
2
KALEIDOSCOPE MANUAL - 16-JAN-89 - Dev. Draft

ENVOS KALEIDOSCOPE

COLOR

Introduction

This document describes software for driving color displays.  In 
order to run COLOR, you need either a Sun (3 or 4) with CG4 color 
hardware and display, a Dorado (Xerox 1132) with attached color 
display, or a Dandelion (Xerox 1108) with attached BusMaster and 
color display.

The color software which is distributed among a number of files 
can be divided into a machine independent group of files that all 
users can usefully load and a machine dependent group containing 
files that work for particular combinations of hardware.

The machine independent color graphics code is stored in the 
library files LLCOLOR.LCOM and COLOR.LCOM.  LOADing 
COLOR.LCOM causes LLCOLOR.LCOM to be LOADed.

The machine dependent portions of Xerox Lisp color software is 
stored in files such as MAIKOCOLOR.LCOM, 
DORADOCOLOR.LCOM, or COLORNNCC.LCOM.  The user 
LOADs one of these files according to what kind of machine and 
color card the user is using.

The Sun color driver resides in the file MAIKOCOLOR.LCOM 
which loads LLCOLOR.LCOM and COLOR.LCOM.  The CG4 
device suppports 8 bpp at  1152 by 900 resolution.  The user must 
be running ldecolor, the special color capable emulator.  The 
physical display monitor is shared by both the monochrome and 
color screens (described below) .

The Dorado color driver resides in the file 
DORADOCOLOR.LCOM which loads LLCOLOR.LCOM and  
COLOR.LCOM.  The  Dorado color board supports four or eight 
bits per pixel  (bpp) at 640 by 480 resolution.  (The board supports 
24 bpp also, but Xerox Lisp doesn’t yet.) 

The Dandelion color drivers reside in the files 
DANDELIONUFO.LCOM, DANDELIONUFO4096.LCOM, and 
COLORNNCC.LCOM, one package for each of three different 
kinds of boards.  The user should load one of these packages on a 
Dandelion attached to a BusMaster and color display.  The 
DANDELIONUFO and DANDELIONUFO4096 packages drive 4 
bpp at 640 by 400 resolution color boards used inside Xerox which 
have been made obsolete by COLORNNCC.  The COLORNNCC 
package drives an 8 bpp color  at 512 by 480 resolution board, the 
Revolution 512 x 8, made by Number Nine Computer Corporation.  
The Revolution 512 x 8 is available both inside and outside Xerox 
through Number Nine.



3
KALEIDOSCOPE MANUAL - 16-JAN-89 - Dev. Draft

COLOR

Hardware Displays and Software Screens

On some workstations (such as the Dorado and Dandelion), there 
may be physically two separate displays.  On most Suns, there is a 
single physical display, which additionally may be shared by two 
Unix devices.  One device is monochrome (b/w), and the other is 
color.

To support the various hardware configurations and external 
display devices, the software has a special datatype, a "screen".  
There are two distinct instances of screens, a b/w screen, and a 
color screen.  A screen represents and controls a physical hardware 
display, and contains windows, icons, and tracks the mouse.

On workstations with physically two separate hardware displays, 
each display is represented by a corresponding screen data 
structure.  On workstations with a single hardware display, the 
display is shared by both the b/w screen and the color screen.

In all cases, before initialization only the b/w screen (and thus 
display) is visible and active.  After initialization both screens are 
active (can contain screen images), although on single displays, 
only one screen is visible at a time.  Since each screen logically 
controls a display, we will henceforth use the terms "screen" and 
"display" interchangeably.  Screens are discussed in greater detail 
below.

Turning the Color Display Software On and Off

The color display software can be turned on and off.  While the 
color display software is on, the memory used for the color display 
screen bitmap is locked down, and a small amount of processing 
time is used to drive the color display.  

(COLORDISPLAYP) [Function]

returns T if the color display is on; otherwise it returns NIL.

(COLORDISPLAYONOFF TYPE) [Function]

turns off the color display if ONOFF is ’OFF.   If ONOFF is ’ON, it 
turns on the color display allocating memory for the color screen 
bitmap.  TYPE should be one of ’MAIKOCOLOR, 
’DORADOCOLOR, ’DANDELIONUFO, ’DANDELIONUFO4096, 
or ’COLORNNCC.  The usual sequence of events for the user is to 
LOAD the software needed to drive a particular color card and 
then to call COLORDISPLAY with the appropriate TYPE to turn 
the software on.  For example,

     (LOAD ’COLOR.LCOM)

     (LOAD ’COLORNNCC.LCOM)

     (COLORDISPLAY ’ON ’REV512X8)

will turn on the software needed to drive the Number Nine 
Computer Corporation’s Revolution 512 x 8 card with 1108 and 
BusMaster.

Besides initializing or reinitializing a color card that has been 
powered off, COLORDISPLAY allocates memory for the color 
screen bitmap.  Turning on the color display requires allocating and 
locking down the memory necessary to hold the color display 
screen bitmap.  Turning off the color display frees this memory.



