
20-1

20. CLISP

The syntax of Lisp is very simple. It can be described concisely, but it makes Lisp difficult to read and
write without tools. Unlike many languages, there are no reserved words in Lisp such as IF, THEN,

FOR, DO, etc., nor reserved characters like +, -, =, ←, etc. The only components of the language are

atoms and delimiters. This eliminates the need for parsers and precedence rules, and makes Lisp
programs easy to mainpuilate. For example, a Lisp interpreter can be written in one or two pages of
Lisp code. This makes Lisp the most suitable programming language for writing programs that deal
with other programs as data.

Human language is based on more complicated structures and relies more on special words to carry
the meaning. The definiton of the factorial function looks like this in Lisp:

(COND ((ZEROP N) 1) (T (TIMES N (FACTORIAL ((SUB1 N))))))

This definition is easy to read for a machine but difficult to read for a human. CLISP is designed to
make Interlisp programs easier to read and write. CLISP does this by translating various operators,
conditionals, and iterative statements to Interlisp. For example, factorial can be written in CLISP:

(IF N = 0 THEN 1 ELSE N*(FACTORIAL N-1))

CLISP will translate this expression to the form in the example above. The translation will take place
when the form is read so there are no performance penalties.

You should view CLISP as a shothand for produceing Lisp programs. CLISP makes a program easy to
read and sometimes more compact.

CLISP is implemented via the error correction machinery in Interlisp (see Chapter 20). Any
expression that Interlisp thinks is well-formed will never be seen by CLISP This means that
interpreted programs that do not use CLISP constructs do not pay for its availability by slower
execution time. In fact, the Interlisp interpreter does not know about CLISP at all. When the
interpreter finds an error it calls an error routine which in turn invokes the Do-What-I-Mean (DWIM)
analyzer. The DWIM analyzer knows how to deal with CLISP expressions. If the expression in
question turns out to be a CLISP construct, the translated form is returned to the interpreter. In
addition, the original CLISP expression is modified so that it becomes the correctly translated Interlisp
form. In this way, the analysis and translation are done only once.

Integrating CLISP into Medley makes possible Do-What-I-Mean features for CLISP constructs as well
as for pure Lisp expressions. For example, if you have defined a function named GET-PARENT, CLISP

would know not to attempt to interpret the form (GET-PARENT) as an arithmetic infix operation.

(Actually, CLISP would never get to see this form, since it does not contain any errors.) If you
mistakenly write (GET-PRAENT), CLISP would know you meant (GET-PARENT), and not

20-2

INTERLISP-D REFERENCE MANUAL

(DIFFERENCE GET PRAENT), by using the information that PARENT is not the name of a variable,

and that GET-PARENT is the name of a user function whose spelling is "very close" to that of GET-

PRAENT. Similarly, by using information about the program’s environment not readily available to a

preprocessor, CLISP can successfully resolve the following sorts of ambiguities:

1. (LIST X*FACT N), where FACT is the name of a variable, means (LIST (X*FACT)

N).

2. (LIST X*FACT N), where FACT is not the name of a variable but instead is the name

of a function, means (LIST X*(FACT N)), i.e., N is FACT’s argument.

3. (LIST X*FACT(N)), FACT the name of a function (and not the name of a variable),

means (LIST X*(FACT N)).

4. Cases 1, 2 and 3 with FACT misspelled!

The first expression is correct both from the standpoint of CLISP syntax and semantics so the change
would be made notification. In the other cases, you would be informed or consulted about what was
taking place. For example, suppose you write the expression (LIST X*FCCT N). Assume also that

there was both a function named FACT and a variable named FCT.

1. You will first be asked if FCCT is a misspelling of FCT. If you say YES, the expression

will be interpreted as (LIST (X*FCT) N). If you say NO, you will be asked if FCCT

was a misspelling of FACT, i.e., if you intended X*FCCT N to mean X*(FACT N).

2. If you say YES to this question, the indicated transformation will be performed. If you

say NO, the system will ask if X*FCCT should be treated as CLISP, since FCCT is not

the name of a (bound) variable.

3. If you say YES, the expression will be transformed, if NO, it will be left alone, i.e., as

(LIST X*FCCT N). Note that we have not even considered the case where X*FCCT is

itself a misspelling of a variable name, e.g., a variable named XFCT (as with GET-

PRAENT). This sort of transformation will be considered after you said NO to X*FCCT

N -> X*(FACT N).

The question of whether X*FCCT should be treated as CLISP is important because Interlisp users may

have programs that employ identifiers containing CLISP operators. Thus, if CLISP encounters the
expression A/B in a context where either A or B are not the names of variables, it will ask you if A/B is

intended to be CLISP, in case you really do have a free variable named A/B.

Note: Through the discussion above, we speak of CLISP or DWIM asking you.
Actually, if you typed in the expression in question for immediate execution, you
are simply informed of the transformation, on the grounds that you would prefer
an occasional misinterpretation rather than being continuously bothered,
especially since you can always retype what you intended if a mistake occurs,
and ask the programmer’s assistant to UNDO the effects of the mistaken

operations if necessary. For transformations on expressions in your programs,
you can tell CLISP whether you wish to operate in CAUTIOUS or TRUSTING

mode. In the former case (most typical) you will be asked to approve

20-3

CLISP

transformations, in the latter, CLISP will operate as it does on type-in, i.e.,
perform the transformation after informing you.

CLISP can also handle parentheses errors caused by typing 8 or 9 for (or). (On most terminals, 8

and 9 are the lowercase characters for (and), i.e., (and 8 appear on the same key, as do) and 9.)

For example, if you write N*8FACTORIAL N-1, the parentheses error can be detected and fixed

before the infix operator * is converted to the Interlisp function TIMES. CLISP is able to distinguish

this situation from cases like N*8*X meaning (TIMES N 8 X), or N*8X, where 8X is the name of a

variable, again by using information about the programming environment. In fact, by integrating
CLISP with DWIM, CLISP has been made sufficiently tolerant of errors that almost everything can be
misspelled! For example, CLISP can successfully translate the definition of FACTORIAL:

(IFF N = 0 THENN1 ESLE N*8FACTTORIALNN-1)

to the corresponding COND, while making five spelling corrections and fixing the parenthesis error.

CLISP also contains a facility for converting from Interlisp back to CLISP, so that after running the
above incorrect definition of FACTORIAL, you could "clispify" the now correct version to obtain (IF

N = 0 THEN 1 ELSE N*(FACTORIAL N-1)).

This sort of robustness prevails throughout CLISP. For example, the iterative statement permits you
to say things like:

(FOR OLD X FROM M TO N DO (PRINT X) WHILE (PRIMEP X))

However, you can also write OLD (X←M), (OLD X←M), (OLD (X←M)), permute the order of the

operators, e.g., (DO PRINT X TO N FOR OLD X←M WHILE PRIMEP X), omit either or both sets

of parentheses, misspell any or all of the operators FOR, OLD, FROM, TO, DO, or WHILE, or leave out the

word DO entirely! And, of course, you can also misspell PRINT, PRIMEP, M or N! In this example, the

only thing you could not misspell is the first X, since it specifies the name of the variable of iteration.

The other two instances of X could be misspelled.

CLISP is well integrated into Medley. For example, the above iterative statement translates into an
equivalent Interlisp form using PROG, COND, GO, etc. When the interpreter subsequently encounters

this CLISP expression, it automatically obtains and evaluates the translation. Similarly, the compiler
"knows" to compile the translated form. However, if you PRETTYPRINT your program,

PRETTYPRINT "knows" to print the original CLISP at the corresponding point in your function.

Similarly, when you edit your program, the editor keeps the translation invisible to you. If you
modify the CLISP, the translation is automatically discarded and recomputed the next time the
expression is evaluated.

