
21-1

21. PERFORMANCE ISSUES

This chapter describes a number of areas that often contribute to performance problems in Medley
programs. Many performance problems can be improved by optimizing the use of storage, since
allocating and reclaiming large amounts of storage is expensive. Another tactic that can sometimes
yield performance improvements is to change the use of variable bindings on the stack to reduce
variable lookup time. There are a number of tools that can be used to determine which parts of a
computation cause performance bottlenecks.

Storage Allocation and Garbage Collection

As an Medley application program runs, it creates data structures (allocated out of free storage space),
manipulates them, and then discards them. If there were no way to reclaim this space, over time the
Medley memory would fill up, and the computation would come to a halt. Actually, long before this
could happen the system would probably become intolerably slow, due to “data fragmentation,”
which occurs when the data currently in use are spread over many virtual memory pages, so that
most of the computer time must be spent swapping disk pages into physical memory. The problem of
fragmentation will occur in any situation where the virtual memory is significantly larger than the real
physical memory. To reduce swapping, you want to keep the "working set" (the set of pages
containing actively referenced data) as small as possible.

You can write programs that don’t generate much “garbage” data, or which recycle data, but such
programs tend to be complex and hard to debug. Spending effort writing such programs defeats the
whole point of using a system with automatic storage allocation. An important part of any Lisp
implementation is the “garbage collector” that finds discarded data and reclaims its space.

There are several well-known approaches to garbage collection. One method is the traditional mark-
and-sweep, which identifies “garbage” data by marking all accessible data structures, and then
sweeping through the data spaces to find all unmarked objects (i.e., not referenced by any other
object). This method is guaranteed to reclaim all garbage, but it takes time proportional to the
number of allocated objects, which may be very large. Also, the time that a mark-and-sweep garbage
collection takes is independent of the amount of garbage collected; it is possible to sweep through the
whole virtual memory, and only recover a small amount of garbage.

For interactive applications, it is not acceptable to have long interruptions in a computation for to
garbage collect. Medley solves this problem by using a reference-counting garbage collector. With
this scheme, there is a table containing counts of how many times each object is referenced. This table
is updated as pointers are created and discarded, incurring a small overhead distributed over the
computation as a whole. (Note: References from the stack are not counted, but are handled separately
at "sweep" time; thus the vast majority of data manipulations do not cause updates to this table.) At
opportune moments, the garbage collector scans this table, and reclaims all objects that are no longer
accessible (have a reference count of zero). The pause while objects are reclaimed is only the time for
scanning the reference count tables (small) plus time proportional to the amount of garbage that has to

21-2

INTERLISP-D REFERENCE MANUAL

be collected (typically less than a second). “Opportune” times occur when a certain number of cells
have been allocated or when the system has been waiting for you to type something for long enough.
The frequency of garbage collection is controlled by the functions and variables described below. For
the best system performance, it is desirable to adjust these parameters for frequent, short garbage
collections, which will not interrupt interactive applications for very long, and which will have the
added benefit of reducing data fragmentation, keeping the working set small.

One problem with the Medley garbage collector is that not all garbage is guaranteed to be collected.
Circular data structures, which point to themselves directly or indirectly, are never reclaimed, since
their reference counts are always at least one. With time, this unreclaimable garbage may increase the
working set to unacceptable levels. Some users have worked with the same Medley virtual memory
for a very long time, but it is a good idea to occasionally save all of your functions in files, reinitialize
Medley, and rebuild your system. Many users end their working day by issuing a command to
rebuild their system and then leaving the machine to perform this task in their absence. If the system
seems to be spending too much time swapping (an indication of fragmented working set), this
procedure is definitely recommended.

Another limitation of the reference-counting garbage collector is that the table in which reference
counts are maintained is of fixed size. For typical Lisp objects that are pointed to from exactly one
place (e.g., the individual conses in a list), no burden is placed on this table, since objects whose
reference count is 1 are not explicitly represented in the table. However, large, "rich" data structures,
with many interconnections, backward links, cross references, etc, can contribute many entries to the
reference count table. For example, if you created a data structure that functioned as a doubly-linked
list, such a structure would contribute an entry (reference count 2) for each element.