4
KALEIDOSCOPE MANUAL - 16-JAN-89 - Dev. Draft

ENVOS KALEIDOSCOPE

Colors  

The number of bits per pixel determines the number of different 
colors that can be displayed at one time.  When there are 4 bpp, 16 
colors can be displayed at once.  When there are 8 bpp, 256 colors 
can be displayed at once.  A table called a color map determines 
what color actually appears for each pixel value.   A color map 
gives the color in terms of how much of the three primary colors 
(red, green, and blue) is displayed on the screen for each possible 
pixel value.

A color can be represented as a number, an atom, or a triple of 
numbers.  Colors are ultimately given their final interpretation into 
how much red, blue, and green they represent through a color map.  

A color map maps a color number ([0 . . . 2nbits-1]) into the 
intensities of the three color guns (primary colors red, green, and 
blue).  Each entry in the color map has eight bits for each of the 

primary colors, allowing 256 levels per primary or 224 possible 
colors (not all of which are distinct to the human eye).  Within 
Xerox Lisp programs, colors can be manipulated as numbers, red-
green-blue triples, names, or hue-lightness-saturation triples.  Any 
function that takes a color accepts any of the different 
representations.

If a number is given, it is the color number used in the operation.  It 
must be valid for the color bitmap used in the operation.  (Since all 
of the routines that use a color need to determine its number, it is 
fastest to use numbers for colors.  COLORNUMBERP, described 
below, provides a way to translate into numbers from the other 
representations.)

Red Green Blue Triples

A red green blue (RGB) triple is a list of three numbers between 0 
and 255.  The first element gives the intensity for red, the second for 
green, and the third for blue.  When an RGB triple is used, the 
current color map is searched to find the color with the correct 
intensities.  If none is found, an error is generated. (That is, no 
attempt is made by the system to assign color numbers to 
intensities automatically.)  An example of an RGB triple is (255 255 
255), which gives the color white.

RGB [Record]

is a record  that  is defined as (RED GREEN BLUE); it can be used 
to manipulate RGB triples.

COLORNAMES [Association list]

maps names into colors.  The CDR of the color name’s entry is used 
as the color corresponding to the color name.  This can be any of 
the other representations. (Note: It can even be another color name.  
Loops in the name space such as would be caused by putting ’(RED 
. CRIMSON) and ’(CRIMSON . RED) on COLORNAMES are not 
checked for by the system.)  Some color names are available in the 
initial system and are intended to allow color programs written by 
different users to coexist.  These are:



5
KALEIDOSCOPE MANUAL - 16-JAN-89 - Dev. Draft

COLOR

Name RGB Number in default color maps

BLACK (0 0 0) 15   255

BLUE (0 0 255) 14   252

GREEN (0 255 0) 13   227

CYAN (0 255 255) 12   224

RED (255 0 0) 3      31

MAGENTA (255 0 255) 2      28

YELLOW (255 255 0) 1      3

WHITE (255 255 255) 0      0

Hue Lightness Saturation Triples

A hue lightness saturation triple is a list of three numbers.  The first 
number (HUE) is an integer between 0 and 355 and indicates a 
position in degrees on a color wheel (blue at 0, red at 120, and green 
at 240). The second (LIGHTNESS) is a real number between zero 
and one that indicates how much total intensity is in the color.  The 
third (SATURATION) is a real number between zero and one that 
indicates how disparate the three primary levels are.

HLS [Record]

is a record defined as (HUE LIGHTNESS SATURATION); it is 
provided to manipulate HLS triples.  Example: the color blue is 
represented in HLS notation by (0 .5 1.0).

(COLORNUMBERP COLOR BITSPERPIXEL NOERRFLG)[Function
]

returns the color number (offset into the screen color map) of 
COLOR.  COLOR is one of the following:

·  A positive number less than the maximum number of colors,

·  A color name,

·  AN RGB triple,  or

·  An HLS triple.

If COLOR is one of the above and is found in the screen color map, 
its color number in the screen color map is returned.  If not, an 
error is generated unless NOERRFLG is non-NIL, in which case 
NIL is returned.

(RGBP X) [Function]

returns X if X is an RGB triple; NIL otherwise.

(HLSP X) [Function]

returns X if X is an HLS triple; NIL otherwise.

Color Maps

The screen color map holds the information about what color is 
displayed on the color screen for each pixel value in the color 
screen bitmap.  The values in the current screen color map may be 
changed, and this change is reflected in the colors displayed at the 



6
KALEIDOSCOPE MANUAL - 16-JAN-89 - Dev. Draft

ENVOS KALEIDOSCOPE

next vertical retrace (approximately 1/30 of a second). The color 
map can be changed to obtain dramatic effects.  

(SCREENCOLORMAP NEWCOLORMAP) [Function]

reads and sets the color map that is used by the color display.  If 
NEWCOLORMAP is non-NIL, it should be a color map, and 
SCREENCOLORMAP sets the system color map to be that color 
map.  The value returned is the value of the screen color map 
before SCREENCOLORMAP was called.  If NEWCOLORMAP is 
NIL, the current screen color map is returned without change.

