCNT, whose default value is 2.

If ONLYTYPES is given, it is a list of data type names to which \SHOWGC

confines itself.

If COLLECT is T, \SHOWGC returns a list of all the objects it displays.

108 Lisp Library Modules, Medley Release 1.0, GCHAX

GCHAX

CARLVL and CDRLVL are print levels affecting the displaying of lists; they

default to two and six, respectively. In the listing, collision entries in the

reference count table are tagged with a *. Reference count operations on

pointers in collision entries are much slower than on noncollision entries.

Objects with reference count of one (1) do not appear explicitly in the reference

count table, so cannot be viewed with \SHOWGC, even if you set MINCNT as low

as 1.

Note that if COLLECT is T, then the reference count of all the collected items is

now one greater, due to the pointer to each from the returned list.

(\REFCNT PTR) [Function]

Returns the current reference count of PTR. Pointers that are not reference

counted (e.g., symbols and small integers) are considered to have reference

count 1. Since pointers from the stack (e.g., PROG variables) do not affect

reference counts, it is possible for the reference count of an object to be zero

without the object being garbage collected.

Note: If you call \REFCNT from the Common Lisp interpreter, e.g., by typing it

at top-level, the answer is almost always too large by 1, as the

interpreter itself holds reference-counted pointers to the arguments to

the function it is calling. The same problem besets \FINDPOINTER

(below). The problem does not exist from the Old Interlisp Exec, which

uses the Interlisp interpreter. You can also avoid the problem by

explicitly invoking the Interlisp interpreter; e.g.,

 (EVAL ’(\REFCNT expression)).

(\#COLLISIONS) [Function]

Returns a list of four elements:

• Number of entries in the reference-count table, i.e., the number of objects in

memory whose reference count is not 1

• Number of entries that are in collision chains

• Ratio of these numbers, i.e., the fraction of all entries that are in collision

chains

• Ratio of the number of entries to the size of the hash table

(\#OVERFLOWS) [Function]

Returns a list of four elements like \#COLLISIONS, but instead counts only

objects whose reference count has overflowed (is greater than 62). Reference

count operations on such objects are significantly slower than on other objects.

(\COLLECTINUSE TYPE PRED) [Function]

Is useful when (STORAGE TYPE) shows more objects in use than you think is

right, but you can’t find any such pointers yourself.

TYPE is a data type name or number other than LISTP. \COLLECTINUSE

returns a list of all objects of that type that are thought to be in use, i.e., not

free.

If PRED is supplied, it is a function of one argument. \COLLECTINUSE returns

only objects for which PRED returns true. PRED must not allocate storage; you

probably want it to be a compiled function.

109Lisp Library Modules, Medley Release 1.0, GCHAX

GCHAX

Note: \COLLECTINUSE should be used with care. In a correctly functioning

system, \COLLECTINUSE is generally safe. However, if the free list of

TYPE has been smashed so that some free objects are not on it, this

function can make matters much more confused, especially if the first

32-bit field of the data type in question contains a pointer field.

(\FINDPOINTER PTR COLLECT/INSPECT? ALLFLG MARGIN ALLBACKFLG)[Func

tion]

Provides a brute-force approach to answering the question, "Who has a pointer

to x?" \FINDPOINTER searches virtual memory, looking for places where PTR is

stored. The search is not completely blind: unless ALLFLG is true, it does not

look in places that cannot have reference-counted pointers, such as pname space

or the stack. However, if the reference count of the object is zero,

\FINDPOINTER searches the stack (and only the stack, if ALLFLG is NIL),

since in this case there is no hope of finding pointers in the usual reference-

counted spaces. If ALLFLG = :STACK, then \FINDPOINTER searches the stack

in addition to places that contain reference-counted pointers, but not other

unlikely places.

\FINDPOINTER prints out a description of each place PTR is found. If it is

found in a list, it asks whether to recursively search for pointers to the list, so

you can track lists back to a more identifying place, such as a symbol value cell

or some data type. It recurses without asking if ALLBACKFLG is true. If PTR

is found in a typed object, \FINDPOINTER names the field, if the data type

declaration is available, and asks if you want to recursively search for pointers

to this object. In either case, the search stops once enough places have been

found to account for PTR’s reference count (unless ALLFLG is T).