When the reference count table fills up, the garbage collector can no longer maintain consistent
reference counts, so it stops doing so altogether. At this point, a window appears on the screen with
the following message, and the debugger is entered:

Internal garbage collector tables have overflowed, due

to too many pointers with reference count greater than 1.

*** The garbage collector is now disabled. ***

Save your work and reload as soon as possible.

[This message is slightly misleading, in that it should say "count not equal to 1". In the current
implementation, the garbage collection of a large pointer array whose elements are not otherwise
pointed to can place a special burden on the table, as each element’s reference count simultaneously
drops to zero and is thus added to the reference count table for the short period before the element is
itself reclaimed.]

If you exit the debugger window (e.g., with the RETURN command), your computation can proceed;
however, the garbage collector is no longer operating. Thus, your virtual memory will become
cluttered with objects no longer accessible, and if you continue for long enough in the same virtual
memory image you will eventually fill up the virtual memory backing store and grind to a halt.

21-3

PERFORMANCE ISSUES

Garbage collection in Medley is controlled by the following functions and variables:

(RECLAIM) [Function]

Initiates a garbage collection. Returns 0.

(RECLAIMMIN N) [Function]

Sets the frequency of garbage collection. Interlisp keeps track of the number of cells of
any type that have been allocated; when it reaches a given number, a garbage collection
occurs. If N is non-NIL, this number is set to N. Returns the current setting of the number.

RECLAIMWAIT [Variable]

Medley will invoke a RECLAIM if the system is idle and waiting for your input for

RECLAIMWAIT seconds (currently set for 4 seconds).

(GCGAG MESSAGE) [Function]

Sets the behavior that occurs while a garbage collection is taking place. If MESSAGE is

non-NIL, the cursor is complemented during a RECLAIM; if MESSAGE = NIL, nothing

happens. The value of GCGAG is its previous setting.

(GCTRP) [Function]

Returns the number of cells until the next garbage collection, according to the
RECLAIMMIN number.

The amount of storage allocated to different data types, how much of that storage is in use, and the
amount of data fragmentation can be determined using the following function:

(STORAGE TYPES PAGETHRESHOLD) [Function]

STORAGE prints out a summary, for each data type, of the amount of space allocated to the

data type, and how much of that space is currently in use. If TYPES is non-NIL, STORAGE

only lists statistics for the specified types. TYPES can be a symbol or a list of types. If

PAGETHRESHOLD is non-NIL, then STORAGE only lists statistics for types that have at least

PAGETHRESHOLD pages allocated to them.

STORAGE prints out a table with the column headings Type, Assigned, Free

Items, In use, and Total alloc. Type is the name of the data type. Assigned

is how much of your virtual memory is set aside for items of this type. Currently,
memory is allocated in quanta of two pages (1024 bytes). The numbers under Assigned

show the number of pages and the total number of items that fit on those pages. Free

Items shows how many items are available to be allocated (using the create construct,

Chapter 8); these constitute the "free list" for that data type. In use shows how many

items of this type are currently in use, i.e., have pointers to them and hence have not been
garbage collected. If this number is higher than your program seems to warrant, you may
want to look for storage leaks. The sum of Free Items and In use is always the same

21-4

INTERLISP-D REFERENCE MANUAL

as the total Assigned items. Total alloc is the total number of items of this type that

have ever been allocated (see BOXCOUNT, in the Performance Measuring section below).

Note: The information about the number of items of type LISTP is only

approximate, because list cells are allocated in a special way that
precludes easy computation of the number of items per page.

Note: When a data type is redeclared, the data type name is reassigned.
Pages which were assigned to instances of the old data type are
labeled **DEALLOC**.