(CMYCOLORMAP CYANBITS MAGENTABITS YELLOWBITS 
BITSPERPIXEL) [Function]

Returns a color map that assumes the BITSPERPIXEL bits are to be 
treated as three separate color planes with CYANBITS bits being in 
the cyan plane, MAGENTABITS bits being in the magenta plane, 
and YELLOWBITS bits being in the yellow plane.  Within each 
plane, the colors are uniformly distributed over the intensity range 
0 to 255.  White is 0 and black is 255. 

(RGBCOLORMAP REDBITS GREENBITS BLUEBITS 
BITSPERPIXEL) [Function]

Returns a color map that assumes the BITSPERPIXEL bits are to be 
treated as three separate color planes with REDBITS bits being in 
the red plane, GREENBITS bits being in the green plane, and 
BLUEBITS bits being in the blue plane.  Within each plane, the 
colors are uniformly distributed over the intensity range 0 to 255.  
White is 255 and black is 0. 

(GRAYCOLORMAP BITSPERPIXEL) [Function]

Returns a color map containing shades of gray.  White is 0 and 
black is 255. 

(COLORMAPCREATE INTENSITIES BITSPERPIXEL) [Function]

creates a color map for a screen that has BITSPERPIXEL bits per 
pixel.  If BITSPERPIXEL is NIL, the number of bits per pixel is 
taken from the current color display setting.  INTENSITIES 
specifies the initial colors that should be in the map.  If 
INTENSITIES is not NIL, it should be a list of color specifications 
other than color numbers, e.g., the list of RGB triples returned by 
the function INTENSITIESFROMCOLOR MAP. 

(INTENSITIESFROMCOLORMAP COLORMAP) [Function]

returns a list of the intensity levels of COLORMAP (default is 
(SCREENCOLORMAP)) in a form accepted by 
COLORMAPCREATE.  This list can be written on file and thus 
provides a way of saving color map specifications.

(COLORMAPCOPY COLORMAP BITSPERPIXEL) [Function]

returns a color map that contains the same color intensities as 
COLORMAP if COLORMAP is a color map. Otherwise, it returns a 
color map with default color values.

(MAPOFACOLOR PRIMARIES) [Function]

returns a color map that is different shades of one or more of the 
primary colors.  For example, (MAPOFACOLOR ’(RED GREEN 
BLUE))  gives a color map of different shades of gray; 
(MAPOFACOLOR ’RED) gives different shades of red.



7
KALEIDOSCOPE MANUAL - 16-JAN-89 - Dev. Draft

COLOR

Changing Color Maps

The following functions are provided to access and change the 
intensity levels in a color map.

(SETCOLORINTENSITY COLORMAP COLORNUMBER 
                                               COLORSPEC) [Function]

sets the primary intensities of color number COLORNUMBER in 
the color map COLORMAP to the ones specified by COLORSPEC. 
COLORSPEC can be either an RGB triple, an HLS triple, or a color 
name.  The value returned is NIL.

(COLORLEVEL COLORMAP COLORNUMBER PRIMARY
                              NEWLEVEL)   [Function]

sets and reads the intensity level of the primary color PRIMARY 
(RED, GREEN, or BLUE) for the color number COLORNUMBER in 
the color map COLORMAP.  If NEWLEVEL is a number between 0 
and 255, it is set.  The previous value of the intensity of PRIMARY 
is returned.

(ADJUSTCOLORMAP PRIMARY DELTA COLORMAP) [Function]

adds DELTA to the intensity of the PRIMARY color value (RED, 
GREEN, or BLUE) for every color number in COLORMAP.

(ROTATECOLORMAP STARTCOLOR THRUCOLOR) [Function]

rotates a sequence of colors in the SCREENCOLORMAP.  The 
rotation moves the intensity values of color number STARTCOLOR 
into color number STARTCOLOR+1, the intensity values of color 
number STARTCOLOR+1 into color number STARTCOLOR+2, etc., 
and THRUCOLOR’s values into STARTCOLOR.

(EDITCOLORMAP VAR NOQFLG) [Function]

allows interactive editing of a color map.  If VAR is an atom whose 
value is a color map, its value is edited.  Otherwise a new color 
map is created and edited.  The color map being edited is made the 
screen color map while the editing takes place so that its effects can 
be observed.  The edited color map is returned as the value.  If 
NOQFLG is NIL and the color display is on, you are asked if you 
want a test pattern of colors.  A yes response causes the function 
SHOWCOLORTESTPATTERN to be called, which displays a test 
pattern with blocks of each of the possible colors.

You are prompted for the location of a color control window to be 
placed on the black-and-white display.  This window allows the 
value of any of the colors to be changed.  The number of the color 
being edited is in the upper left part of the window.  Six bars are 
displayed.  The right three bars give the color intensities for the 
three primary colors of the current color number.  The left three 
bars give the value of the color’s Hue, Lightness, and Saturation 
parameters. These levels can be changed by positioning the mouse 
cursor in one of the bars and pressing the left mouse button.  While 
the left button is down, the value of that parameter tracks the Y 
position of the cursor.  When the left button is released, the color 
tracking stops.  The color being edited is changed by pressing the 
middle mouse button while the cursor is in the interior of the edit 
window.  This brings up a menu of color numbers.  Selecting one 
sets the current color to the selected color.

