
18-1

18. COMPILER

The compiler is contained in the standard Medley system. It may be used to compile functions
defined in Medley, or to compile definitions stored in a file. The resulting compiled code may be
stored as it is compiled, so as to be available for immediate use, or it may be written onto a file for
subsequent loading.

The most common way to use the compiler is to use one of the file package functions, such as
MAKEFILE (Chapter 17), which automatically updates source files, and produces compiled versions.

However, it is also possible to compile individual functions defined in Medley, by directly calling the
compiler using functions such as COMPILE. No matter how the compiler is called, the function

COMPSET is called which asks you certain questions concerning the compilation. (COMPSET sets the

free variables LAPFLG, STRF, SVFLG, LCFIL and LSTFIL which determine various modes of

operation.) Those that can be answered "yes" or "no" can be answered with YES, Y, or T for "yes"; and

NO, N, or NIL for "no". The questions are:

LISTING? This asks whether to generate a listing of the compiled code.

The LAP and machine code are usually not of interest but can

be helpful in debugging macros. Possible answers are:

1 Prints output of pass 1, the LAP macro code

2 Prints output of pass 2, the machine code

YES Prints output of both passes

NO Prints no listings

The variable LAPFLG is set to the answer.

FILE: This question (which only appears if the answer to LISTING?

is affirmative) ask where the compiled code listing(s) should
be written. Answering T will print the listings at the terminal.

The variable LSTFIL is set to the answer.

REDEFINE? This question asks whether the functions compiled should be

redefined to their compiled definitions. If this is answered
YES, the compiled code is stored and the function definition

changed, otherwise the function definition remains
unchanged.

The compiler does not respect the value of DFNFLG (Chapter

10) when it redefines functions to their compiled definitions.
Therefore, if you set DFNFLG to PROP to completely avoid

inadvertantly redefining something in your running system,
you must not answer YES to this question.

The variable STRF is set to T (if this is answered YES) or NIL.

18-2

INTERLISP-D REFERENCE MANUAL

SAVE EXPRS? This question asks whether the original defining EXPRs of

functions should be saved. If answered YES, then before

redefining a function to its compiled definition, the EXPR

definition is saved on the property list of the function name.
Otherwise they are discarded.

It is very useful to save the EXPR definitions, just in case the

compiled function needs to be changed. The editing functions
will retrieve this saved definition if it exists, rather than
reading from a source file.

The variable SVFLG is set to T (if this is answered YES) or NIL.

OUTPUT FILE? This question asks whether (and where) the compiled

definitions should be written into a file for later loading. If you
answer with the name of a file, that file will be used. If you
answer Y or YES, you will be asked the name of the file. If the

file named is already open, it will continue to be used. If you
answer T or TTY:, the output will be typed on the teletype (not

particularly useful). If you answer N, NO, or NIL, output will

not be done.

The variable LCFIL is set to the name of the file.

To make answering these questions easier, there are four other possible answers to the LISTING?

question, which specify common compiling modes:

S Same as last setting. Uses the same answers to compiler

questions as given for the last compilation.

F Compile to File, without redefining functions.

ST STore new definitions, saving EXPR definitions.

STF STore new definitions; Forget EXPR definitions.

Implicit in these answers are the answers to the questions on disposition of compiled code and EXPR

definitions, so the questions REDEFINE? and SAVE EXPRS? would not be asked if these answers

were given. OUTPUT FILE? would still be asked, however. For example:

←COMPILE((FACT FACT1 FACT2))
LISTING? ST
OUTPUT FILE? FACT.DCOM
(FACT COMPILING)
.
.
(FACT REDEFINED)
.
.
(FACT2 REDEFINED)
(FACT FACT1 FACT2)

←

18-3

This process caused the functions FACT, FACT1, and FACT2 to be compiled, redefined, and the

compiled definitions also written on the file FACT.DCOM for subsequent loading.

Compiler Printout

In Medley, for each function FN compiled, whether by TCOMPL, RECOMPILE, or COMPILE, the

compiler prints:

(FN (ARG1 ... ARGN) (uses: VAR1 ... VARN) (calls: FN1 ... FNN))

The message is printed at the beginning of the second pass of the compilation of FN. (ARG1 ...

ARGN) is the list of arguments to FN; following uses: are the free variables referenced or set in FN (not

including global variables); following calls: are the undefined functions called within FN.

If the compilation of FN causes the generation of one or more auxilary functions, a compiler message

will be printed for these functions before the message for FN, e.g.,

(FOOA0027 (X) (uses: XX))

(FOO (A B))

When compiling a block, the compiler first prints (BLKNAME BLKFN1 BLKFN2 ...). Then the normal

message is printed for the entire block. The names of the arguments to the block are generated by
suffixing # and a number to the block name, e.g., (FOOBLOCK (FOOBLOCK#0 FOOBLOCK#1) FREE-

VARIABLES). Then a message is printed for each entry to the block.