In short, CLISP is not a language at all, but rather a system. It plays a role analagous to that of the
programmer’s assistant (Chapter 13). Whereas the programmer’s assistant is an invisible
intermediary agent between your console requests and the Interlisp executive, CLISP sits between
your programs and the Interlisp interpreter.

20-4

INTERLISP-D REFERENCE MANUAL

Only a small effort has been devoted to defining the core syntax of CLISP. Instead, most of the effort
has been concentrated on providing a facility which "makes sense" out of the input expressions using
context information as well as built-in and acquired information about user and system programs. It
has been said that communication is based on the intention of the speaker to produce an effect in the
recipient. CLISP operates under the assumption that what you say is intended to represent a
meaningful operation, and therefore tries very hard to make sense out of it. The motivation behind
CLISP is not to provide you with many different ways of saying the same thing, but to enable you to
worry less about the syntactic aspects of your communication with the system. In other words, it gives
you a new degree of freedom by permitting you to concentrate more on the problem at hand, rather
than on translation into a formal and unambiguous language.

DWIM and CLISP are invoked on iterative statements because CAR of the iterative statement is not the

name of a function, and hence generates an error. If you define a function by the same name as an i.s.
operator, e.g., WHILE, TO, etc., the operator will no longer have the CLISP interpretation when it

appears as CAR of a form, although it will continue to be treated as an i.s. operator if it appears in the

interior of an i.s. To alert you, a warning message is printed, e.g., (WHILE DEFINED, THEREFORE

DISABLED IN CLISP).

CLISP Interaction with User

Syntactically and semantically well formed CLISP transformations are always performed without
informing you. Other CLISP transformations described in the previous section, e.g., misspellings of
operands, infix operators, parentheses errors, unary minus - binary minus errors, all follow the same
protocol as other DWIM transformations (Chapter 19). That is, if DWIM has been enabled in
TRUSTING mode, or the transformation is in an expression you typed in for immediate execution,

your approval is not requested, but you are informed. However, if the transformation involves a user
program, and DWIM was enabled in CAUTIOUS mode, you will be asked to approve. If you say NO,

the transformation is not performed. Thus, in the previous section, phrases such as "one of these
(transformations) succeeds" and "the transformation LAST-ELL -> LAST-EL would be found" etc.,

all mean if you are in CAUTIOUS mode and the error is in a program, the corresponding

transformation will be performed only if you approve (or defaults by not responding). If you say NO,

the procedure followed is the same as though the transformation had not been found. For example, if
A*B appears in the function FOO, and B is not bound (and no other transformations are found) you

would be asked A*B [IN FOO] TREAT AS CLISP ? (The waiting time on such interactions is

three times as long as for simple corrections, i.e., 3*DWIMWAIT).

In certain situations, DWIM asks for approval even if DWIM is enabled in TRUSTING mode. For

example, you are always asked to approve a spelling correction that might also be interpreted as a
CLISP transformation, as in LAST-ELL -> LAST-EL.

If you approved, A*B would be transformed to (ITIMES A B), which would then cause a U.B.A.B.

error in the event that the program was being run (remember the entire discussion also applies to
DWIMifying). If you said NO, A*B would be left alone.

20-5

CLISP

If the value of CLISPHELPFLG = NIL (initally T), you will not be asked to approve any CLISP

transformation. Instead, in those situations where approval would be required, the effect is the same
as though you had been asked and said NO.

CLISP Character Operators

CLISP recognizes a number of special characters operators, both prefix and infix, which are translated
into common expressions. For example, the character + is recognized to represent addition, so CLISP

translates the symbol A+B to the form (IPLUS A B). Note that CLISP is invoked, and this translation

is made, only if an error occurs, such as an unbound atom error or an undefined function error for the
perfectly legitamate symbol A+B. Therefore you may choose not to use these facilities with no

penalty, similar to other CLISP facilities.

You have a lot of flexability in using CLISP character operators. A list can always be substituted for a
symbol, and vice versa, without changing the interpretation of a phrase. For example, if the value of
(FOO X) is A, and the value of (FIE Y) is B, then (LIST (FOO X)+(FIE Y)) has the same value

as (LIST A+B). Note that the first expression is a list of four elements: the atom "LIST", the list

"(FOO X)", the atom "+", and the list "(FIE X)", whereas the second expression, (LIST A+B), is a

list of only two elements: the symbol "LIST" and the symbol "A+B". Since (LIST (FOO X)+(FIE

Y)) is indistinguishable from (LIST (FOO X) + (FIE Y)) because spaces before or after

parentheses have no effect on the Interlisp READ program, to be consistent, extra spaces have no effect

on atomic operands either. In other words, CLISP will treat (LIST A+ B), (LIST A +B), and

(LIST A + B) the same as (LIST A+B).

Note: CLISP does not use its own special READ program because this would require

you to explicitly identify CLISP expressions, instead of being able to intermix
Interlisp and CLISP.

+ [CLISP Operator]
- [CLISP Operator]
* [CLISP Operator]
/ [CLISP Operator]
↑ [CLISP Operator]

CLISP recognizes +, -, *, /, and ↑ as the normal arithmetic infix operators. The - is also

recognized as the prefix operator, unary minus. These are converted to PLUS,

DIFFERENCE (or in the case of unary minus, MINUS), TIMES, QUOTIENT, and EXPT.

Normally, CLISP uses the "generic" arithmetic functions PLUS, TIMES, etc. CLISP

contains a facility for declaring which type of arithmetic is to be used, either by making a
global declaration, or by separate declarations about individual functions or variables.

The usual precedence rules apply (although you can easily change them), i.e., * has higher

precedence than + so that A+B*C is the same as A+(B*C), and both * and / are lower

than ↑ so that 2*X↑2 is the same as 2*(X↑2). Operators of the same precedence group

from left to right, e.g., A/B/C is equivalent to (A/B)/C. Minus is binary whenever

possible, i.e., except when it is the first operator in a list, as in (-A) or (-A), or when it

20-6

INTERLISP-D REFERENCE MANUAL

immediately follows another operator, as in A*-B. Note that grouping with parentheses

can always be used to override the normal precedence grouping, or when you are not sure
how a particular expression will parse. The complete order of precedence for CLISP
operators is given below.

Note that + in front of a number will disappear when the number is read, e.g., (FOO X

+2) is indistinguishable from (FOO X 2). This means that (FOO X +2) will not be

interpreted as CLISP, or be converted to (FOO (IPLUS X 2)). Similarly, (FOO X -2)

will not be interpreted the same as (FOO X-2). To circumvent this, always type a space

between the + or - and a number if an infix operator is intended, e.g., write (FOO X +

2).

= [CLISP Operator]
GT [CLISP Operator]
LT [CLISP Operator]
GE [CLISP Operator]
LE [CLISP Operator]

These are infix operators for "Equal", "Greater Than", "Less Than", "Greater Than or
Equal", and "Less Than or Equal".

GT, LT, GE, and LE are all affected by the same declarations as + and *, with the initial

default to use GREATERP and LESSP.

Note that only single character operators, e.g., +, ←, =, etc., can appear in the interior of an

atom. All other operators must be set off from identifiers with spaces. For example, XLTY

will not be recognized as CLISP. In some cases, DWIM will be able to diagnose this
situation as a run-on spelling error, in which case after the atom is split apart, CLISP will
be able to perform the indicated transformation.

A number of Lisp functions, such as EQUAL, MEMBER, AND, OR, etc., can also be treated as CLISP infix

operators. New infix operators can be easily added (see the CLISP Internal Convetions section below).
Spelling correction on misspelled infix operators is peformed using CLISPINFIXSPLST as a spelling

list.