If COLLECT/INSPECT? is true, \FINDPOINTER saves the identifiable pointers

in a list. If COLLECT/INSPECT? = COLLECT, the list of pointers is returned as

value; otherwise, it is offered for inspection.

MARGIN is the left margin (in units of characters) by which the reports of

locations are initially indented. The default is zero. Recursive searches for

pointers are indented relative to this position.

The current version does not know how to parse array space, so if PTR is found

in an array, the best it can do is print the memory address where it found it,

usually something of the form {}#nn,nnnnn. In addition, \FINDPOINTER doesn’t

even try to find PTR as a literal inside a compiled code object, since such

references are not cell-aligned. Thus, \FINDPOINTER is really most helpful if

the pointer is stored in fixed-length data space (e.g., in a field of a data type, or

as the top-level value of a symbol); fortunately, this handles most of the

interesting cases in practice.

Note: Of course, since it touches (potentially) a huge percentage of your virtual

memory, \FINDPOINTER is completely disruptive of your working set.

(\FINDPOINTERS.OF.TYPE TYPE FILTER) [Function]

Calls \FINDPOINTER on each pointer in use of type TYPE that satisfies

FILTER, a function of one argument, the pointer. A FILTER of NIL is

110 Lisp Library Modules, Medley Release 1.0, GCHAX

GCHAX

considered the true predicate. FILTER can also be a list form to evaluate in

which the variable PTR is used to refer to the pointer in question.

 \FINDPOINTERS.OF.TYPE is essentially the same as

 (for PTR in (\COLLECTINUSE TYPE)

when <FILTER is satisfied>

do (\FINDPOINTER PTR))

except that it takes care to discard the cells of the list returned from

\COLLECTINUSE before calling \FINDPOINTER, to avoid seeing one extra

reference per object.

111Lisp Library Modules, Medley Release 1.0, GCHAX

GCHAX

For example,

(\FINDPOINTERS.OF.TYPE ’STREAM ’(NOT (OPENP PTR)))

searches for pointers to all streams that are not currently open.

(\SHOW.CLOSED.WINDOWS) [Function]

Collects all windows that are not currently open or icons of open windows, then

opens each window one by one.

For each window, you are prompted to press the left mouse button to close the

window and go on to the next, or press right to do something different. In the

latter case, you are prompted again to press the left button if you would like to

search for pointers to the window, using \FINDPOINTER, or press the right

button to just leave the window open on the screen and proceed.

Returns the total number of windows examined.

(\SHOWCIRCULARITY OBJECT MAXLEVEL) [Function]

Follows pointers from OBJECT. If it finds a path back to itself, it prints that

path. This function is not exceptionally fast, and deliberately (for performance

reasons) does not detect circularities in lists; it simply bottoms out on lists at

MAXLEVEL, which defaults to 1,000. Circular lists are usually obvious

enough anyway.

(\MAPGC MAPFN INCLUDEZEROCNT) [Function]

Maps over all entries in the GC reference count table, applying MAPFN to three

arguments: the pointer, its reference count (an integer), and COLLISIONP, a

flag that is T if the entry is a collision entry. Entries with reference count zero

are not included unless INCLUDEZEROCNT is T. This function underlies

\SHOWGC. Some care is required in the writing of MAPFN; it should try to

minimize any reference-counting activity of its own, and in particular avoid

anything that would decrement the reference count of the pointer passed to it.

Limitations

GCHax is not very useful for finding ordinary circular lists, as the typical system has

vast amounts of list structure, with nothing to distinguish the interesting ones.

However, if the circular list also contains instances of user data types, then those data

types will tend to show up as overallocated, and hence amenable to the search functions

in this module.

\FINDPOINTER does not know how to locate pointer arrays of more than 64 elements, so

it is not helpful if a pointer you seek is located only in such an array.

112 Lisp Library Modules, Medley Release 1.0, GCHAX

GCHAX

[This page intentionally left blank]