In addition to the above output, both RECOMPILE and BRECOMPILE print the name of each function

that is being copied from the old compiled file to the new compiled file. The normal compiler
message is printed for each function that is actually compiled.

The compiler prints out error messages when it encounters problems compiling a function. For
example:

----- In BAZ:

***** (BAZ - illegal RETURN)

The above error message indicates that an illegal RETURN compiler error occurred while trying to

compile the function BAZ. Some compiler errors cause the compilation to terminate, producing

nothing; however, there are other compiler errors which do not stop compilation. The compiler error
messages are described in the last section of this chapter.

Compiler printout and error messages go to the file COUTFILE, initially T. COUTFILE can also be set

to the name of a file opened for output, in which case all compiler printout will go to COUTFILE, i.e.

18-4

INTERLISP-D REFERENCE MANUAL

the compiler will compile "silently." However, any error messages will be printed to both COUTFILE

as well as T.

Global Variables

Variables that appear on the list GLOBALVARS, or have the property GLOBALVAR with value T, or are

declared with the GLOBALVARS file package command, are called global variables. Such variables are

always accessed through their top level value when they are used freely in a compiled function. In
other words, a reference to the value of a global variable is equivalent to calling GETTOPVAL on the

variable, regardless of whether or not it is bound in the current access chain. Similarly, (SETQ

VARIABLE VALUE) will compile as (SETTOPVAL (QUOTE VARIABLE) VALUE).

All system parameters, unless otherwise specified, are declared as global variables. Thus, rebinding
these variables in a deep bound system like Medley will not affect the behavior of the system: instead,
the variables must be reset to their new values, and if they are to be restored to their original values,
reset again. For example, you might write

(SETQ GLOBALVARIABLE NEWVALUE)
FORM

(SETQ GLOBALVARIABLE OLDVALUE)

In this case, if an error occurred during the evaluation of FORM, or a Control-D was typed, the global

variable would not be restored to its original value. The function RESETVAR provides a convenient

way of resetting global variables in such a way that their values are restored even if an error occurred
or Control-D is typed.

Note: The variables that a given function accesses as global variables can be
determined by using the function CALLS.

Local Variables and Special Variables

In normal compiled and interpreted code, all variable bindings are accessible by lower level functions
because the variable’s name is associated with its value. We call such variables special variables, or
specvars. As mentioned earlier, the block compiler normally does not associate names with variable
values. Such unnamed variables are not accessible from outside the function which binds them and
are therefore local to that function. We call such unnamed variables local variables, or localvars.

The time economies of local variables can be achieved without block compiling by use of declarations.
Using local variables will increase the speed of compiled code; the price is the work of writing the
necessary specvar declarations for those variables which need to be accessed from outside the block.

LOCALVARS and SPECVARS are variables that affect compilation. During regular compilation,

SPECVARS is normally T, and LOCALVARS is NIL or a list. This configuration causes all variables

18-5

bound in the functions being compiled to be treated as special except those that appear on LOCALVARS.

During block compilation, LOCALVARS is normally T and SPECVARS is NIL or a list. All variables are

then treated as local except those that appear on SPECVARS.

Declarations to set LOCALVARS and SPECVARS to other values, and therefore affect how variables are

treated, may be used at several levels in the compilation process with varying scope.

1. The declarations may be included in the filecoms of a file, by using the LOCALVARS

and SPECVARS file package commands. The scope of the declaration is then the entire

file:

... (LOCALVARS . T) (SPECVARS X Y) ...

2. The declarations may be included in block declarations; the scope is then the block,
e.g.,

(BLOCKS ((FOOBLOCK FOO FIE (SPECVARS . T) (LOCALVARS

X)))

3. The declarations may also appear in individual functions, or in PROG’s or LAMBDA’s

within a function, using the DECLARE function. In this case, the scope of the declaration

is the function or the PROG or LAMBDA in which it appears. LOCALVARS and SPECVARS

declarations must appear immediately after the variable list in the function, PROG, or

LAMBDA, but intervening comments are permitted. For example:

(DEFINEQ ((FOO

(LAMBDA (X Y)
(DECLARE (LOCALVARS Y))

 (PROG (X Y Z)
 (DECLARE (LOCALVARS X))

...]

If the above function is compiled (non-block), the outer X will be special, the X bound in the PROG will

be local, and both bindings of Y will be local.