AND is higher than OR, and both AND and OR are lower than the other infix operators, so (X OR Y

AND Z) is the same as (X OR (Y AND Z)), and (X AND Y EQUAL Z) is the same as (X AND (Y

EQUAL Z)). All of the infix predicates have lower precedence than Interlisp forms, since it is far

more common to apply a predicate to two forms, than to use a Boolean as an argument to a function.
Therefore, (FOO X GT FIE Y) is translated as ((FOO X) GT (FIE Y)), rather than as (FOO (X

GT (FIE Y))). However, you can easily change this.

: [CLISP Operator]

X:N extracts the Nth element of the list X. FOO:3 specifies the third element of FOO, or

(CADDR FOO). If N is less than zero, this indicates elements counting from the end of the

list; i.e. FOO:-1 is the last element of FOO. : operators can be nested, so FOO:1:2 means

the second element of the first element of FOO, or (CADAR FOO).

20-7

CLISP

The : operator can also be used for extracting substructures of records (see Chapter 8).
Record operations are implemented by replacing expressions of the form X:FOO by (fetch

FOO of X). Both lower- and uppercase are acceptable.

: is also used to indicate operations in the pattern match facility (see Chapter 12). X:(&

’A -- ’B) translates to (match X with (& ’A -- ’B))

. [CLISP Operator]

In combination with :, a period can be used to specify the "data path" for record
operations. For example, if FOO is a field of the BAR record, X:BAR.FOO is translated into

(fetch (BAR FOO) of X). Subrecord fields can be specified with multiple periods:

X:BAR.FOO.BAZ translates into (fetch (BAR FOO BAZ) of X).

Note: If a record contains fields with periods in them, CLISPIFY will not

translate a record operation into a form using periods to specify the
data path. For example, CLISPIFY will NOT translate (fetch A.B

of X) into X:A.B.

:: [CLISP Operator]

X:N, returns the Nth tail of the list X. For example, FOO::3 is (CDDDR FOO), and FOO::-

1 is (LAST FOO).

← [CLISP Operator]

← is used to indicate assignment. For example, X←Y translates to (SETQ X Y). If X does

not have a value, and is not the name of one of the bound variables of the function in
which it appears, spelling correction is attempted. However, since this may simply be a
case of assigning an initial value to a new free variable, DWIM will always ask for
approval before making the correction.

In conjunction with : and ::, ← can also be used to perform a more general type of

assignment, involving structure modification. For example, X:2←Y means "make the

second element of X be Y", in Interlisp terms (RPLACA (CDR X) Y). Note that the value

of this operation is the value of RPLACA, which is (CDR X), rather than Y. Negative

numbers can also be used, e.g., X:-2_Y, which translates to (RPLACA (NLEFT X 2)

Y).

You can indicate you want /RPLACA and /RPLACD used (undoable version of RPLACA

and RPLACD, see Chapter 13), or FRPLACA and FRPLACD (fast versions of RPLACA and

RPLACD, see Chapter 3), by means of CLISP declarations. The initial default is to use

RPLACA and RPLACD.

← is also used to indicate assignment in record operations (X:FOO←Y translates to

(replace FOO of X with Y).), and pattern match operations (Chapter 12).

← has different precedence on the left from on the right. On the left,← is a "tight"

operator, i.e., high precedence, so that A+B←C is the same as A+(B←C). On the right, ←

has broader scope so that A←B+C is the same as A←(B+C).

20-8

INTERLISP-D REFERENCE MANUAL

On type-in, $←FORM (where $ is the escape key) is equivalent to set the "last thing

mentioned", i.e., is equivalent to (SET LASTWORD FORM) (see Chapter 20). For example,

immediately after examining the value of LONGVARIABLENAME, you could set it by typing

$← followed by a form.

Note that an atom of the form X←Y, appearing at the top level of a PROG, will not be

recognized as an assignment statement because it will be interpreted as a PROG label by

the Interlisp interpreter, and therefore will not cause an error, so DWIM and CLISP will

never get to see it. Instead, one must write (X←Y).

< [CLISP Operator]
> [CLISP Operator]

Angle brackets are used in CLISP to indicate list construction. The appearance of a "<"

corresponds to a "(" and indicates that a list is to be constructed containing all the

elements up to the corresponding ">". For example, <A B <C>> translates to (LIST A

B (LIST C)). ! can be used to indicate that the next expression is to be inserted in the

list as a segment, e.g., <A B ! C> translates to (CONS A (CONS B C)) and <! A ! B

C> to (APPEND A B (LIST C)). !! is used to indicate that the next expression is to be

inserted as a segment, and furthermore, all list structure to its right in the angle brackets is
to be physically attached to it, e.g., <!! A B> translates to (NCONC1 A B), and <!!A !B

!C> to (NCONC A (APPEND B C)). Not (NCONC (APPEND A B) C), which would

have the same value, but would attach C to B, and not attach either to A. Note that <, !,

!!, and > need not be separate atoms, for example, <A B ! C> may be written equally

well as < A B !C >. Also, arbitrary Interlisp or CLISP forms may be used within angle

brackets. For example, one can write <FOO←(FIE X) ! Y> which translates to (CONS

(SETQ FOO (FIE X)) Y). CLISPIFY converts expressions in CONS, LIST, APPEND,

NCONC, NCONC1, /NCONC, and /NCONC1 into equivalent CLISP expressions using <, >, !,

and !!.

Note: brackets differ from other CLISP operators. For example, <A B ’C>

translates to (LIST A B (QUOTE C)) even though following ’, all

operators are ignored for the rest of the identifier. (This is true only if a
previous unmatched < has been seen, e.g., (PRINT ’A>B) will print

the atom A>B.) Note however that <A B ’ C> D> is equivalent to

(LIST A B (QUOTE C>) D).

’ [CLISP Operator]

CLISP recognizes ’ as a prefix operator. ’ means QUOTE when it is the first character in

an identifier, and is ignored when it is used in the interior of an identifier. Thus, X = ’Y

means (EQ X (QUOTE Y)), but X = CAN’T means (EQ X CAN’T), not (EQ X CAN)

followed by (QUOTE T). This enables users to have variable and function names with ’

in them (so long as the ’ is not the first character).

Following ’, all operators are ignored for the rest of the identifier, e.g., ’*A means

(QUOTE *A), and ’X=Y means (QUOTE X=Y), not (EQ (QUOTE X) Y). To write (EQ

20-9

CLISP

(QUOTE X) Y), one writes Y=’X, or ’X =Y. This is one place where an extra space does

make a difference.

On type-in, ’$ (escape) is equivalent to (QUOTE VALUE-OF-LASTWORD) (see Chapter 19).

For example, after calling PRETTYPRINT on LONGFUNCTION, you could move its

definition to FOO by typing (MOVD ’$ ’FOO).

Note that this is not (MOVD $ ’FOO), which would be equivalent to (MOVD

LONGFUNCTION ’FOO), and would (probably) cause a U.B.A. LONGFUNCTION error,

nor MOVD($ FOO), which would actually move the definition of $ to FOO, since DWIM

and the spelling corrector would never be invoked.

~ [CLISP Operator]

CLISP recognizes ~ as a prefix operator meaning NOT. ~ can negate a form, as in

~(ASSOC X Y), or ~X, or negate an infix operator, e.g., (A ~GT B) is the same as (A

LEQ B). Note that ~A = B means (EQ (NOT A) B).

When ~ negates an operator, e.g., ~=, ~LT, the two operators are treated as a single

operator whose precedence is that of the second operator. When ~ negates a function, e.g.,

(~FOO X Y), it negates the whole form, i.e., (~(FOO X Y)).

