
33Lisp Library Modules, Medley Release 1.2, COLOR

COLOR

Color is the software for driving color displays.  To run COLOR, you need either a Sun 

(3, 4 or SPARCstations) with CG4, CG6 color hardware and  color display.

The machine independent color graphics code is stored in the library files 

LLCOLOR.LCOM and COLOR.LCOM.  The Sun color driver resides in the file 

MAIKOCOLOR.LCOM which loads LLCOLOR.LCOM, COLOR.LCOM, and TAKEBIGBM.LCOM.

The CG4,CG6 device supports 8 bpp (bits per pixel) at a resolution of 1152 by 900.  

Note: You cannot use COLOR if you are running Medley under X.

Software Screens

To support the various hardware configurations and external display devices, the 

software has a special datatype, a "screen".    A screen represents and controls a 

physical hardware display.  It contains windows and icons, and tracks the mouse. There 

are two distinct types of screens: a black and white screen, and a color screen. 

On workstations with a single hardware display, the display is shared by both the black 

and white screen and the color screen. It can be changed by moving the mouse cursor.  

The screen mode may be changed by moving the cursor out of the screen.

Turning the Color Display Software On and Off

The color display software can be turned on and off.  While the color display software is 

on,  and a small amount of processing time is used to drive the color display.  

(COLORDISPLAYP) [Function]

Returns T if the color display is on; otherwise it returns NIL.

(COLORDISPLAYONOFF TYPE) [Function]

Turns off the color display if ONOFF is set to OFF.   If ONOFF is set to ON, it 

turns on the color–display–allocating memory for the color screen bitmap.  

TYPE should be MAIKOCOLOR, if you are using a Sun Workstation.  The usual 

sequence of events is to LOAD MAIKOCOLOR.LCOM to drive GC4/GC6 color card 

and then to call COLORDISPLAY with the appropriate TYPE (MAIKOCOLOR for 

Sun Workstations) to turn the software on.  For example,

(LOAD ’MAIKOCOLOR.LCOM)

(COLORDISPLAY ’ON ’MAIKOCOLOR)

Calling COLORDISPLAY allocates memory for the color screen bitmap in the 

sysout.  Turning on the color display requires allocating the memory necessary 

to hold the color display screen bitmap.  Turning off the color display does not 

free this memory;  it still exists in the sysout.



34 Lisp Library Modules, Medley Release 1.2, COLOR

COLOR

Colors  

The number of bits per pixel (bpp) determines the number of different colors that can be 

displayed at one time.  When there are 8 bpp, 256 colors can be displayed at once.   A 

table, called a color map, determines what color actually appears for each pixel value.   

A color map gives the color in terms of how much of the three primary colors (red, 

green, and blue) is displayed on the screen for each possible pixel value.

A color can be represented as a number, an atom, or a triple of numbers.  The color map 

provides the final interpretation of how much red, blue, and green a color  represents. A 

color map maps a color number ([0 . . . 2
nbits

-1]) into the intensities of the three color 

guns (primary colors red, green, and blue).  Each entry in the color map has 8 bits for 

each of the primary colors, allowing 256 levels per primary or 2
24

 possible colors (not all 

of which are distinct to the human eye).  Within Xerox Lisp programs, colors can be 

manipulated as numbers, red-green-blue triples, names, or hue-lightness-saturation 

triples.  Any function that takes a color accepts any of these different representations.

If a number is given, it is the color number used in the operation.  It must be valid for 

the color bitmap used in the operation.  (Since all of the routines that use a color need to 

determine the color’s number, it is fastest to use numbers for colors.  COLORNUMBERP, 

described below, provides a way to translate into numbers from the other 

representations.)

The following sections describe other ways to represent colors.

Red–Green–Blue Triples

A red–green–blue (RGB) triple is a list of three numbers, each of which can be between 

0 and 255.  The nine digits are divided as follows:

• First 3 digits = red intensity

• Second 3 digits = green intensity

• Third 3 digits = blue intensity

When an RGB triple is used, the current color map is searched to find the color with the 

correct intensities.  If none is found, an error is generated. (That is, no attempt is made 

by the system to assign color numbers to intensities automatically.)  An example of an 

RGB triple is (255 255 255), which gives the color white.

RGB [Record]

A record defined as (RED GREEN BLUE); it can be used to manipulate RGB 

triples.