At the end of the table printout, STORAGE prints a "Data Spaces Summary" listing the

number of pages allocated to the major data areas in the virtual address space: the space
for fixed-length items (including datatypes), the space for variable-length items, and the
space for symbols. Variable-length data types such as arrays have fixed-length "headers,"
which is why they also appear in the printout of fixed-length data types. Thus, the line
printed for the BITMAP data type says how many bitmaps have been allocated, but the

"assigned pages" column counts only the headers, not the space used by the variable-
length part of the bitmap. This summary also lists "Remaining Pages" in relation to the
largest possible virtual memory, not the size of the virtual memory backing file in use.
This file may fill up, causing a STORAGE FULL error, long before the "Remaining Pages"

numbers reach zero.

STORAGE also prints out information about the sizes of the entries on the variable-length

data free list. The block sizes are broken down by the value of the variable
STORAGE.ARRAYSIZES, initially (4 16 64 256 1024 4096 16384 NIL), which

yields a printout of the form:

variable-datum free list:
le 4 26 items; 104 cells.
le 16 72 items; 783 cells.
le 64 36 items; 964 cells.
le 256 28 items; 3155 cells.
le 1024 3 items; 1175 cells.
le 4096 5 items; 8303 cells.
le 16384 3 items; 17067 cells.
others 1 items; 17559 cells.

This information can be useful in determining if the variable-length data space is
fragmented. If most of the free space is composed of small items, then the allocator may
not be able to find room for large items, and will extend the variable datum space. If this
is extended too much, this could cause an ARRAYS FULL error, even if there is a lot of

space left in little chunks.

(STORAGE.LEFT) [Function]

Provides a programmatic way of determining how much storage is left in the major data
areas in the virtual address space. Returns a list of the form (MDSFREE MDSFRAC

8MBFRAC ATOMFREE ATOMFRAC), where the elements are interpreted as follows:

MDSFREE The number of free pages left in the main data space

(which includes both fixed-length and variable-length
data types).

21-5

PERFORMANCE ISSUES

MDSFRAC The fraction of the total possible main data space that is

free.

8MBFRAC The fraction of the total main data space that is free,

relative to eight megabytes.

This number is useful when using Medley on some
early computers where the hardware limits the address
space to eight megabytes. The function
32MBADDRESSABLE returns non-NIL if the currently

running Medley system can use the full 32 megabyte
address space.

ATOMFREE The number of free pages left in the symbol space.

ATOMFRAC The fraction of the total symbol space that is free.

Note: Another important space resource is the amount of the virtual memory backing
file in use (see VMEMSIZE, Chapter 12). The system will crash if the virtual

memory file is full, even if the address space is not exhausted.

Variable Bindings

Different implementations of Lisp use different methods of accessing free variables. The binding of
variables occurs when a function or a PROG is entered. For example, if the function FOO has the

definition (LAMBDA (A B) BODY), the variables A and B are bound so that any reference to A or B

from BODY or any function called from BODY will refer to the arguments to the function FOO and not

to the value of A or B from a higher level function. All variable names (symbols) have a top level

value cell which is used if the variable has not been bound in any function. In discussions of variable
access, it is useful to distinguish between three types of variable access: local, special and global.
Local variable access is the use of a variable that is bound within the function from which it is used.
Special variable access is the use of a variable that is bound by another function. Global variable
access is the use of a variable that has not been bound in any function. We will often refer to a
variable all of whose accesses are local as a "local variable." Similarly, a variable all of whose accesses
are global we call a "global variable."

In a “deep” bound system, a variable is bound by saving on the stack the variable’s name together
with a value cell which contains that variable’s new value. When a variable is accessed, its value is
found by searching the stack for the most recent binding (occurrence) and retrieving the value stored
there. If the variable is not found on the stack, the variable’s top level value cell is used.

In a “shallow” bound system, a variable is bound by saving on the stack the variable name and the
variable’s old value and putting the new value in the variable’s top level value cell. When a variable
is accessed, its value is always found in its top level value cell.

The deep binding scheme has one disadvantage: the amount of cpu time required to fetch the value of
a variable depends on the stack distance between its use and its binding. The compiler can determine

21-6

INTERLISP-D REFERENCE MANUAL

local variable accesses and compiles them as fetches directly from the stack. Thus this computation
cost only arises in the use of variable not bound in the local frame ("free" variables). The process of
finding the value of a free variable is called free variable lookup.