Order of Precedence of CLISP Operators:
’

:

← (left precedence)

- (unary), ~
↑
*, /

+, - (binary)

← (right precedence)
=

Interlisp forms

LT, GT, EQUAL, MEMBER, etc.
AND

OR

IF, THEN, ELSEIF, ELSE

iterative statement operators

Declarations

CLISP declarations are used to affect the choice of Interlisp function used as the translation of a
particular operator. For example, A+B can be translated as either (PLUS A B), (FPLUS A B), or

(IPLUS A B), depending on the declaration in effect. Similarly X:1←Y can mean (RPLACA X Y),

20-10

INTERLISP-D REFERENCE MANUAL

(FRPLACA X Y), or (/RPLACA X Y), and <!! A B> either (NCONC1 A B) or (/NCONC1 A B).

Note that the choice of function on all CLISP transformations are affected by the CLISP declaration in
effect, i.e., iterative statements, pattern matches, record operations, as well as infix and prefix
operators.

(CLISPDEC DECLST) [Function]

Puts into effect the declarations in DECLST. CLISPDEC performs spelling corrections on

words not recognized as declarations. CLISPDEC is undoable.

You can makes (changes) a global declaration by calling CLISPDEC with DECLST a list of

declarations, e.g., (CLISPDEC ’(FLOATING UNDOABLE)). Changing a global

declaration does not affect the speed of subsequent CLISP transformations, since all CLISP
transformation are table driven (i.e., property list), and global declarations are
accomplished by making the appropriate internal changes to CLISP at the time of the
declaration. If a function employs local declarations (described below), there will be a
slight loss in efficiency owing to the fact that for each CLISP transformation, the
declaration list must be searched for possibly relevant declarations.

Declarations are implemented in the order that they are given, so that later declarations
override earlier ones. For example, the declaration FAST specifies that FRPLACA,

FRPLACD, FMEMB, and FLAST be used in place of RPLACA, RPLACD, MEMB, and LAST; the

declaration RPLACA specifies that RPLACA be used. Therefore, the declarations (FAST

RPLACA RPLACD) will cause FMEMB, FLAST, RPLACA, and RPLACD to be used.

The initial global declaration is MIXED and STANDARD.

The table below gives the declarations available in CLISP, and the Interlisp functions they
indicate:

Declaration: Interlisp Functions to be used:

MIXED PLUS, MINUS, DIFFERENCE, TIMES,

QUOTIENT, LESSP, GREATERP

INTEGER or FIXED IPLUS, IMINUS, IDIFFERENCE, ITIMES,

IQUOTIENT, ILESSP, IGREATERP

FLOATING FPLUS, FMINUS, FDIFFERENCE, FTIMES,

FQUOTIENT, LESSP, FGREATERP

FAST FRPLACA, FRPLACD, FMEMB, FLAST, FASSOC

UNDOABLE /RPLACA, /RPLACD, /NCONC, /NCONC1,

/MAPCONC, /MAPCON

STANDARD RPLACA, RPLACD, MEMB, LAST, ASSOC,

NCONC, NCONC1, MAPCONC, MAPCON

RPLACA, RPLACD,

 /RPLACA, etc. corresponding function

20-11

CLISP

You can also make local declarations affecting a selected function or functions by inserting
an expression of the form (CLISP: . DECLARATIONS) immediately following the

argument list, i.e., as CADDR of the definition. Such local declarations take precedence

over global declarations. Declarations affecting selected variables can be indicated by
lists, where the first element is the name of a variable, and the rest of the list the
declarations for that variable. For example, (CLISP: FLOATING (X INTEGER))

specifies that in this function integer arithmetic be used for computations involving X, and

floating arithmetic for all other computations, where "involving" means where the
variable itself is an operand. For example, with the declaration (FLOATING (X

INTEGER)) in effect, (FOO X)+(FIE X) would translate to FPLUS, i.e., use floating

arithmetic, even though X appears somewhere inside of the operands, whereas X+(FIE

X) would translate to IPLUS. If there are declarations involving both operands, e.g., X+Y,

with (X FLOATING) (Y INTEGER), whichever appears first in the declaration list will

be used.

You can also make local record declarations by inserting a record declaration, e.g.,
(RECORD --), (ARRAYRECORD --), etc., in the local declaration list. In addition, a local

declaration of the form (RECORDS A B C) is equivalent to having copies of the global

declarations A, B, and C in the local declaration. Local record declarations override global

record declarations for the function in which they appear. Local declarations can also be
used to override the global setting of certain DWIM/CLISP parameters effective only for
transformations within that function, by including in the local declaration an expression
of the form (VARIABLE = VALUE), e.g., (PATVARDEFAULT = QUOTE).

The CLISP: expression is converted to a comment of a special form recognized by CLISP.

Whenever a CLISP transformation that is affected by declarations is about to be
performed in a function, this comment will be searched for a relevant declaration, and if
one is found, the corresponding function will be used. Otherwise, if none are found, the
global declaration(s) currently in effect will be used.

Local declarations are effective in the order that they are given, so that later declarations
can be used to override earlier ones, e.g., (CLISP: FAST RPLACA RPLACD) specifies

that FMEMB, FLAST, RPLACA, and RPLACD be used. An exception to this is that

declarations for specific variables take precedence of general, function-wide declarations,
regardless of the order of appearance, as in (CLISP: (X INTEGER) FLOATING).

CLISPIFY also checks the declarations in effect before selecting an infix operator to

ensure that the corresponding CLISP construct would in fact translate back to this form.
For example, if a FLOATING declaration is in effect, CLISPIFY will convert (FPLUS X

Y) to X+Y, but leave (IPLUS X Y) as is. If (FPLUS X Y) is CLISPIFYed while a

FLOATING declaration is under effect, and then the declaration is changed to INTEGER,

when X+Y is translated back to Interlisp, it will become (IPLUS X Y).

CLISP Operation

CLISP is a part of the basic Medley system. Without any special preparations, you can include CLISP
constructs in programs, or type them in directly for evaluation (in EVAL or APPLY format), then, when

20-12

INTERLISP-D REFERENCE MANUAL

the "error" occurrs, and DWIM is called, it will destructively transform the CLISP to the equivalent
Interlisp expression and evaluate the Interlisp expression. CLISP transformations, like all DWIM
corrections, are undoable. User approval is not requested, and no message is printed. This entire
discussion also applies to CLISP transformation initiated by calls to DWIM from DWIMIFY.

However, if a CLISP construct contains an error, an appropriate diagnostic is generated, and the form
is left unchanged. For example, if you write (LIST X+Y*), the error diagnostic MISSING OPERAND

AT X+Y* IN (LIST X+Y*) would be generated. Similarly, if you write (LAST+EL X), CLISP

knows that ((IPLUS LAST EL) X) is not a valid Interlisp expression, so the error diagnostic

MISSING OPERATOR IN (LAST+EL X) is generated. (For example, you might have meant to say

(LAST+EL*X).) If LAST+EL were the name of a defined function, CLISP would never see this form.

Since the bad CLISP transformation might not be CLISP at all, for example, it might be a misspelling
of a user function or variable, DWIM holds all CLISP error messages until after trying other
corrections. If one of these succeeds, the CLISP message is discarded. Otherwise, if all fail, the
message is printed (but no change is made). For example, suppose you type (R/PLACA X Y).

CLISP generates a diagnostic, since ((IQUOTIENT R PLACA) X Y) is obviously not right.

However, since R/PLACA spelling corrects to /RPLACA, this diagnostic is never printed.

Note: CLISP error messages are not printed on type-in. For example, typing X+*Y will

just produce a U.B.A. X+*Y message.

If a CLISP infix construct is well formed from a syntactic standpoint, but one or both of its operands
are atomic and not bound, it is possible that either the operand is misspelled, e.g., you wrote X+YY for

X+Y, or that a CLISP transformation operation was not intended at all, but that the entire expression is

a misspelling. For the purpose of DWIMIFYing, "not bound" means no top level value, not on list of

bound variables built up by DWIMIFY during its analysis of the expression, and not on

NOFIXVARSLST, i.e., not previously seen.