COLORNAMES [Association list]

Maps names into colors.  The CDR of the color name’s entry is used as the color 

corresponding to the color name.  This can be any of the other representations.

Note: It can even be another color name.  The system does not check for loops 

in the name space, such as would be caused by putting ’(RED . 

CRIMSON) and ’(CRIMSON . RED) on COLORNAMES.

Some color names are available in the initial system and allow color programs 

written by different users to coexist.  These are:



35Lisp Library Modules, Medley Release 1.2, COLOR

COLOR

Name RGB Number in default color maps

BLACK (0 0 0) 15   255

BLUE (0 0 255) 14   252

GREEN (0 255 0) 13   227

CYAN (0 255 255) 12   224

RED (255 0 0) 3      31

MAGENTA (255 0 255) 2      28

YELLOW (255 255 0) 1      3

WHITE (255 255 255) 0      0

Hue–Lightness–Saturation Triples

A hue–lightness–saturation triple is a list of three numbers:  

• The first number (HUE) is an integer between 0 and 355.  It indicates a position in 

degrees on a color wheel (blue at 0, red at 120, and green at 240). 

• The second (LIGHTNESS) is a real number between zero.  It indicates how much 

total intensity is in the color.  

• The third (SATURATION) is a real number between zero and one.  It indicates how 

disparate the three primary levels are.

HLS [Record]

A record defined as (HUE LIGHTNESS SATURATION); it is provided to help 

you manipulate HLS triples.  

Example:  the color blue is represented in HLS notation by (0 .5 1.0).

(COLORNUMBERP COLOR BITSPERPIXEL NOERRFLG) [Function]

Returns the color number (offset into the screen color map) of COLOR.  COLOR 

can be one of the following:

• A positive number less than the maximum number of colors

• A color name

• An RGB triple

• An HLS triple

If COLOR is one of the above and is found in the screen color map, its color 

number in the screen color map is returned.  If not, an error is generated unless 

NOERRFLG is non-NIL, in which case NIL is returned.

(RGBP X) [Function]

Returns X if X is an RGB triple; otherwise it returns NIL.

(HLSP X) [Function]

Returns X if X is an HLS triple; otherwise it returns NIL.



36 Lisp Library Modules, Medley Release 1.2, COLOR

COLOR

Color Maps

The screen color map holds the information about what color is displayed on the color 

screen for each pixel value in the color screen bitmap.  If you change the values in the 

current screen color map, this change is reflected in the colors displayed at the next 

vertical retrace (approximately 1/30 of a second). The color map can be changed to 

obtain dramatic effects.  

(SCREENCOLORMAP NEWCOLORMAP) [Function]

Reads and sets the color map used by the color display.  If NEWCOLORMAP is 

non-NIL, it should be a color map, and SCREENCOLORMAP sets the system color 

map to be that color map.  The value returned is the value of the screen color 

map before SCREENCOLORMAP was called.  If NEWCOLORMAP is NIL, the 

current screen color map is returned without change.

(CMYCOLORMAP CYANBITS MAGENTABITS YELLOWBITS 

BITSPERPIXEL) [Function]

Returns a color map that assumes the BITSPERPIXEL bits are to be treated as 

three separate color planes:  CYANBITS bits in the cyan plane, 

MAGENTABITS bits in the magenta plane, and YELLOWBITS bits in the 

yellow plane.  Within each plane, the colors are uniformly distributed over the 

intensity range 0 to 255.  White is 0 and black is 255. 

(RGBCOLORMAP REDBITS GREENBITS BLUEBITS 

BITSPERPIXEL) [Function]

Returns a color map that assumes the BITSPERPIXEL bits are to be treated as 

three separate color planes:  REDBITS bits in the red plane, GREENBITS bits 

in the green plane, and BLUEBITS bits in the blue plane.  Within each plane, 

the colors are uniformly distributed over the intensity range 0 to 255.  White is 

255 and black is 0. 

(GRAYCOLORMAP BITSPERPIXEL) [Function]

Returns a color map containing shades of gray.  White is 0 and black is 255. 