The color being edited can also be changed by selecting the menu 
item "PickPt."  This switches the cursor onto the color screen and 
allows you to select a point from the color screen.  It then edits the 
color of the selected point.



8
KALEIDOSCOPE MANUAL - 16-JAN-89 - Dev. Draft

ENVOS KALEIDOSCOPE

To stop the editing, move the cursor into the title of the editing 
window and press the middle button.  This brings up a menu.  
Select Stop to quit. 

Color Bitmaps

A color bitmap is actually a bitmap that has more than one bit per 
pixel.  To test whether a bitmap is a color bitmap, the function 
BITSPERPIXEL can be used.

(BITSPERPIXEL BITMAP) [Function]

returns the bits per pixel of BITMAP; if this does not equal one, 
BITMAP is a color bitmap.

In multiple-bit-per-pixel bitmaps, the bits that represent a pixel are 
stored contiguously.  BITMAPCREATE is passed a BITSPERPIXEL 
argument to create multiple-bit-per-pixel bitmaps.

(BITMAPCREATE WIDTH HEIGHT BITSPERPIXEL) [Function]

creates a color bitmap that is WIDTH pixels wide by HEIGHT pixels 
high allowing BITSPERPIXEL bits per pixel.  Currently any value 
of BITSPERPIXEL except one, four, eight, or NIL (defaults to one) 
causes an error. 

A four-bit-per-pixel color screen bitmap uses approximately 76K 
words of storage, and an eight-bit-per-pixel one uses 
approximately 153K words.  There is only one such bitmap.  The 
following function provides access to it.

(COLORSCREENBITMAP) [Function]

returns the bitmap that is being or will be displayed on the color 
display.  This is NIL if the color display has never been turned on 
(see COLORDISPLAY below).

Screens, Screenpositions, and Screenregions

In addition to positions and regions, the user needs to be aware of 
screens, screenpositions, and screenregions in the presence of 
multiple screens.

Screens

SCREEN [Datatype]

There are generally two screen datatype instances in existence 
when working with color.  This is because the user is attached to 
two displays, a black and white display and a color display.

(MAINSCREEN) [Function]

returns the screen datatype instance that represents the black and 
white screen.  This will be something like {SCREEN}#74,24740.

(COLORSCREEN) [Function]

returns the screen datatype instance that represents the color 
screen.  Screens appear as part of screenpositions and 
screenregions, serving as the extra information needed to make 



9
KALEIDOSCOPE MANUAL - 16-JAN-89 - Dev. Draft

COLOR

clear whether a particular position or region should be viewed as 
lying on the black and white display or the color display.

(SCREENBITMAP SCREEN) [Function]

returns the bitmap destination of SCREEN.  If SCREEN=NIL, 
returns the black and white screen bitmap.

Screenpositions

SCREENPOSITION [Record]

Somewhat like a position,  a screenposition denotes a point in an 
X,Y coordinate system on a particular screen.  Screenpositions have 
been defined according to the following record declaration:

(RECORD SCREENPOSITION (SCREEN . POSITION)

                     (SUBRECORD POSITION))

A SCREENPOSITION is an instance of a record with fields 
XCOORD, YCOORD, and SCREEN and is manipulated with the 
standard record package facilities.  For example, (create 
SCREENPOSITION XCOORD _ 10 YCOORD _ 20 SCREEN _ 
(COLORSCREEN)) creates a screenposition representing the point 
(10,20) on the color display.  The user can extract the position of a 
screenposition by fetching its POSITION.  For example, (fetch 
(SCREENPOSITION POSITION) of SP12).  

Screenregions

SCREENREGION [Record]

Somewhat like a region, a screenregion denotes a rectangular area 
in a coordinate system.  Screenregions have been defined according 
to the following record declaration:

(RECORD SCREENREGION (SCREEN . REGION)

                     (SUBRECORD REGION))

Screenregions are characterized by the coordinates of their bottom 
left corner and their width and height.  A SCREENREGION is a 
record with fields LEFT, BOTTOM, WIDTH, HEIGHT, and 
SCREEN.  It can be manipulated with the standard record package 
facilities.  There are access functions for the REGION record that 
return the TOP and RIGHT of the region.  The user can extract the 
region of a screenregion by fetching its REGION.  For example, 
(fetch (SCREENREGION REGION) of SR8).

Screenposition and Screenregion Prompting

The following functions can be used by programs to allow the user 
to interactively specify screenpositions or screenregions on a 
display screen.

(GETSCREENPOSITION WINDOW CURSOR)  [Function]

Similar to GETPOSITION.  Returns a SCREENPOSITION that is 
specified by the user.  GETSCREENPOSITION waits for the user to 
press and release the left button of the mouse and returns the 
cursor screenposition at the time of release.  If WINDOW is a 
WINDOW, the screenposition will be on the same screen as 
WINDOW  and in the coordinate system of WINDOW’s display 
stream.  If WINDOW is NIL, the position will be in screen 
coordinates.