Declarations for LOCALVARS and SPECVARS can be used in two ways: either to cause variables to be

treated the same whether the function(s) are block compiled or compiled normally, or to affect one
compilation mode while not affecting the default in the other mode. For example:

(LAMBDA (X Y)
(DECLARE (SPECVARS . T))
(PROG (Z) ...]

will cause X, Y, and Z to be specvars for both block and normal compilation while

(LAMBDA (X Y)
(DECLARE (SPECVARS X))
...]

18-6

INTERLISP-D REFERENCE MANUAL

will make X a specvar when block compiling, but when regular compiling the declaration will have no

effect, because the default value of specvars would be T, and therefore both X and Y will be specvars

by default.

Although LOCALVARS and SPECVARS declarations have the same form as other components of block

declarations such as (LINKFNS . T), their operation is somewhat different because the two

variables are not independent. (SPECVARS . T) will cause SPECVARS to be set to T, and

LOCALVARS to be set to NIL. (SPECVARS V1 V2 ...) will have no effect if the value of SPECVARS

is T, but if it is a list (or NIL), SPECVARS will be set to the union of its prior value and (V1 V2 ...).

The operation of LOCALVARS is analogous. Thus, to affect both modes of compilation one of the two

(LOCALVARS or SPECVARS) must be declared T before specifying a list for the other.

Note: The variables that a given function binds as local variables or accesses as special
variables can be determined by using the function CALLS.

Note: LOCALVARS and SPECVARS declarations affect the compilation of local variables

within a function, but the arguments to functions are always accessible as
specvars. This can be changed by redefining the following function:

(DASSEM.SAVELOCALVARS FN) [Function]

This function is called by the compiler to determine whether argument information for FN

should be written on the compiled file for FN. If it returns NIL, the argument information

is not saved, and the function is stored with arguments U, V, W, etc instead of the originals.

Initially, DASSEM.SAVELOCALVARS is defined to return T. (MOVD ’NILL

’DASSEM.SAVELOCALVARS) causes the compiler to retain no local variable or argument

names. Alternatively, DASSEM.SAVELOCALVARS could be redefined as a more complex

predicate, to allow finer discrimination.

Constants

Interlisp allows the expression of constructions which are intended to be description of their constant
values. The following functions are used to define constant values. The function SELECTC provides

a mechanism for comparing a value to a number of constants.

(CONSTANT X) [Function]

This function enables you to define that the expression X should be treated as a "constant"

value. When CONSTANT is interpreted, X is evaluted each time it is encountered. If the

CONSTANT form is compiled, however, the expression will be evaluated only once.

If the value of X has a readable print name, then it will be evaluated at compile-time, and

the value will be saved as a literal in the compiled function’s definition, as if (QUOTE

VALUE-OF-EXPRESSION) had appeared instead of (CONSTANT EXPRESSION).

If the value of X does not have a readable print name, then the expression X itself will be

saved with the function, and it will be evaluated when the function is first loaded. The

18-7

value will then be stored in the function’s literals, and will be retrieved on future
references.

If a program needed a list of 30 NILs, you could specify (CONSTANT (to 30 collect

NIL)) instead of (QUOTE (NIL NIL ...)). The former is more concise and displays

the important parameter much more directly than the latter.

CONSTANT can also be used to denote values that cannot be quoted directly, such as

(CONSTANT (PACK NIL)), (CONSTANT (ARRAY 10)). It is also useful to

parameterize quantities that are constant at run time but may differ at compile time, e.g.,
(CONSTANT BITSPERWORD) in a program is exactly equivalent to 36, if the variable

BITSPERWORD is bound to 36 when the CONSTANT expression is evaluated at compile

time.

Whereas the function CONSTANT attempts to evaluate the expression as soon as possible

(compile-time, load-time, or first-run-time), other options are available, using the
folowing two function:

(LOADTIMECONSTANT X) [Function]

Similar to CONSTANT, except that the evaluation of X is deferred until the compiled code

for the containing function is loaded in. For example, (LOADTIMECONSTANT (DATE))

will return the date the code was loaded. If LOADTIMECONSTANT is interpreted, it merely

returns the value of X.

(DEFERREDCONSTANT X) [Function]

Similar to CONSTANT, except that the evaluation of X is always deferred until the compiled

function is first run. This is useful when the storage for the constant is excessive so that it
shouldn’t be allocated until (unless) the function is actually invoked. If
DEFERREDCONSTANT is interpreted, it merely returns the value of X.

(CONSTANTS VAR1 VAR2 ... VARN) [NLambda NoSpread Function]

Defines VAR1, ... VARN (unevaluated) to be compile-time constants. Whenever the

compiler encounters a (free) reference to one of these constants, it will compile the form
(CONSTANT VARi) instead.