For example, if you have a variable named LAST-EL, and write (LIST LAST-ELL). Therefore,

CLISP computes, but does not actually perform, the indicated infix transformation. DWIM then
continues, and if it is able to make another correction, does so, and ignores the CLISP interpretation.
For example, with LAST-ELL, the transformation LAST-ELL -> LAST-EL would be found.

If no other transformation is found, and DWIM is about to interpret a construct as CLISP for which
one of the operands is not bound, DWIM will ask you whether CLISP was intended, in this case by
printing LAST-ELL TREAT AS CLISP ?.

Note: If more than one infix operator was involved in the CLISP construct, e.g., X+Y+Z,

or the operation was an assignment to a variable already noticed, or
TREATASCLISPFLG is T (initially NIL), you will simply be informed of the

correction, e.g., X+Y+Z TREATED AS CLISP. Otherwise, even if DWIM was

enabled in TRUSTING mode, you will be asked to approve the correction.

The same sort of procedure is followed with 8 and 9 errors. For example, suppose you write FOO8*X

where FOO8 is not bound. The CLISP transformation is noted, and DWIM proceeds. It next asks you

20-13

CLISP

to approve FOO8*X -> FOO (*X. For example, this would make sense if you have (or plan to

define) a function named *X. If you refuses, you are asked whether FOO8*X is to be treated as CLISP.

Similarly, if FOO8 were the name of a variable, and you write FOOO8*X, you will first be asked to

approve FOOO8*X -> FOOO (XX, and if you refuse, then be offered the FOOO8 -> FOO8

correction. The 8-9 transformation is tried before spelling correction since it is empirically more likely
that an unbound atom or undefined function containing an 8 or a 9 is a parenthesis error, rather than a
spelling error.

CLISP also contains provision for correcting misspellings of infix operators (other than single
characters), IF words, and i.s. operators. This is implemented in such a way that the user who does

not misspell them is not penalized. For example, if you write IF N = 0 THEN 1 ELSSE N*(FACT

N-1) CLISP does not operate by checking each word to see if it is a misspelling of IF, THEN, ELSE, or

ELSEIF, since this would seriously degrade CLISP’s performance on all IF statements. Instead,

CLISP assumes that all of the IF words are spelled correctly, and transforms the expression to (COND

((ZEROP N) 1 ELSSE N*(FACT N-1))). Later, after DWIM cannot find any other interpretation

for ELSSE, and using the fact that this atom originally appeared in an IF statement, DWIM attempts

spelling correction, using (IF THEN ELSE ELSEIF) for a spelling list. When this is successful,

DWIM "fails" all the way back to the original IF statement, changes ELSSE to ELSE, and starts over.

Misspellings of AND, OR, LT, GT, etc. are handled similarly.

CLISP also contains many Do-What-I-Mean features besides spelling corrections. For example, the
form (LIST +X Y) would generate a MISSING OPERATOR error. However, (LIST -X Y) makes

sense, if the minus is unary, so DWIM offers this interpretation to you. Another common error,
especially for new users, is to write (LIST X*FOO(Y)) or (LIST X*FOO Y), where FOO is the name

of a function, instead of (LIST X*(FOO Y)). Therefore, whenever an operand that is not bound is

also the name of a function (or corrects to one), the above interpretations are offered.

CLISP Translations

The translation of CLISP character operators and the CLISP word IF are handled by replacing the

CLISP expression with the corresponding Interlisp expression, and discarding the original CLISP.
This is done because (1) the CLISP expression is easily recomputable (by CLISPIFY) and (2) the

Interlisp expressions are simple and straightforward. Another reason for discarding the original
CLISP is that it may contain errors that were corrected in the course of translation (e.g.,
FOO←FOOO:1, N*8FOO X), etc.). If the original CLISP were retained, either you would have to go

back and fix these errors by hand, thereby negating the advantage of having DWIM perform these
corrections, or else DWIM would have to keep correcting these errors over and over.

Note that CLISPIFY is sufficiently fast that it is practical for you to configure your Interlisp system so

that all expressions are automatically CLISPIFYed immediately before they are presented to you. For

example, you can define an edit macro to use in place of P which calls CLISPIFY on the current

expression before printing it. Similarly, you can inform PRETTYPRINT to call CLISPIFY on each

expression before printing it, etc.

20-14

INTERLISP-D REFERENCE MANUAL

Where (1) or (2) are not the case, e.g., with iterative statements, pattern matches, record expressions,
etc. the original CLISP is retained (or a slightly modified version thereof), and the translation is stored
elsewhere (by the function CLISPTRAN, in the Miscellaneous Functions and Variables), usually in the

hash array CLISPARRAY. The interpreter automatically checks this array when given a form CAR of

which is not a function. Similarly, the compiler performs a GETHASH when given a form it does not

recognize to see if it has a translation, which is then compiled instead of the form. Whenever you
change a CLISP expresson by editing it, the editor automatically deletes its translation (if one exists), so
that the next time it is evaluated or DWIMIFIed, the expression will be retranslated (if the value of

CLISPRETRANFLG is T, DWIMIFY will also (re)translate any expressions which have translations

stored remotely, see the CLISPIFY section). The function PPT and the edit commands PPT and

CLISP: are available for examining translations (see the Miscellaneous Functions and Variables

section).

You can also indicate that you want the original CLISP retained by embedding it in an expression of
the form (CLISP . CLISP-EXPRESSION), e.g., (CLISP X:5:3) or (CLISP <A B C ! D>). In

such cases, the translation will be stored remotely as described above. Furthermore, such expressions
will be treated as CLISP even if infix and prefix transformations have been disabled by setting
CLISPFLG to NIL (see the Miscellaneous Functions and Variables section). In other words, you can

instruct the system to interpret as CLISP infix or prefix constructs only those expressions that are
specifically flagged as such. You can also include CLISP declarations by writing (CLISP

DECLARATIONS . FORM), e.g., (CLISP (CLISP: FLOATING) ...). These declarations will be

used in place of any CLISP declarations in the function definition. This feature provides a way of
including CLISP declarations in macro definitions.

Note: CLISP translations can also be used to supply an interpretation for function
objects, as well as forms, either for function objects that are used openly, i.e.,
appearing as CAR of form, function objects that are explicitly APPLYed, as with

arguments to mapping functions, or function objects contained in function
definition cells. In all cases, if CAR of the object is not LAMBDA or NLAMBDA, the

interpreter and compiler will check CLISPARRAY.

DWIMIFY

DWIMIFY is effectively a preprocessor for CLISP. DWIMIFY operates by scanning an expression as

though it were being interpreted, and for each form that would generate an error, calling DWIM to
"fix" it. DWIMIFY performs all DWIM transformations, not just CLISP transformations, so it does

spelling correction, fixes 8-9 errors, handles F/L, etc. Thus you will see the same messages, and be

asked for approval in the same situations, as you would if the expression were actually run. If DWIM
is unable to make a correction, no message is printed, the form is left as it was, and the analysis
proceeds.

DWIMIFY knows exactly how the interpreter works. It knows the syntax of PROGs, SELECTQs,

LAMBDA expressions, SETQs, et al. It knows how variables are bound, and that the argument of

NLAMBDAs are not evaluated (you can inform DWIMIFY of a function or macro’s nonstandard binding

or evaluation by giving it a suitable INFO property, see below). In the course of its analysis of a

20-15

CLISP

particular expression, DWIMIFY builds a list of the bound variables from the LAMBDA expressions and

PROGs that it encounters. It uses this list for spelling corrections. DWIMIFY also knows not to try to

"correct" variables that are on this list since they would be bound if the expression were actually being
run. However, note that DWIMIFY cannot, a priori, know about variables that are used freely but

would be bound in a higher function if the expression were evaluated in its normal context.
Therefore, DWIMIFY will try to "correct" these variables. Similarly, DWIMIFY will attempt to correct

forms for which CAR is undefined, even when the form is not in error from your standpoint, but the

corresponding function has simply not yet been defined.