10
KALEIDOSCOPE MANUAL - 16-JAN-89 - Dev. Draft

ENVOS KALEIDOSCOPE

(GETBOXSCREENPOSITION BOXWIDTH BOXHEIGHT ORGX ORGY WINDOW 
PROMPTMSG)  [Function]

Similar to GETBOXPOSITION.  Returns a SCREENPOSITION that 
is specified by the user.  Allows the user to position a "ghost" 
region of size BOXWIDTH by BOXHEIGHT on a screen, and 
returns the SCREENPOSITION of the lower left corner of the 
screenregion chosen.  A ghost region is locked to the cursor so that 
if the cursor is moved, the ghost region moves with it.  The user can 
change to another corner by holding down the right button.  With 
the right button down, the cursor can be moved across a screen or 
to other screens without effect on the ghost region frame.  When the 
right button is released, the mouse will snap to the nearest corner, 
which will then become locked to the cursor.  (The held corner can 
be changed after the left or middle button is down by holding both 
the original button and the right button down while the cursor is 
moved to the desired new corner, then letting up just the right 
button.)  When the left or middle button is pressed and released, 
the lower left corner of the screenregion chosen at the time of 
release is returned.  If WINDOW is a WINDOW, the screenposition 
will be on the same screen as WINDOW  and in the coordinate 
system of WINDOW’s display stream.  If WINDOW is NIL, the 
position will be in screen coordinates.its lower left corner in screen 
coordinates.

(GETSCREENREGION MINWIDTH MINHEIGHT OLDREGION NEWREGIONFN 
NEWREGIONFNARG INITCORNERS)  [Function]
Similar to GETREGION.  Returns a SCREENREGION that is 
specified by the user.  Lets the user specify a new screenregion and 
returns that screenregion.  GETSCREENREGION prompts for a 
screenregion by displaying a four-pronged box next to the cursor 

arrow at one corner of a "ghost" region: .  If the user presses the 
left button, the corner of a "ghost" screenregion opposite the cursor 
is locked where it is.  Once one corner has been fixed, the ghost 
screenregion expands as the cursor moves.

To specify a screenregion:  (1) Move the ghost box so that the 
corner opposite the cursor is at one corner of the intended 
screenregion.  (2) Press the left button.  (3) Move the cursor to the 
screenposition of the opposite corner of the intended screenregion 
while holding down the left button.  (4) Release the left button.  

Before one corner has been fixed, one can switch the cursor to 
another corner of the ghost screenregion by holding down the right 
button.  With the right button down, the cursor changes to a 

"forceps" ( ) and the cursor can be moved across a screen or to 
other screens without effect on the ghost screenregion frame.  
When the right button is released, the cursor will snap to the 
nearest corner of the ghost screenregion.

After one corner has been fixed, one can still switch to another 
corner.  To change to another corner, continue to hold down the left 
button and hold down the right button also.  With both buttons 
down, the cursor can be moved across a screen or to other screens 
without effect on the ghost screenregion frame.  When the right 
button is released, the cursor will snap to the nearest corner, which 
will become the moving corner.  In this way, the screenregion may 
be moved all over a screen and to other screens, before its size and 
screenposition is finalized.

The size of the initial ghost screenregion is controlled by the 
MINWIDTH, MINHEIGHT, OLDREGION, and INITCORNERS 
arguments.



11
KALEIDOSCOPE MANUAL - 16-JAN-89 - Dev. Draft

COLOR

(GETBOXSCREENREGION WIDTH HEIGHT ORGX ORGY WINDOW PROMPTMSG)  [Functio
n]
Similar to GETBOXREGION.  Returns a SCREENREGION that is 
specified by the user.  Performs the same prompting as 
GETBOXSCREENPOSITION and returns the SCREENREGION 
specified by the user instead of the SCREENPOSITION of its lower 
left corner.

Color Windows and Menus

The Xerox Lisp window system provides both interactive and 
programmatic constructs for creating, moving, reshaping, 
overlapping, and destroying windows in such a way that a 
program can use a window in a relatively transparent fashion (see 

page X.XX).  Menus are a special type of window provided by the 
window system, used for displaying a set of items to the user, and 
having the user select one using the mouse and cursor.  The menu 
facility also allows users to create and use menus in interactive 

programs (see page X.XX ).  As of the LUTE release of Xerox Lisp, it 
is possible for the user to create and use windows and menus on 
the color display.