(COLORMAPCREATE INTENSITIES BITSPERPIXEL) [Function]

Creates a color map for a screen that has BITSPERPIXEL bits per pixel.  If 

BITSPERPIXEL is NIL, the number of bits per pixel is taken from the current 

color display setting.  INTENSITIES specifies the initial colors that should be 

in the map.  If INTENSITIES is not NIL, it should be a list of color 

specifications other than color numbers, e.g., the list of RGB triples returned by 

the function INTENSITIESFROMCOLOR MAP. 

(INTENSITIESFROM COLORMAP COLORMAP) [Function]

Returns a list of the intensity levels of COLORMAP in a form accepted by 

COLORMAPCREATE.    The default is SCREENCOLORMAP.  This list can be written 

on file,   providing a way of saving color map specifications.

(COLORMAPCOPY COLORMAP BITSPERPIXEL) [Function]

Returns a color map that contains the same color intensities as COLORMAP if 

COLORMAP is a color map. Otherwise, it returns a color map with default color 

values.



37Lisp Library Modules, Medley Release 1.2, COLOR

COLOR

(MAPOFACOLOR PRIMARIES) [Function]

Returns a color map that is different shades of one or more of the primary 

colors.  For example, (MAPOFACOLOR ’(RED GREEN BLUE))  gives a color map 

of different shades of gray; (MAPOFACOLOR ’RED) gives different shades of red.

Changing Color Maps

The following functions are provided to access and change the intensity levels in a color 

map.

(SETCOLORINTENSITY COLORMAP COLORNUMBER COLORSPEC) [Function]

Sets the primary intensities of color number COLORNUMBER in the color map 

COLORMAP to the ones specified by COLORSPEC. COLORSPEC can be either 

an RGB triple, an HLS triple, or a color name.  The value returned is NIL.

(COLORLEVEL COLORMAP COLORNUMBER PRIMARYNEWLEVEL)   

[Function]

Sets and reads the intensity level of the primary color PRIMARY (RED, 

GREEN, or BLUE) for the color number COLORNUMBER in the color map 

COLORMAP.  If NEWLEVEL is a number between 0 and 255, it is set.  The 

previous value of the intensity of PRIMARY is returned.

(ADJUSTCOLORMAP PRIMARY DELTA COLORMAP) [Function]

Adds DELTA to the intensity of the PRIMARY color value (RED, GREEN, or 

BLUE) for every color number in COLORMAP.

(ROTATECOLORMAP STARTCOLOR THRUCOLOR) [Function]

Rotates a sequence of colors in the SCREENCOLORMAP.  The rotation moves the 

intensity values of color number STARTCOLOR into color number 

STARTCOLOR+1, the intensity values of color number STARTCOLOR+1 into 

color number STARTCOLOR+2, etc., and THRUCOLOR’s values into 

STARTCOLOR.

(EDITCOLORMAP VAR NOQFLG) [Function]

Allows interactive editing of a color map.  If VAR is an atom whose value is a 

color map, its value is edited.  Otherwise a new color map is created and edited.  

The color map being edited becomes the screen color map while the editing 

takes place so that its effects can be observed.  The edited color map is returned 

as the value.  If NOQFLG is NIL and the color display is on, you are asked if 

you want a test pattern of colors.  If you answer "yes," the function 

SHOWCOLORTESTPATTERN is called, which displays a test pattern showing 

blocks of each of the possible colors.

The system prompts for the location of a color control window to be placed on 

the black-and-white display.  This window allows the value of any of the colors 

to be changed.  The number of the color being edited is in the upper left part of 

the window.  Six bars are displayed.  The right three bars give the color 

intensities for the three primary colors of the current color number.  The left 

three bars give the value of the color’s Hue, Lightness, and Saturation 

parameters. To change these levels, position the mouse cursor in one of the bars 

and press the left mouse button.  While the left button is down, the value of that 

parameter tracks the Y position of the cursor.  When the left button is released, 

the color tracking stops.  To change the color being edited, press the middle 



38 Lisp Library Modules, Medley Release 1.2, COLOR

COLOR

mouse button while the cursor is inside the edit window.  This brings up a menu 

of color numbers.  Select one to set the current color to the selected color.

The color being edited can also be changed by selecting the menu item PickPt.  

This switches the cursor onto the color screen and allows you to select a point 

from the color screen.  It then edits the color of the selected point.

To stop the editing, move the cursor into the title of the editing window and 

press the middle button.  This brings up a menu.  Select Stop to quit. 