In a shallow bound system, the amount of cpu time required to fetch the value of a variable is constant
regardless of whether the variable is local, special or global. The disadvantages of this scheme are that
the actual binding of a variable takes longer (thus slowing down function call), the cells that contain
the current in use values are spread throughout the space of all symbol value cells (thus increasing the
working set size of functions) and context switching between processes requires unwinding and
rewinding the stack (thus effectively prohibiting the use of context switching for many applications).

Medley uses deep binding, because of the working set considerations and the speed of context
switching. The free variable lookup routine is microcoded, thus greatly reducing the search time. In
benchmarks, the largest percentage of free variable lookup time was 20 percent of the total ellapsed
time; the normal time was between 5 and 10 percent.

Because of the deep binding, you can sometimes significantly improve performance by declaring
global variables. If a variable is declared global, the compiler will compile an access to that variable as
a retrieval of its top level value, completely bypassing a stack search. This should be done only for
variables that are never bound in functions, such as global databases and flags.

Global variable declarations should be done using the GLOBALVARS file manager command (Chapter

17). Its form is (GLOBALVARS VAR1 ... VARN).

Another way of improving performance is to declare variables as local within a function. Normally,
all variables bound within a function have their names put on the stack, and these names are scanned
during free variable lookup. If a variable is declared to be local within a function, its name is not put
on the stack, so it is not scanned during free variable lookup, which may increase the speed of
lookups. The compiler can also make some other optimizations if a variable is known to be local to a
function.

A variable may be declared as local within a function by including the form (DECLARE (LOCALVARS

VAR1 ... VARN)) following the argument list in the definition of the function. Local variable

declarations only effect the compilation of a function. Interpreted functions put all of their variable
names on the stack, regardless of any declarations.

Performance Measuring

This section describes functions that gather and display statistics about a computation, such as as the
elapsed time, and the number of data objects of different types allocated. TIMEALL and TIME gather

statistics on the evaluation of a specified form. BREAKDOWN gathers statistics on individul functions

 called during a computation. These functions can be used to determine which parts of a computation
are consuming the most resources (time, storage, etc.), and could most profitably be improved.

21-7

PERFORMANCE ISSUES

(TIMEALL TIMEFORM NUMBEROFTIES TIMEWHAT INTERPFLG) [NLambda Function]

Evaluates the form TIMEFORM and prints statistics on time spent in various categories

(elapsed, keyboard wait, swapping time, gc) and data type allocation.

For more accurate measurement on small computations, NUMBEROFTIMES may be

specified (its default is 1) to cause TIMEFORM to be executed NUMBEROFTIMES times. To

improve the accuracy of timing open-coded operations in this case, TIMEALL compiles a

form to execute TIMEFORM NUMBEROFTIMES times (unless INTERPFLG is non-NIL), and

then times the execution of the compiled form.

Note: If TIMEALL is called with NUMBEROFTIMES > 1, the dummy form is

compiled with compiler optimizations on. This means that it is not
meaningful to use TIMEALL with very simple forms that are

optimized out by the compiler. For example, (TIMEALL ’(IPLUS 2

3) 1000) will time a compiled function which simply returns the

number 5, since (IPLUS 2 3) is optimized to the integer 5.

TIMEWHAT restricts the statistics to specific categories. It can be an atom or list of

datatypes to monitor, and/or the atom TIME to monitor time spent. Note that ordinarily,

TIMEALL monitors all time and datatype usage, so this argument is rarely needed.

TIMEALL returns the value of the last evaluation of TIMEFORM.

(TIME TIMEX TIMEN TIMETYP) [NLambda Function]

TIME evaluates the form TIMEX, and prints out the number of CONS cells allocated and

computation time. Garbage collection time is subtracted out. This function has been
largely replaced by TIMEALL.