(CREATEW REGION TITLE BORDERSIZE NOOPENFLG)  [Function]

Creates a new window.  REGION indicates where and how large 
the window should be by specifying the exterior screenregion of 
the window.  In a user environment with multiple screens, such as 
a black and white screen and color screen both connected to the 
same machine, there is a new special problem in indicating which 
screen the REGION is supposed to be a region of.  This problem is 
solved by allowing CREATEW to take screenregion arguments as 
REGION.  For example,

(SETQ FOO (CREATEW (CREATE SCREENREGION

                                                                         SCREEN _ 
(COLORSCREEN)

                                                                         LEFT _ 20

                                                                         BOTTOM _ 210

                                                                         WIDTH _ 290

                                                                         HEIGHT _ 170)

                                                      "FOO WINDOW"))

creates a window titled "FOO WINDOW" on the color screen.  To 
create a window on the black and white screen, the user should use 
SCREEN _ (MAINSCREEN) in the CREATE SCREENREGION 
expression.  Note that it is still perfectly legal to pass in a REGION  
that is a region, not a screenregion, to CREATEW, but it is 
preferable to be passing screenregions rather than regions to 
CREATEW.  This is because when REGION is a region, REGION is 
disambiguated in a somewhat arbitrary manner that may not 
always turn out to be what the user was hoping for. 

When REGION is a region, REGION is disambiguated by coercing 
REGION to be a screenregion on the screen which currently 
contains the cursor.  This is so that software calling CREATEW 
with regions instead of screenregions tends to do the right thing in 
a user environment with multiple screens.



12
KALEIDOSCOPE MANUAL - 16-JAN-89 - Dev. Draft

ENVOS KALEIDOSCOPE

(WINDOWPROP WINDOW PROP NEWVALUE)  [NoSpread Function]
If PROP=’SCREEN, then WINDOWPROP returns the screen 
WINDOW is on.  If NEWVALUE is given, (even if given as NIL), 
with PROP=’SCREEN, then WINDOWPROP will generate an error.  
Any other PROP name is handled in the usual way.

(OPENWINDOWS SCREEN)  [Function]
Returns a list of all open windows on SCREEN if SCREEN is a 
screen datatype such as (MAINSCREEN) or (COLORSCREEN).  If 
SCREEN=NIL, then SCREEN will default to the screen containing 
the cursor.  If SCREEN=T, then a list of all open windows on all 
screens is returned.

  

Color Fonts

The user can create color fonts and specify in the font profile that 
certain color fonts be used when printing in color.

Color Font Creation

The user can create and manipulate color fonts through the same 
functions that are used to create and manipulate black and white 
fonts.  This is made possible in some cases by there being new ways 
to call familiar  font  functions.

(FONTCREATE FAMILY SIZE FACE ROTATION DEVICE NOERRORFLG CHARSET)  [Function
]

In addition to creating black and white fonts, FONTCREATE can be 
used to create color fonts.  For example,

     (FONTCREATE ’GACHA 10

                                       ’(BOLD REGULAR REGULAR YELLOW 
BLUE)

                                       0 ’8DISPLAY)

will create an 8 bit per pixel font with blue letters on a yellow 
background.  The user indicates the color and bits per pixel of the 
font by the FACE and DEVICE arguments passed to 
FONTCREATE.  DEVICE=’8DISPLAY means to create an 8bpp font 
and DEVICE=’4DISPLAY means to create a 4bpp font.  A color font 
face is a 5 tuple,

     (WEIGHT SLOPE EXPANSION BACKCOLOR FORECOLOR)

whereas a black and white font face is just a 3 tuple,

     (WEIGHT SLOPE EXPANSION)

The FORECOLOR is the color of the characters of the font and the 
BACKCOLOR is the color of the background behind the characters 
that gets printed along with the characters.  Both BACKCOLOR 
and FORECOLOR are allowed to a color name, color number, or 
any other legal color representation.  A color font face can also be 
represented as a LITATOM.  A three character atom such as MRR 
or any of the special atoms STANDARD, ITALIC, BOLD, 
BOLDITALIC can optionally be continued by hyphenating on 
BACKCOLOR and FORECOLOR suffixes.  For example,



13
KALEIDOSCOPE MANUAL - 16-JAN-89 - Dev. Draft

COLOR

     MRR-YELLOW-BLUE

     BOLD-YELLOW-RED

     ITALIC-90-200

     BRR-100-53

are acceptable color font faces.  Hence,

     (FONTCREATE ’GACHA 10 ’BOLD-YELLOW-BLUE 0 
’8DISPLAY)

will create a color font.  LITATOM FACE arguments fall into one of 
the following patterns:

     wse                        wse-backcolor-forecolor

     STANDARD       STANDARD-backcolor-forecolor

     ITALIC                  ITALIC-backcolor-forecolor

     BOLD                    BOLD-backcolor-forecolor

     BOLDITALIC     BOLDITALIC-backcolor-forecolor

where w=B, M, or L; s=I or R; e=R, C, or E; backcolor=a color name 
or color number; and forecolor=a color name or color number.

(FONTPROP FONT PROP)  [Function]
Returns the value of the PROP property of font FONT.  Besides 
black and white font properties, the following font properties are 
recognized:

FORECOLOR The color of the characters of the font, represented as a color 
number.  This is the color in which the characters of the font will 
print.