Color Bitmaps

A color bitmap is actually a bitmap that has more than one bit per pixel.   Use the 

function BITSPERPIXEL to test whether a bitmap is a color bitmap.

(BITSPERPIXEL BITMAP) [Function]

Returns the bits per pixel of BITMAP. If this does not equal one, BITMAP is a 

color bitmap.

In multiple–bit–per–pixel bitmaps, the bits that represent a pixel are stored 

contiguously.  BITMAPCREATE is passed a BITSPERPIXEL argument to create 

multiple–bit–per–pixel bitmaps.

With CG4,CG6, BITSPERPIXEL is 8 for color bitmaps.

(BITMAPCREATE WIDTH HEIGHT BITSPERPIXEL) [Function]

Creates a color bitmap that is WIDTH pixels wide by HEIGHT pixels high 

allowing BITSPERPIXEL bits per pixel.  Currently any value of 

BITSPERPIXEL except 1, 4, 8, or NIL (defaulting to 1) causes an error. 

BITMAPCREATE may return two types of bitmap. An ordinary BITMAP type 

usually contains up to 131066 cells (32 bits of data) in it. A larger bitmap can be 

created as BIGBM.

(DATATYPE BIGBM (BIGBMWIDTH BIGBMHEIGHT BIGBMLIST)

BIGBM has the list of pointers which point to BITMAPs.

An 8 bpp screen bitmap (1052 * 900) uses approximately 1 Mbyte.  

(COLORSCREENBITMAP) [Function]

Returns the bitmap that is being or will be displayed on the color display.  This 

is NIL if the color display has never been turned on (see COLORDISPLAY below).

Screens, Screenpositions, and Screenregions

In addition to positions and regions, you need to be aware of screens, screenpositions, 

and screenregions in the presence of multiple screens.



39Lisp Library Modules, Medley Release 1.2, COLOR

COLOR

Screens

SCREEN [Datatype]

There are generally two screen datatype instances in existence when working 

with color.  This is because you are attached to two displays, a black and white 

display and a color display.

(MAINSCREEN) [Function]

Returns the screen datatype instance that represents the black and white 

screen.  This will be something like {SCREEN}#74,24740.

(COLORSCREEN) [Function]

Returns the screen datatype instance that represents the color screen.  Screens 

appear as part of screenpositions and screenregions, serving as the extra 

information needed to make clear whether a particular position or region should 

be viewed as lying on the black and white display or the color display.

(SCREENBITMAP SCREEN) [Function]

Returns the bitmap destination of SCREEN.  If SCREEN is NIL, it returns the 

black and white screen bitmap.

Screenpositions

SCREENPOSITION [Record]

Somewhat like a position,  a screenposition denotes a point in an X,Y coordinate 

system on a particular screen.  Screenpositions are defined according to the 

following record declaration:

(RECORD SCREENPOSITION (SCREEN . POSITION)

(SUBRECORD POSITION))

A SCREENPOSITION is an instance of a record with fields XCOORD, YCOORD, and 

SCREEN and is manipulated with the standard record package facilities.  For 

example, (create SCREENPOSITION XCOORD _ 10 YCOORD _ 20 SCREEN 

_ (COLORSCREEN)) creates a screenposition representing the point (10,20) on 

the color display.  You can extract the position of a screenposition by fetching its 

POSITION.  For example, (fetch (SCREENPOSITION POSITION) of SP12).  

Screenregions

SCREENREGION [Record]

Similar to a region, a screenregion denotes a rectangular area in a coordinate 

system.  Screenregions are defined according to the following record declaration:

(RECORD SCREENREGION (SCREEN . REGION)(SUBRECORD REGION))

A screenregion is characterized by the coordinates of its bottom left corner and 

its width and height.  A SCREENREGION is a record with fields LEFT, BOTTOM, 

WIDTH, HEIGHT, and SCREEN.  It can be manipulated with the standard record 

package facilities.  There are access functions for the REGION record that return 

the TOP and RIGHT of the region.  You can extract the region of a screenregion 

by fetching its REGION.  For example, (fetch (SCREENREGION REGION) of 

SR8).



40 Lisp Library Modules, Medley Release 1.2, COLOR

COLOR

Screenposition and Screenregion Prompting

The following functions can be used by programs to allow you to interactively specify 

screenpositions or screenregions on a display screen.