Note: DWIMIFY rebinds FIXSPELLDEFAULT to N, so that if you are not at the terminal

when DWIMIFYing (or compiling), spelling corrections will not be performed.

DWIMIFY will also inform you when it encounters an expression with too many arguments (unless

DWIMCHECK#ARGSFLG = NIL), because such an occurrence, although does not cause an error in the

Interlisp interpreter, nevertheless is frequently symptomatic of a parenthesis error. For example, if
you wrote (CONS (QUOTE FOO X)) instead of (CONS (QUOTE FOO) X), DWIMIFY will print:

POSSIBLE PARENTHESIS ERROR IN
(QUOTE FOO X)
TOO MANY ARGUMENTS (MORE THAN 1)

DWIMIFY will also check to see if a PROG label contains a clisp character (unless

DWIMCHECKPROGLABELSFLG = NIL, or the label is a member of NOFIXVARSLST), and if so, will alert

you by printing the message SUSPICIOUS PROG LABEL, followed by the label. The PROG label will

not be treated as CLISP.

Note that in most cases, an attempt to transform a form that is already as you intended will have no
effect (because there will be nothing to which that form could reasonably be transformed). However,
in order to avoid needless calls to DWIM or to avoid possible confusion, you can inform DWIMIFY not

to attempt corrections or transformations on certain functions or variables by adding them to the list
NOFIXFNSLST or NOFIXVARSLST respectively. Note that you could achieve the same effect by

simply setting the corresponding variables, and giving the functions dummy definitions.

DWIMIFY will never attempt corrections on global variables, i.e., variables that are a member of the list

GLOBALVARS, or have the property GLOBALVAR with value T, on their property list. Similarly,

DWIMIFY will not attempt to correct variables declared to be SPECVARS in block declarations or via

DECLARE expressions in the function body. You can also declare variables that are simply used freely

in a function by using the USEDFREE declaration.

DWIMIFY and DWIMIFYFNS (used to DWIMIFY several functions) maintain two internal lists of those

functions and variables for which corrections were unsuccessfully attempted. These lists are
initialized to the values of NOFIXFNSLST and NOFIXVARSLST. Once an attempt is made to fix a

particular function or variable, and the attempt fails, the function or variable is added to the
corresponding list, so that on subsequent occurrences (within this call to DWIMIFY or DWIMIFYFNS),

no attempt at correction is made. For example, if FOO calls FIE several times, and FIE is undefined at

the time FOO is DWIMIFYed, DWIMIFY will not bother with FIE after the first occurrence. In other

words, once DWIMIFY "notices" a function or variable, it no longer attempts to correct it. DWIMIFY

20-16

INTERLISP-D REFERENCE MANUAL

and DWIMIFYFNS also "notice" free variables that are set in the expression being processed.

Moreover, once DWIMIFY "notices" such functions or variables, it subsequently treats them the same

as though they were actually defined or set.

Note that these internal lists are local to each call to DWIMIFY and DWIMIFYFNS, so that if a function

containing FOOO, a misspelled call to FOO, is DWIMIFYed before FOO is defined or mentioned, if the

function is DWIMIFYed again after FOO has been defined, the correction will be made.

You can undo selected transformations performed by DWIMIFY, as described in Chapter 13.

(DWIMIFY X QUIETFLG L) [Function]

Performs all DWIM and CLISP corrections and transformations on X that would be

performed if X were run, and prints the result unless QUIETFLG = T.

If X is an atom and L is NIL, X is treated as the name of a function, and its entire definition

is DWIMIFYed. If X is a list or L is not NIL, X is the expression to be DWIMIFYed. If L is

not NIL, it is the edit push-down list leading to X, and is used for determining context, i.e.,

what bound variables would be in effect when X was evaluated, whether X is a form or

sequence of forms, e.g., a COND clause, etc.

If X is an iterative statement and L is NIL, DWIMIFY will also print the translation, i.e.,

what is stored in the hash array.

(DWIMIFYFNS FN1 ... FNN) [NLambda NoSpread Function]

DWIMIFYs each of the functions given. If only one argument is given, it is evalued. If its

value is a list, the functions on this list are DWIMIFYed. If only one argument is given, it is

atomic, its value is not a list, and it is the name of a known file, DWIMIFYFNS will operate

on (FILEFNSLST FN1), e.g. (DWIMIFYFNS FOO.LSP) will DWIMIFY every function in

the file FOO.LSP.

Every 30 seconds, DWIMIFYFNS prints the name of the function it is processing, a la

PRETTYPRINT.

Value is a list of the functions DWIMIFYed.

DWIMINMACROSFLG [Variable]

Controls how DWIMIFY treats the arguments in a "call" to a macro, i.e., where the CAR of

the form is undefined, but has a macro definition. If DWIMINMACROSFLG is T, then

macros are treated as LAMBDA functions, i.e., the arguments are assumed to be evaluated,

which means that DWIMIFY will descend into the argument list. If DWIMINMACROSFLG is

NIL, macros are treated as NLAMBDA functions. DWIMINMACROSFLG is initially T.

20-17

CLISP

INFO [Property Name]

Used to inform DWIMIFY of nonstandard behavior of particular forms with respect to

evaluation, binding of arguments, etc. The INFO property of a symbol is a single atom or

list of atoms chosen from among the following:

EVAL Informs DWIMIFY (and CLISP and Masterscope) that an

nlambda function does evaluate its arguments. Can also be
placed on a macro name to override the behavior of
DWIMINMACROSFLG = NIL.

NOEVAL Informs DWIMIFY that a macro does not evaluate all of its

arguments, even when DWIMINMACROSFLG = T.

BINDS Placed on the INFO property of a function or the CAR of a

special form to inform DWIMIFY that the function or form

binds variables. In this case, DWIMIFY assumes that CADR

of the form is the variable list, i.e., a list of symbols, or lists
of the form (VAL VALUE). LAMBDA, NLAMBDA, PROG, and

RESETVARS are handled in this fashion.

LABELS Informs CLISPIFY that the form interprets top-level

symbols as labels, so that CLISPIFY will never introduce

an atom (by packing) at the top level of the expression.
PROG is handled in this fashion.

NOFIXFNSLST [Variable]

List of functions that DWIMIFY will not try to correct.

NOFIXVARSLST [Variable]

List of variables that DWIMIFY will not try to correct.

NOSPELLFLG [Variable]

If T, DWIMIFY will not perform any spelling corrections. Initially NIL. NOSPELLFLG is

reset to T when compiling functions whose definitions are obtained from a file, as

opposed to being in core.

CLISPHELPFLG [Variable]

If NIL, DWIMIFY will not ask you for approval of any CLISP transformations. Instead, in

those situations where approval would be required, the effect is the same as though you
had been asked and said NO. Initially T.

DWIMIFYCOMPFLG [Variable]

If T, DWIMIFY is called before compiling an expression. Initially NIL.

DWIMCHECK#ARGSFLG [Variable]

If T, causes DWIMIFY to check for too many arguments in a form. Initially T.

20-18

INTERLISP-D REFERENCE MANUAL

DWIMCHECKPROGLABELSFLG [Variable]

If T, causes DWIMIFY to check whether a PROG label contains a CLISP character. Initially

T.

DWIMESSGAG [Variable]

If T, suppresses all DWIMIFY error messages. Initially NIL.

CLISPRETRANFLG [Variable]

If T, informs DWIMIFY to (re)translate all expressions which have remote translations in

the CLISP hash array. Initially NIL.