BACKCOLOR The color of the background of the characters of the font, 
represented as a color number.  This is the color in which the the 
background of characters of the font will print.  A font with red 
characters on a yellow background would have a red FORECOLOR 
and a yellow BACKCOLOR.

Color Font Profiles

Font profiles are the facility PRETTYPRINT uses to print different 
elements (user functions, system functions, clisp words, comments, 
etc.) in different fonts to emphasize (or deemphasize) their 
importance, and in general to provide for a more pleasing 
appearance.   The user can specify that different colors of fonts be 
used for different kinds of elements when printing in color.  A well 
chosen font profile will allows user to DEDIT functions, PP 
functions, and SEE source files in color, for example.  A 
FONTPROFILE such as

     ((DEFAULTFONT 1 (GACHA 10)

                   (GACHA 8)

                   (TERMINAL 8)

                   (4DISPLAY (GACHA 10 MRR-WHITE-RED))

                   (8DISPLAY (GACHA 10 MRR-WHITE-RED)))

      (BOLDFONT 2 (HELVETICA 10 BRR)

                (HELVETICA 8 BRR)

                (MODERN 8 BRR)

                (4DISPLAY (HELVETICA 10 BRR-WHITE-MAGENTA))



14
KALEIDOSCOPE MANUAL - 16-JAN-89 - Dev. Draft

ENVOS KALEIDOSCOPE

                (8DISPLAY (HELVETICA 10 BRR-WHITE-MAGENTA)))

      (LITTLEFONT 3 (HELVETICA 8)

                  (HELVETICA 6 MIR)

                  (MODERN 8 MIR)

                  (4DISPLAY (HELVETICA 8 MRR-WHITE-GREEN))

                  (8DISPLAY (HELVETICA 8 MRR-WHITE-GREEN)))

      (BIGFONT 4 (HELVETICA 12 BRR)

               (HELVETICA 10 BRR)

               (MODERN 10 BRR)

               (4DISPLAY (HELVETICA 12 BRR-WHITE-BLUE))

               (8DISPLAY (HELVETICA 12 BRR-WHITE-BLUE)))

      (USERFONT BOLDFONT)

      (COMMENTFONT LITTLEFONT)

      (LAMBDAFONT BIGFONT)

      (SYSTEMFONT)

      (CLISPFONT BOLDFONT)

      ...)

would have comments print in green and clisp words print in blue 
while ordinairy atoms would print in red.

Not all combinations of fonts will be aesthetically pleasing and the 
user may have to experiment to find a compatible set.

The user should indicate what  font is to be used for each font class 
by calling the function FONTPROFILE:

(FONTPROFILE PROFILE)  [Function]
Sets up the font classes as determined by PROFILE, a list of 
elements which defines the correspondence between font classes 
and specific fonts.  Each element of PROFILE is a list of the form:

(FONTCLASS FONT# DISPLAYFONT PRESSFONT 
INTERPRESSFONT (OTHERDEVICE1 OTHERFONT1)  ... 
(OTHERDEVICEn OTHERFONTn))

FONTCLASS is the font class name and FONT# is the font number 
for that class.  DISPLAYFONT, PRESSFONT, and 
INTERPRESSFONT are font specifications (of the form accepted by 
FONTCREATE) for the fonts to use when printing to the black and 
white display and to Press and Interpress printers respectively.  
The appearance of color fonts can be affected by including an 
(OTHERDEVICEi OTHERFONTi) entry where OTHERDEVICEi is 
either 4DISPLAY or 8DISPLAY for a 4 bits per pixel or 8 bits per 
pixel color  font and OTHERFONTi is a color font specification such 
as (GACHA 10 MRR-WHITE-RED).  

FONTPROFILE  [Variable]
This is the variable used to store the current font profile, in the form 
accepted by the function FONTPROFILE.  Note that simply editing 
this value will not change the fonts used for the various font 
classes; it is necessary to execute (FONTPROFILE FONTPROFILE) 
to install the value of this variable. 



15
KALEIDOSCOPE MANUAL - 16-JAN-89 - Dev. Draft

COLOR

Using Color

The current color implementation allows display streams to operate 
on color bitmaps.  The two functions DSPCOLOR and 
DSPBACKCOLOR set the color in which a stream draws when the 
user defaults a color argument to a drawing function.

(DSPCOLOR COLOR STREAM) [Function]

sets the foreground color of a stream.  It returns the previous 
foreground color.  If COLOR is NIL, it returns the current 
foreground color without changing anything.  The default 
foreground color is MINIMUMCOLOR=0,  which is white in the 
default color maps.

(DSPBACKCOLOR COLOR STREAM)  [Function]

sets the background color of a stream.   It returns the previous 
background color.  If COLOR is NIL, it returns the current 
background color without changing anything.  The default 
background color is (MAXIMUMCOLOR BITSPERPIXEL)=15 or 
255, which is black in the default color maps.

The BITBLT, line-drawing routines, and curve-drawing routines 
routines know how to operate on a color-capable stream.  
Following are some notes about them.

BITBLTing in Color

If BITBLTing from a color bitmap onto another color bitmap of the 
same bpp, the operations PAINT, INVERT, and ERASE are done on 
a bit level, not on a pixel level.  Thus painting color 3 onto color 10 
results in color 11.