(GETSCREENPOSITION WINDOW CURSOR)  [Function]

Similar to GETPOSITION.  Returns a SCREENPOSITION you specifie.  

GETSCREENPOSITION waits for you to press and release the left button of the 

mouse and returns the cursor screenposition at the time of release.  If WINDOW 

is a WINDOW, the screenposition is on the same screen as WINDOW  and in 

the coordinate system of WINDOW’s display stream.  If WINDOW is NIL, the 

position is in screen coordinates.

(GETBOXSCREENPOSITION BOXWIDTH BOXHEIGHT ORGX ORGY WINDOW 

PROMPTMSG)  [Function]

Similar to GETBOXPOSITION.  Returns a SCREENPOSITION you specified.  This 

function allows you to position a "ghost" region of size BOXWIDTH by 

BOXHEIGHT on a screen, and returns the SCREENPOSITION of the lower left 

corner of the screenregion chosen.  A ghost region is locked to the cursor so that 

if the cursor is moved, the ghost region moves with it.  To change to another 

corner, press and hold the right button.  With the right button down, the cursor 

can be moved across a screen or to other screens without effect on the ghost 

region frame.  When the right button is released, the mouse snaps to the 

nearest corner, which then becomes locked to the cursor.  (To change the held 

corner  after the left or middle button is down,  hold both the original button 

and the right button down while moving the cursor to the desired new corner, 

then release just the right button.)  When the left or middle button is pressed 

and released, the lower left corner of the screenregion chosen at the time of 

release is returned.  If WINDOW is a WINDOW, the screenposition is on the 

same screen as WINDOW  and in the coordinate system of WINDOW’s display 

stream.  If WINDOW is NIL, the position is in the screen.

(GETSCREENREGION MINWIDTH MINHEIGHT OLDREGION NEWREGIONFN 

NEWREGIONFNARG INITCORNERS) [Function]

Similar to GETREGION.  Returns a SCREENREGION you specified.  This function 

allows you to specify a new screenregion and returns that screenregion.  

GETSCREENREGION prompts for a screenregion by displaying a four-pronged box 

next to the cursor arrow at one corner of a "ghost" region: .  If you press the 

left button, the corner of a "ghost" screenregion opposite the cursor is locked 

where it is.  Once one corner has been fixed, the ghost screenregion expands as 

the cursor moves.

To specify a screenregion:  

1. Move the ghost box so that the corner opposite the cursor is at one corner of 

the intended screenregion.

2. Press the left button.

3. Move the cursor to the screenposition of the opposite corner of the intended 

screenregion while holding down the left button

4. Release the left button.  



41Lisp Library Modules, Medley Release 1.2, COLOR

COLOR

Before one corner has been fixed, you can switch the cursor to another corner of 

the ghost screenregion by holding down the right button.  With the right button 

down, the cursor changes to a "forceps" ( ) and the cursor can be moved across 

a screen or to other screens without effect on the ghost screenregion frame.  

When the right button is released, the cursor snaps to the nearest corner of the 

ghost screenregion.

After one corner has been fixed, you can still switch to another corner.  To 

change to another corner, continue to hold down the left button and hold down 

the right button also.  With both buttons down, the cursor can be moved across 

a screen or to other screens without effect on the ghost screenregion frame.  

When the right button is released, the cursor snaps to the nearest corner, which 

becomes the moving corner.  In this way, the screenregion may be moved all 

over a screen, and to other screens, before its size and screenposition are 

finalized.

The size of the initial ghost screenregion is controlled by the MINWIDTH, 

MINHEIGHT, OLDREGION, and INITCORNERS arguments.

(GETBOXSCREENREGION WIDTH HEIGHT ORGX ORGY WINDOW PROMPTMSG)  [

Function]

Similar to GETBOXREGION.  Returns a SCREENREGION you specified.  This 

function performs the same prompting as GETBOXSCREENPOSITION and returns 

the SCREENREGION specified instead of the SCREENPOSITION of its lower left 

corner.

Color Windows and Menus

The Medley window system provides both interactive and programmatic constructs for 

creating, moving, reshaping, overlapping, and destroying windows in such a way that a 

program can use a window in a relatively transparent fashion .  Menus are a special 

type of window provided by the window system, used for displaying a set of items, on 

which you use the mouse cursor to make a selection. The menu facility also allows you 

to create and use menus in interactive programs. 