If TIMEN is greater than 1, TIMEX is executed TIMEN times, and TIME prints out (number

of conses)/TIMEN, and (computation time)/TIMEN. If TIMEN = NIL, it defaults to 1. This

is useful for more accurate measurement on small computations.

If TIMETYP is 0, TIME measures and prints total real time as well as computation time. If

TIMETYP = 3, TIME measures and prints garbage collection time as well as computation

time. If TIMETYP = T, TIME measures and prints the number of pagefaults.

TIME returns the value of the last evaluation of TIMEX.

(BOXCOUNT TYPE N) [Function]

Returns the number of data objects of type TYPE allocated since this Interlisp system was

created. TYPE can be any data type name (see TYPENAME, Chapter 8). If TYPE is NIL, it

defaults to FIXP. If N is non-NIL, the corresponding counter is reset to N.

(CONSCOUNT N) [Function]

Returns the number of CONS cells allocated since this Interlisp system was created. If N is

non-NIL, resets the counter to N. Equivalent to (BOXCOUNT ’LISTP N).

21-8

INTERLISP-D REFERENCE MANUAL

(PAGEFAULTS) [Function]

Returns the number of page faults since this Interlisp system was created.

BREAKDOWN

TIMEALL collects statistics for whole computations. BREAKDOWN is available to analyze the

breakdown of computation time (or any other measureable quantity) function by function.

(BREAKDOWN FN1 ... FNN) [NLambda NoSpread Function]

You call BREAKDOWN giving it a list of function names (unevaluated). These functions are

modified so that they keep track of various statistics.

To remove functions from those being monitored, simply UNBREAK (Chapter 15) the

functions, thereby restoring them to their original state. To add functions, call
BREAKDOWN on the new functions. This will not reset the counters for any functions not

on the new list. However (BREAKDOWN) will zero the counters of all functions being

monitored.

The procedure used for measuring is such that if one function calls other and both are
"broken down", then the time (or whatever quantity is being measured) spent in the inner
function is not charged to the outer function as well.

BREAKDOWN will not give accurate results if a function being measured is not returned

from normally, e.g., a lower RETFROM (or ERROR) bypasses it. In this case, all of the time

(or whatever quantity is being measured) between the time that function is entered and
the time the next function being measured is entered will be charged to the first function.

(BRKDWNRESULTS RETURNVALUESFLG) [Function]

BRKDWNRESULTS prints the analysis of the statistics requested as well as the number of

calls to each function. If RETURNVALUESFLG is non-NIL, BRKDWNRESULTS will not to

print the results, but instead return them in the form of a list of elements of the form
(FNNAME #CALLS VALUE).

Example:

← (BREAKDOWN SUPERPRINT SUBPRINT COMMENT1)
(SUPERPRINT SUBPRINT COMMENT1)
←(PRETTYDEF ’(SUPERPRINT) ’FOO)
FOO.;3
←(BRKDWNRESULTS)
FUNCTIONS TIME #CALLS PER CALL %
SUPERPRINT 8.261 365 0.023 20
SUBPRINT 31.910 141 0.226 76
COMMENT1 1.612 8 0.201 4
TOTAL 41.783 514 0.081
NIL
←(BRKDWNRESULTS T)

21-9

PERFORMANCE ISSUES

((SUPERPRINT 365 8261) (SUBPRINT 141 31910)
(COMMENT1 8 1612))

BREAKDOWN can be used to measure other statistics, by setting the following variables:

BRKDWNTYPE [Variable]

To use BREAKDOWN to measure other statistics, before calling BREAKDOWN, set the variable

BRKDWNTYPE to the quantity of interest, e.g., TIME, CONSES, etc, or a list of such

quantities. Whenever BREAKDOWN is called with BRKDWNTYPE not NIL, BREAKDOWN

performs the necessary changes to its internal state to conform to the new analysis. In
particular, if this is the first time an analysis is being run with a particular statistic, a
measuring function will be defined, and the compiler will be called to compile it. The
functions being broken down will be redefined to call this measuring function. When
BREAKDOWN is through initializing, it sets BRKDWNTYPE back to NIL. Subsequent calls to

BREAKDOWN will measure the new statistic until BRKDWNTYPE is again set and a new

BREAKDOWN performed.