CLISPIFY

CLISPIFY converts Interlisp expressions to CLISP. Note that the expression given to CLISPIFY need

not have originally been input as CLISP, i.e., CLISPIFY can be used on functions that were written

before CLISP was even implemented. CLISPIFY is cognizant of declaration rules as well as all of the

precedence rules. For example, CLISPIFY will convert (IPLUS A (ITIMES B C)) into A+B*C, but

(ITIMES A (IPLUS B C)) into A*(B+C). CLISPIFY handles such cases by first DWIMIFYing the

expression. CLISPIFY also knows how to handle expressions consisting of a mixture of Interlisp and

CLISP, e.g., (IPLUS A B*C) is converted to A+B*C, but (ITIMES A B+C) to (A*(B+C)).

CLISPIFY converts calls to the six basic mapping functions, MAP, MAPC, MAPCAR, MAPLIST, MAPCONC,

and MAPCON, into equivalent iterative statements. It also converts certain easily recognizable internal

PROG loops to the corresponding iterative statements. CLISPIFY can convert all iterative statements

input in CLISP back to CLISP, regardless of how complicated the translation was, because the original
CLISP is saved.

CLISPIFY is not destructive to the original Interlisp expression, i.e., CLISPIFY produces a new

expression without changing the original. The new expression may however contain some "pieces" of
the original, since CLISPIFY attempts to minimize the number of CONSes by not copying structure

whenever possible.

CLISPIFY will not convert expressions appearing as arguments to NLAMBDA functions, except for

those functions whose INFO property is or contains the atom EVAL. CLISPIFY also contains built in

information enabling it to process special forms such as PROG, SELECTQ, etc. If the INFO property is

or contains the atom LABELS, CLISPIFY will never create an atom (by packing) at the top level of the

expression. PROG is handled in this fashion.

Note: Disabling a CLISP operator with CLDISABLE (see the Miscellaneous Functions

and Variables section) will also disable the corresponding CLISPIFY

transformation. Thus, if ← is "turned off", A←B will not transform to (SETQ A

B), nor vice versa.

20-19

CLISP

(CLISPIFY X EDITCHAIN) [Function]

Clispifies X. If X is an atom and EDITCHAIN is NIL, X is treated as the name of a function,

and its definition (or EXPR property) is clispified. After CLISPIFY has finished, X is

redefined (using /PUTD) with its new CLISP definition. The value of CLISPIFY is X. If X

is atomic and not the name of a function, spelling correction is attempted. If this fails, an
error is generated.

If X is a list, or EDITCHAIN is not NIL, X itself is the expression to be clispified. If

EDITCHAIN is not NIL, it is the edit push-down list leading to X and is used to determine

context as with DWIMIFY, as well as to obtain the local declarations, if any. The value of

CLISPIFY is the clispified version of X.

(CLISPIFYFNS FN1 ... FNN) [NLambda NoSpread Function]

Like DWIMIFYFNS except calls CLISPIFY instead of DWIMIFY.

CL:FLG [Variable]

Affects CLISPIFY’s handling of forms beginning with CAR, CDR, ... CDDDDR, as well as

pattern match and record expressions. If CL:FLG is NIL, these are not transformed into

the equivalent : expressions. This will prevent CLISPIFY from constructing any

expression employing a : infix operator, e.g., (CADR X) will not be transformed to X:2. If

CL:FLG is T, CLISPIFY will convert to : notation only when the argument is atomic or a

simple list (a function name and one atomic argument). If CL:FLG is ALL, CLISPIFY will

convert to : expressions whenever possible.

CL:FLG is initially T.

CLREMPARSFLG [Variable]

If T, CLISPIFY will remove parentheses in certain cases from simple forms, where

"simple" means a function name and one or two atomic arguments. For example, (COND

((ATOM X) --)) will CLISPIFY to (IF ATOM X THEN --). However, if

CLREMPARSFLG is set to NIL, CLISPIFY will produce (IF (ATOM X) THEN --).

Regardless of the flag setting, the expression can be input in either form.

CLREMPARSFLG is initially NIL.

CLISPIFYPACKFLG [Variable]

CLISPIFYPACKFLG affects the treatment of infix operators with atomic operands. If

CLISPIFYPACKFLG is T, CLISPIFY will pack these into single atoms, e.g., (IPLUS A

(ITIMES B C)) becomes A+B*C. If CLISPIFYPACKFLG is NIL, no packing is done, e.g.,

the above becomes A + B * C.

CLISPIFYPACKFLG is initially T.

20-20

INTERLISP-D REFERENCE MANUAL

CLISPIFYUSERFN [Variable]

If T, causes the function CLISPIFYUSERFN, which should be a function of one argument,

to be called on each form (list) not otherwise recognized by CLISPIFY. If a non-NIL

value is returned, it is treated as the clispified form. Initially NIL

Note that CLISPIFYUSERFN must be both set and defined to use this feature.

FUNNYATOMLST [Variable]

Suppose you have variables named A, B, and A*B. If CLISPIFY were to convert (ITIMES

A B) to A*B, A*B would not translate back correctly to (ITIMES A B), since it would be

the name of a variable, and therefore would not cause an error. You can prevent this from
happening by adding A*B to the list FUNNYATOMLST. Then, (ITIMES A B) would

CLISPIFY to A * B.

Note that A*B’s appearance on FUNNYATOMLST would not enable DWIM and CLISP to

decode A*B+C as (IPLUS A*B C); FUNNYATOMLST is used only by CLISPIFY. Thus, if

an identifier contains a CLISP character, it should always be separated (with spaces) from
other operators. For example, if X* is a variable, you should write (SETQ X* FORM) in

CLISP as X* ←FORM, not X*←FORM. In general, it is best to avoid use of identifiers

containing CLISP character operators as much as possible.

Miscellaneous Functions and Variables

CLISPFLG [Variable]

If CLISPFLG = NIL, disables all CLISP infix or prefix transformations (but does not affect

IF/THEN/ELSE statements, or iterative statements).

If CLISPFLG = TYPE-IN, CLISP transformations are performed only on expressions that

are typed in for evaluation, i.e., not on user programs.

If CLISPFLG = T, CLISP transformations are performed on all expressions.

The initial value for CLISPFLG is T. CLISPIFYing anything will cause CLISPFLG to be

set to T.

CLISPCHARS [Variable]

A list of the operators that can appear in the interior of an atom. Currently (+ - * / ↑
~ ’ = ← : < > +- ~= @ !).

CLISPCHARRAY [Variable]

A bit table of the characters on CLISPCHARS used for calls to STRPOSL (Chapter 4).

CLISPCHARRAY is initialized by performing (SETQ CLISPCHARRAY (MAKEBITTABLE

CLISPCHARS)).

20-21

CLISP

CLISPINFIXSPLST [Variable]

A list of infix operators used for spelling correction.

CLISPARRAY [Variable]

Hash array used for storing CLISP translations. CLISPARRAY is checked by FAULTEVAL

and FAULTAPPLY on erroneous forms before calling DWIM, and by the compiler.

(CLEARCLISPARRAY NAME --) [Function]

Macro and CLISP expansions are cached in CLISPARRAY, the systems CLISP hash array.

When anything changes that would invalidate an expansion, it needs to be removed from
the cache. CLEARCLISPARRAY does this for you. The system does this automatically

whenever you define redefine a CLISP or macro form. If you have changed something
that a CLISP word or a macro depends on the system will not be able to detect this, so you
will have to invalidate the cahce by calling CLEARCLISPARRAY. You can clear the whole

cache by calling (CLRHASH CLISPARRAY).

(CLISPTRAN X TRAN) [Function]

Gives X the translation TRAN by storing (key X, value TRAN) in the hash array

CLISPARRAY. CLISPTRAN is called for all CLISP translations, via a non-linked, external

function call, so it can be advised.