(CREATEW REGION TITLE BORDERSIZE NOOPENFLG)  [Function]

Creates a new window.  REGION indicates where and how large the window 

should be by specifying the exterior screenregion of the window.  In a user 

environment with multiple screens, such as a black and white screen and color 

screen both connected to the same machine, there is a new special problem in 

indicating which screen the REGION is supposed to be a region of.  To resolve 

this problem, allow CREATEW to take screenregion arguments as REGION.  

For example:

(SETQ FOO (CREATEW (CREATE SCREENREGION

SCREEN _ (COLORSCREEN)

LEFT _ 20  BOTTOM _ 210

WIDTH _ 290 HEIGHT _ 170)

"FOO WINDOW"))

creates a window titled "FOO WINDOW" on the color screen.  To create a 

window on the black and white screen, use SCREEN _ (MAINSCREEN) in the 

CREATE SCREENREGION expression.  



42 Lisp Library Modules, Medley Release 1.2, COLOR

COLOR

Note: It is still perfectly legal to pass in a REGION  that is a region, not a 

screenregion, to CREATEW, but it is better to pass screenregions. When 

REGION is a region, REGION is disambiguated in a somewhat 

arbitrary manner that may not always turn out to be what you want. 

When REGION is a region, REGION is disambiguated by coercing REGION to 

be a screenregion on the screen which currently contains the cursor.  Software 

calling CREATEW with regions instead of screenregions tends to do what you 

expect. 

(WINDOWPROP WINDOW PROP NEWVALUE)  [NoSpread Function]

If PROP is ’SCREEN, then WINDOWPROP returns the screen WINDOW is on.  If 

NEWVALUE is given (even if given as NIL), with PROP is ’SCREEN, then 

WINDOWPROP generates an error.  Any other PROP name is handled in the usual 

way.

(OPENWINDOWS SCREEN)  [Function]

Returns a list of all open windows on SCREEN if SCREEN is a screen datatype 

such as (MAINSCREEN) or (COLORSCREEN).  If SCREEN is NIL, then SCREEN 

defaults to the screen containing the cursor.  If SCREEN is T, a list of all open 

windows on all screens is returned.  

Fonts in Color 

There is no special function for creating color fonts.You use the same font on every 

screen.  

You can use color characters by specifying the foreground color (the color of the 

characters of the font) and background color (the color of the background behind the 

characters that gets printed along with the characters) in the DISPLAYSTREAM data 

used for the current window (see below).

Using Color

The current color implementation allows display streams to operate on color bitmaps.  

The two functions DSPCOLOR and DSPBACKCOLOR set the color in which a stream draws 

when the user defaults a color argument to a drawing function and printing characters.

(DSPCOLOR COLOR STREAM) [Function]

Sets the foreground color of a stream.  It returns the previous foreground color.  

If COLOR is NIL, it returns the current foreground color without changing 

anything.  The default foreground color is MINIMUMCOLOR=0,  which is white in 

the default color maps.

(DSPBACKCOLOR COLOR STREAM)  [Function]

Sets the background color of a stream.   It returns the previous background 

color.  If COLOR is NIL, it returns the current background color without 

changing anything.  The default background color is (MAXIMUMCOLOR 

BITSPERPIXEL)=255, which is black in the default color maps.



43Lisp Library Modules, Medley Release 1.2, COLOR

COLOR

The BITBLT, line–drawing and curve–drawing routines know how to operate on 

a color-capable stream.  Following are some notes about them.

BITBLTing in Color

If you are BITBLTing from a color bitmap onto another color bitmap of the same bpp, 

the operations PAINT, INVERT, and ERASE are done on a bit level, not on a pixel level.  

Thus, painting color 3 onto color 10 results in color 11.

If BITBLTing from a black–and–white bitmap onto a color bitmap, the 1 bits appear in 

the DSPCOLOR, and the 0 bits in DSPBACKCOLOR.  BLTing from black–and–white to color 

is fairly expensive; if the same bitmap is going to be put up several times in the same 

color, it is faster to create a color copy and then to BLT the color copy.