BRKDWNTYPES [Variable]

The list BRKDWNTYPES contains the information used to analyze new statistics. Each

entry on BRKDWNTYPES should be of the form (TYPE FORM FUNCTION), where TYPE is

a statistic name (as would appear in BRKDWNTYPE), FORM computes the statistic, and

FUNCTION (optional) converts the value of form to some more interesting quantity. For

example, (TIME (CLOCK 2) (LAMBDA (X) (FQUOTIENT X 1000))) measures

computation time and reports the result in seconds instead of milliseconds.
BRKDWNTYPES currently contains entries for TIME, CONSES, PAGEFAULTS, BOXES, and

FBOXES.

Example:

←(SETQ BRKDWNTYPE ’(TIME CONSES))
(TIME CONSES)
←(BREAKDOWN MATCH CONSTRUCT)
(MATCH CONSTRUCT)
←(FLIP ’(A B C D E F G H C Z) ’(.. $1 .. #2 ..)
’(.. #3 ..))
(A B D E F G H Z)
←(BRKDWNRESULTS)
FUNCTIONS TIME #CALLS PER CALL %
MATCH 0.036 1 0.036 54
CONSTRUCT 0.031 1 0.031 46
TOTAL 0.067 2 0.033
FUNCTIONS CONSES #CALLS PER CALL %
MATCH 32 1 32.000 40
CONSTRUCT 49 1 49.000 60
TOTAL 81 2 40.500
NIL

Occasionally, a function being analyzed is sufficiently fast that the overhead involved in
measuring it obscures the actual time spent in the function. If you were using TIME, you

would specify a value for TIMEN greater than 1 to give greater accuracy. A similar option

is available for BREAKDOWN. You can specify that a function(s) be executed a multiple

21-10

INTERLISP-D REFERENCE MANUAL

number of times for each measurement, and the average value reported, by including a
number in the list of functions given to BREAKDOWN. For example, BREAKDOWN(EDITCOM

EDIT4F 10 EDIT4E EQP) means normal breakdown for EDITCOM and EDIT4F but

executes (the body of) EDIT4E and EQP 10 times each time they are called. Of course, the

functions so measured must not cause any harmful side effects, since they are executed
more than once for each call. The printout from BRKDWNRESULTS will look the same as

though each function were run only once, except that the measurement will be more
accurate.

Another way of obtaining more accurate measurement is to expand the call to the
measuring function in-line. If the value of BRKDWNCOMPFLG is non-NIL (initially NIL),

then whenever a function is broken-down, it will be redefined to call the measuring
function, and then recompiled. The measuring function is expanded in-line via an
appropriate macro. In addition, whenever BRKDWNTYPE is reset, the compiler is called for

all functions for which BRKDWNCOMPFLG was set at the time they were originally broken-

down, i.e. the setting of the flag at the time a function is broken-down determines whether
the call to the measuring code is compiled in-line.

GAINSPACE

If you have large programs and databases, you may sometimes find yourself in a situation where you
need to obtain more space, and are willing to pay the price of eliminating some or all of the context
information that the various user-assistance facilities such as the programmer’s assistant, file package,
CLISP, etc., have accumulated during the course of his session. The function GAINSPACE provides an

easy way to selectively throw away accumulated data:

(GAINSPACE) [Function]

Prints a list of deletable objects, allowing you to specify at each point what should be
discarded and what should be retained. For example:

←(GAINSPACE)
purge history lists ? Yes
purge everything, or just the properties, e.g.,
SIDE, LISPXPRINT, etc. ?
just the properties
discard definitions on property lists ? Yes
discard old values of variables ? Yes
erase properties ? No
erase CLISP translations? Yes