If BITBLTing from a black-and-white bitmap onto a color bitmap, 
the one bits appear in the DSPCOLOR, and the zero bits in 
DSPBACKCOLOR.  BLTing from black-and-white to color is fairly 
expensive; if the same bitmap is going to be put up several times in 
the same color, it is faster to create a color copy and then BLT the 
color copy.

If the source type is TEXTURE and the destination bitmap is a color 
bitmap, the Texture argument is taken to be a color.  Thus to fill an 
area with the color BLUE assuming COLORSTR is a stream whose 
destination is the color screen, use (BITBLT  NIL  NIL  NIL  
COLORSTR  50  75  100  200 ’TEXTURE  ’REPLACE  ’BLUE).

Drawing Curves and Lines in Color

For the functions DRAWCIRCLE, DRAWELLIPSE, and 
DRAWCURVE, the notion of a brush has been extended to include 
a color.  A BRUSH is now (BRUSHSHAPE BRUSHSIZE 
BRUSHCOLOR).  Also, a brush can be a bitmap (which can be a 
color bitmap).

Line-drawing routines take a color argument which is the color the 
line is to appear in if the destination of the display stream is a color 
bitmap.



16
KALEIDOSCOPE MANUAL - 16-JAN-89 - Dev. Draft

ENVOS KALEIDOSCOPE

(DRAWLINE X1 Y1 X2 Y2 WIDTH OPERATION 
                          STREAM COLOR) [Function]

(DRAWTO X Y WIDTH OPERATION STREAM COLOR) [Function]

(RELDRAWTO X Y WIDTH OPERATION 
                                 STREAM COLOR) [Function]

(DRAWBETWEEN POS1 POS2  WIDTH OPERATION
                                         STREAM COLOR) [Function]

If the COLOR argument is NIL, the DSPCOLOR of the stream is 
used.

Printing in Color

Printing only works in REPLACE mode.  The characters have a 
background color and a foreground color determined by the font 
face of the font the characters are being printed with.  

Example of printing to an 8bpp color screen:

(SETQ FOO (CREATEW (CREATE SCREENREGION

                                                                         SCREEN _ 
(COLORSCREEN)

                                                                         LEFT _ 20

                                                                         BOTTOM _ 210

                                                                         WIDTH _ 290

                                                                         HEIGHT _ 170)

                                                      "FOO WINDOW"))

(DSPFONT (FONTCREATE ’GACHA

                                                          10

                                                           ’MRR-YELLOW-GREEN

                                                           0

                                                            ’8DISPLAY)

                        FOO)

(PRINT ’HELLO FOO) ; will print in green against a yellow 
background.



17
KALEIDOSCOPE MANUAL - 16-JAN-89 - Dev. Draft

COLOR

Operating the Cursor on the Color Screen

The cursor can be moved to the color screen.  The cursor can be 
moved to the color screen by sliding the cursor off the left or right 
edge of the black and white screen on to the color screen or by 
calling function CURSORPOSITION or CURSORSCREEN.

(CURSORPOSITION NEWPOSITION - -)  [Function]

NEWPOSITION can be a position or a screenposition.

(CURSORSCREEN SCREEN XCOORD YCOORD)  [Function]

Moves the cursor to the screenposition determined by SCREEN, 
XCOORD, and YCOORD.  SCREEN should be the value of either 
(COLORSCREEN) or (MAINSCREEN).

While on the color screen, the cursor is placed by doing BITBLTs in 
software rather than with microcode and hardware as with the 
black and white cursor.  It is automatically taken down whenever 
an operation is performed that changes any bits on the color screen.  
The speed of the color cursor compares well with that of the black 
and white cursor but there can be a noticeable flicker when there is 
much input/output to the color screen.  While the cursor is on the 
color screen, the black-and-white cursor is cleared giving the 
appearance that there is never more than one cursor at a given 
time.

  

Miscellaneous Color Functions

(COLORIZEBITMAP BITMAP 0COLOR 1COLOR BITSPERPIXEL)[
Function]

creates a color bitmap from a black and white bitmap.  The 
returned bitmap has color number 1COLOR in those pixels of 
BITMAP that were one and 0COLOR in those pixels of BITMAP 
that were zero.  This provides a way of producing a color bitmap 
from a black and white bitmap.

(UNCOLORIZEBITMAP BITMAP COLORMAP) [Function]

creates a black and white bitmap from a color bitmap.

(SHOWCOLORTESTPATTERN BARSIZE) [Function]

displays a pattern of colors on the color display.  This is useful 
when editing a color map.  The pattern has squares of the 16 
possible colors laid out in two rows at the top of the screen.  Colors 
0 through 7 are in the top row, and colors 8 through 15 are in the 
next row.  The bottom part of the screen is filled with bars of 
BARSIZE width with consecutive color numbers.  The pattern is 
designed so that every color has a border with every other color 
(unless BARSIZE is too large to allow room for every color—about 
20). 