If the source type is TEXTURE and the destination bitmap is a color bitmap, the Texture 

argument is taken to be a color.  Therefore, to fill an area with the color BLUE assuming 

COLORSTR is a stream whose destination is the color screen, use (BITBLT  NIL  NIL  

NIL  COLORSTR  50  75  100  200 ’TEXTURE  ’REPLACE  ’BLUE).

Drawing Curves and Lines in Color

For the functions DRAWCIRCLE, DRAWELLIPSE, and DRAWCURVE, the notion of a brush 

has been extended to include a color.  A BRUSH is now (BRUSHSHAPE BRUSHSIZE 

BRUSHCOLOR).  Also, a brush can be a bitmap (which can be a color bitmap).

Line-drawing routines take a color argument which is the color of the line if the 

destination of the display stream is a color bitmap.

(DRAWLINE X1 Y1 X2 Y2 WIDTH OPERATION STREAM 

COLOR) [Function]

(DRAWTO X Y WIDTH OPERATION STREAM COLOR) [Function]

(RELDRAWTO X Y WIDTH OPERATION STREAM COLOR) [Function]

(DRAWBETWEEN POS1 POS2  WIDTH OPERATION STREAM 

COLOR) [Function]

If the COLOR argument is NIL, the DSPCOLOR of the stream is used.

Printing in Color

Printing only works in REPLACE mode.  The characters have a background color and a 

foreground color determined by the DSPCOLOR and DSPBACKCOLOR .  

Example of printing to an 8 bpp color screen:

(SETQ FOO (CREATEW (CREATE SCREENREGION

SCREEN _ (COLORSCREEN)   LEFT _ 20

BOTTOM _ 210     WIDTH _ 290

HEIGHT _ 170)   "FOO WINDOW"))

(DSPCOLOR FOO ’GREEN)

(DSPBACKCOLOR ’YELLOW)



44 Lisp Library Modules, Medley Release 1.2, COLOR

COLOR

(PRINT ’HELLO FOO) prints in green against a yellow background.

Operating the Cursor on the Color Screen

To move the cursor to the color screen, slide the cursor off the left or right edge of the 

black and white screen onto the color screen, or call the CURSORPOSITION or 

CURSORSCREEN function.

(WORPCURSOR ENABLE) [Function]

If ENABLE is NIL, you cannot exit the current screen by sliding the cursor off.

(CURSORPOSITION NEWPOSITION - -)  [Function]

NEWPOSITION can be a position or a screenposition.

(CURSORSCREEN SCREEN XCOORD YCOORD)  [Function]

Moves the cursor to the screenposition determined by SCREEN, XCOORD, and 

YCOORD.  SCREEN should be the value of either (COLORSCREEN) or 

(MAINSCREEN).

While on the color screen, the cursor is placed by doing BITBLTs in software 

rather than with microcode and hardware as with the black and white cursor.  

It is automatically taken down whenever an operation is performed that 

changes any bits on the color screen.  The speed of the color cursor compares 

well with that of the black–and–white cursor but there can be a noticeable 

flicker when there is much input/output to the color screen.  While the cursor is 

on the color screen, the black-and-white cursor is cleared giving the appearance 

that there is never more than one cursor at a given time.

Miscellaneous Color Functions

(COLORIZEBITMAP BITMAP 0COLOR 1COLOR BITSPERPIXEL) [Function]

Creates a color bitmap from a black–and–white bitmap.  The returned bitmap 

has color number 1COLOR in those pixels of BITMAP that were 1 and 0COLOR 

in those pixels of BITMAP that were 0.  This provides a way of producing a color 

bitmap from a black–and –white bitmap.

(UNCOLORIZEBITMAP BITMAP COLORMAP) [Function]

Creates a black–and–white bitmap from a color bitmap.

(SHOWCOLORTESTPATTERN BARSIZE) [Function]

Displays a pattern of colors on the color display.  This is useful when editing a 

color map.  The pattern has squares of the 16 possible colors laid out in two 

rows at the top of the screen.  Colors 0 through 7 are in the top row, and colors 8 

through 15 are in the next row.  The bottom part of the screen is filled with bars 

of BARSIZE width with consecutive color numbers.  The pattern is designed so 

that every color has a border with every other color (unless BARSIZE is too 

large to allow room for every color—about 20). 



45Lisp Library Modules, Medley Release 1.2, COLOR

COLOR

[This page intentionally left blank]