GAINSPACE is driven by the list GAINSPACEFORMS. Each element on GAINSPACEFORMS is of the

form (PRECHECK MESSAGE FORM KEYLST). If PRECHECK, when evaluated, returns NIL,

GAINSPACE skips to the next entry. For example, you will not be asked whether or not to purge the

history list if it is not enabled. Otherwise, ASKUSER (Chapter 26) is called with the indicated MESSAGE

and the (optional) KEYLST. If you respond No, i.e., ASKUSER returns N, GAINSPACE skips to the next

entry. Otherwise, FORM is evaluated with the variable RESPONSE bound to the value of ASKUSER. In

the above example, the FORM for the "purge history lists" question calls ASKUSER to ask

21-11

PERFORMANCE ISSUES

"purge everything, ..." only if you had responded Yes. If you had responded with

Everything, the second question would not have been asked.

The "erase properties" question is driven by a list SMASHPROPSMENU. Each element on this list is

of the form (MESSAGE . PROPS). You are prompted with MESSAGE (by ASKUSER), and if your

response is Yes, PROPS is added to the list SMASHPROPS. The "discard definitions on

property lists" and "discard old values of variables" questions also add to

SMASHPROPS. You will not be prompted for any entry on SMASHPROPSMENU for which all of the

corresponding properties are already on SMASHPROPS. SMASHPROPS is initially set to the value of

SMASHPROPSLST. This permits you to specify in advance those properties which you always want

discarded, and not be asked about them subsequently. After finishing all the entries on
GAINSPACEFORMS, GAINSPACE checks to see if the value of SMASHPROPS is non-NIL, and if so, does

a MAPATOMS, i.e., looks at every atom in the system, and erases the indicated properties.

You can change or add new entries to GAINSPACEFORMS or SMASHPROPSMENU, so that GAINSPACE

can also be used to purge structures that your programs have accumulated.

Using Data Types Instead of Records

If a program uses large numbers of large data structures, there are several advantages to representing
them as user data types rather than as list structures. The primary advantage is increased speed:
accessing and setting the fields of a data type can be significantly faster than walking through a list
with repeated CARs and CDRs. Also,

Compiled code for referencing data types is usually smaller. Finally, by reducing the number of
objects created (one object against many list cells), this can reduce the expense of garbage collection.

User data types are declared by using the DATATYPE record type (Chapter 8). If a list structure has

been defined using the RECORD record type (Chapter 8), and all accessing operations are written using

the record package’s fetch, replace, and create operations, changing from RECORDs to

DATATYPEs only requires editing the record declaration (using EDITREC, Chapter 8) to replace

declaration type RECORD by DATATYPE, and recompiling.

Note: There are some minor disadvantages: First, there is an upper limit on the
number of data types that can exist. Also, space for data types is allocated two
pages at a time. Each data type which has any instances allocated has at least
two pages assigned to it, which may be wasteful of space if there are only a few
examples of a given data type. These problems should not effect most
applications programs.

21-12

INTERLISP-D REFERENCE MANUAL

Using “Fast” and “Destructive” Functions

Among the functions used for manipulating objects of various data types, there are a number of
functions which have "fast" and "destructive" versions. You should be aware of what these functions
do, and when they should be used.

“Fast” functions: By convention, a function named by prefixing an existing function name with F

indicates that the new function is a "fast" version of the old. These usually have the same definitions
as the slower versions, but they compile open and run without any "safety" error checks. For example,
FNTH runs faster than NTH, however, it does not make as many checks (for lists ending with anything

but NIL, etc). If these functions are given arguments that are not in the form that they expect, their

behavior is unpredictable; they may run forever, or cause a system error. In general, you should only
use "fast" functions in code that has already been completely debugged, to speed it up.

“Destructive” functions: By convention, a function named by prefixing an existing function with D

indicates the new function is a "destructive" version of the old one, which does not make any new
structure but cannibalizes its argument(s). For example, REMOVE returns a copy of a list with a

particular element removed, but DREMOVE actually changes the list structure of the list.

(Unfortunately, not all destructive functions follow this naming convention: the destructive version of
APPEND is NCONC.) You should be careful when using destructive functions that they do not

inadvertantly change data structures.