(CLISPDEC DECLST) [Function]

Puts into effect the declarations in DECLST. CLISPDEC performs spelling corrections on

words not recognized as declarations. CLISPDEC is undoable.

(CLDISABLE OP) [Function]

Disables the CLISP operator OP. For example, (CLDISABLE ’-) makes - be just another

character. CLDISABLE can be used on all CLISP operators, e.g., infix operators, prefix

operators, iterative statement operators, etc. CLDISABLE is undoable.

Note: Simply removing a character operator from CLISPCHARS will prevent

it from being treated as a CLISP operator when it appears as part of an
atom, but it will continue to be an operator when it appears as a
separate atom, e.g. (FOO + X) vs FOO+X.

CLISPIFTRANFLG [Variable]

Affects handling of translations of IF-THEN-ELSE statements (see Chapter 9). If T, the

translations are stored elsewhere, and the (modified) CLISP retained. If NIL, the

corresponding COND expression replaces the CLISP. Initially T.

20-22

INTERLISP-D REFERENCE MANUAL

CLISPIFYPRETTYFLG [Variable]

If non-NIL, causes PRETTYPRINT (and therefore PP and MAKEFILE) to CLISPIFY

selected function definitions before printing them according to the following
interpretations of CLISPIFYPRETTYFLG:

ALL Clispify all functions.

T or EXPRS Clispify all functions currently defined as EXPRs.

CHANGES Clispify all functions marked as having been

changed.

a list Clispify all functions in that list.

CLISPIFYPRETTYFLG is (temporarily) reset to T when MAKEFILE is called with the

option CLISPIFY, and reset to CHANGES when the file being dumped has the property

FILETYPE value CLISP. CLISPIFYPRETTYFLG is initially NIL.

Note: If CLISPIFYPRETTYFLG is non-NIL, and the only transformation

performed by DWIM are well formed CLISP transformations, i.e., no

spelling corrections, the function will not be marked as changed, since
it would only have to be re-clispified and re-prettyprinted when the
file was written out.

(PPT X) [NLambda NoSpread Function]

Both a function and an edit macro for prettyprinting translations. It performs a PP after

first resetting PRETTYTRANFLG to T, thereby causing any translations to be printed

instead of the corresponding CLISP.

CLISP: [Editor Command]

Edit macro that obtains the translation of the correct expression, if any, from
CLISPARRAY, and calls EDITE on it.

CL [Editor Command]

Edit macro. Replaces current expression with CLISPIFYed current expression. Current

expression can be an element or tail.

DW [Editor Command]

Edit macro. DWIMIFYs current expression, which can be an element (atom or list) or tail.

Both CL and DW can be called when the current expression is either an element or a tail

and will work properly. Both consult the declarations in the function being edited, if any,
and both are undoable.

(LOWERCASE FLG) [Function]

If FLG = T, LOWERCASE makes the necessary internal modifications so that CLISPIFY will

use lower case versions of AND, OR, IF, THEN, ELSE, ELSEIF, and all i.s. operators. This

20-23

CLISP

produces more readable output. Note that you can always type in either upper or lower
case (or a combination), regardless of the action of LOWERCASE. If FLG = NIL, CLISPIFY

will use uppercase versions of AND, OR, et al. The value of LOWERCASE is its previous

"setting". LOWERCASE is undoable. The initial setting for LOWERCASE is T.

CLISP Internal Conventions

CLISP is almost entirely table driven by the property lists of the corresponding infix or prefix
operators. For example, much of the information used for translating the + infix operator is stored on

the property list of the symbol "+". Thus it is relatively easy to add new infix or prefix operators or

change old ones, simply by adding or changing selected property values. (There is some built in
information for handling minus, :, ’, and ~, i.e., you could not yourself add such "special" operators,

although you can disable or redefine them.)

Global declarations operate by changing the LISPFN and CLISPINFIX properties of the appropriate

operators.

CLISPTYPE [Property Name]

The property value of the property CLISPTYPE is the precedence number of the operator:

higher values have higher precedence, i.e., are tighter. Note that the actual value is
unimportant, only the value relative to other operators. For example, CLISPTYPE for :, ↑,

and * are 14, 6, and 4 respectively. Operators with the same precedence group left to

right, e.g., / also has precedence 4, so A/B*C is (A/B)*C.

An operator can have a different left and right precedence by making the value of
CLISPTYPE be a dotted pair of two numbers, e.g., CLISPTYPE of ← is (8 . -12). In

this case, CAR is the left precedence, and CDR the right, i.e., CAR is used when comparing

with operators on the left, and CDR with operators on the right. For example, A*B←C+D is

parsed as A*(B←(C+D)) because the left precedence of ← is 8, which is higher than that

of *, which is 4. The right precedence of ← is -12, which is lower than that of +, which is

2.

If the CLISPTYPE property for any operator is removed, the corresponding CLISP

transformation is disabled, as well as the inverse CLISPIFY transformation.

UNARYOP [Property Name]

The value of property UNARYOP must be T for unary operators or brackets. The operand

is always on the right, i.e., unary operators or brackets are always prefix operators.

BROADSCOPE [Property Name]

The value of property BROADSCOPE is T if the operator has lower precedence than

Interlisp forms, e.g., LT, EQUAL, AND, etc. For example, (FOO X AND Y) parses as ((FOO

X) AND Y). If the BROADSCOPE property were removed from the property list of AND,

(FOO X AND Y) would parse as (FOO (X AND Y)).

20-24

INTERLISP-D REFERENCE MANUAL

LISPFN [Property Name]

The value of the property LISPFN is the name of the function to which the infix operator

translates. For example, the value of LISPFN for ↑ is EXPT, for ’ QUOTE, etc. If the value

of the property LISPFN is NIL, the infix operator itself is also the function, e.g., AND, OR,

EQUAL.

SETFN [Property Name]

If FOO has a SETFN property FIE, then (FOO --)←X translates to (FIE -- X). For

example, if you make ELT be an infix operator, e.g. #, by putting appropriate CLISPTYPE

and LISPFN properties on the property list of # then you can also make # followed by ←

translate to SETA, e.g., X#N←Y to (SETA X N Y), by putting SETA on the property list of

ELT under the property SETFN. Putting the list (ELT) on the property list of SETA under

property SETFN will enable SETA forms to CLISPIFY back to ELT’s.

CLISPINFIX [Property Name]

The value of this property is the CLISP infix to be used in CLISPIFYing. This property is

stored on the property list of the corresponding Interlisp function, e.g., the value of
property CLISPINFIX for EXPT is ↑, for QUOTE is ’ etc.

CLISPWORD [Property Name]

Appears on the property list of clisp operators which can appear as CAR of a form, such as

FETCH, REPLACE, IF, iterative statement operators, etc. Value of property is of the form

(KEYWORD . NAME), where NAME is the lowercase version of the operator, and KEYWORD

is its type, e.g. FORWORD, IFWORD, RECORDWORD, etc.

KEYWORD can also be the name of a function. When the atom appears as CAR of a form,

the function is applied to the form and the result taken as the correct form. In this case,
the function should either physically change the form, or call CLISPTRAN to store the

translation.

As an example, to make & be an infix character operator meaning OR, you could do the

following:

←(PUTPROP ’& ’CLISPTYPE (GETPROP ’OR ’CLISPTYPE))
←(PUTPROP ’& ’LISPFN ’OR)
←(PUTPROP ’& ’BROADSCOPE T)
←(PUTPROP ’OR ’CLISPINFIX ’&)
←(SETQ CLISPCHARS (CONS ’& CLISPCHARS))
←(SETQ CLISPCHARRAY (MAKEBITTABLE CLISPCHARS))