If VARi is a list of the form (VAR FORM), a free reference to the variable will compile as

(CONSTANT FORM).

The compiler prints a warning if user code attempts to bind a variable previously declared
as a constant.

Constants can be saved using the CONSTANTS file package command.

18-8

INTERLISP-D REFERENCE MANUAL

Compiling Function Calls

When compiling the call to a function, the compiler must know the type of the function, to determine
how the arguments should be prepared (evaluated/unevaluated, spread/nospread). There are three
seperate cases: lambda, nlambda spread, and nlambda nospread functions.

To determine which of these three cases is appropriate, the compiler will first look for a definition
among the functions in the file that is being compiled. The function can be defined anywhere in any
of the files given as arguments to BCOMPL, TCOMPL, BRECOMPILE or RECOMPILE. If the function is

not contained in the file, the compiler will look for other information in the variables NLAMA, NLAML,

and LAMS, which can be set by you:

NLAMA [Variable]

(For NLAMbda Atoms) A list of functions to be treated as nlambda nospread functions by

the compiler.

NLAML [Variable]

(For NLAMbda List) A list of functions to be treated as nlambda spread functions by the

compiler.

LAMS [Variable]

A list of functions to be treated as lambda functions by the compiler. Note that including
functions on LAMS is only necessary to override in-core nlambda definitions, since in the

absence of other information, the compiler assumes the function is a lambda.

If the function is not contained in a file, or on the lists NLAMA, NLAML, or LAMS, the

compiler will look for a current definition in the Interlisp system, and use its type. If there
is no current definition, next COMPILEUSERFN is called:

COMPILEUSERFN [Variable]

When compiling a function call, if the function type cannot be found by looking in files,
the variables NLAMA, NLAML, or LAMS, or at a current definition, then if the value of

COMPILEUSERFN is not NIL, the compiler calls (the value of) COMPILEUSERFN giving it

as arguments CDR of the form and the form itself, i.e., the compiler does (APPLY*

COMPILEUSERFN (CDR FORM) FORM). If a non-NIL value is returned, it is compiled

instead of FORM. If NIL is returned, the compiler compiles the original expression as a call

to a lambda spread that is not yet defined.

COMPILEUSERFN is only called when the compiler encounters a list CAR of which is not

the name of a defined function. You can instruct the compiler about how to compile other
data types via COMPILETYPELST.

CLISP uses COMPILEUSERFN to tell the compiler how to compile iterative statements, IF-

THEN-ELSE statements, and pattern match constructs.

18-9

If the compiler cannot determine the function type by any of the means above, it assumes
that the function is a lambda function, and its arguments are to be evaluated.

If there are nlambda functions called from the functions being compiled, and they are only
defined in a separate file, they must be included on NLAMA or NLAML, or the compiler will

incorrectly assume that their arguments are to be evaluated, and compile the calling
function correspondingly. This is only necessary if the compiler does not "know" about
the function. If the function is defined at compile time, or is handled via a macro, or is
contained in the same group of files as the functions that call it, the compiler will
automatically handle calls to that function correctly.

FUNCTION and Functional Arguments

Compiling the function FUNCTION may involve creating and compiling a seperate "auxiliary

function", which will be called at run time. An auxiliary function is named by attaching a GENSYM to

the end of the name of the function in which they appear, e.g., FOOA0003. For example, suppose FOO

is defined as (LAMBDA (X) ... (FOO1 X (FUNCTION ...)) ...) and compiled. When FOO is

run, FOO1 will be called with two arguments, X, and FOOA000N and FOO1 will call FOOA000N each

time it uses its functional argument.

Compiling FUNCTION will not create an auxiliary function if it is a functional argument to a function

that compiles open, such as most of the mapping functions (MAPCAR, MAPLIST, etc.). A considerable

savings in time could be achieved by making FOO1 compile open via a computed macro, e.g.

(PUTPROP ’FOO1 ’MACRO

 ’(Z (LIST (SUBST (CADADR Z)
 (QUOTE FN)

DEF)
(CAR Z)))

DEF is the definition of FOO1 as a function of just its first argument, and FN is the name used for its

functional argument in its definition. In this case, (FOO1 X (FUNCTION ...)) would compile as

an expression, containing the argument to FUNCTION as an open LAMBDA expression. Thus you save

not only the function call to FOO1, but also each of the function calls to its functional argument. For

example, if FOO1 operates on a list of length ten, eleven function calls will be saved. Of course, this

savings in time costs space, and you must decide which is more important.

Open Functions

When a function is called from a compiled function, a system routine is invoked that sets up the
parameter and control push lists as necessary for variable bindings and return information. If the
amount of time spent inside the function is small, this function calling time will be a significant
percentage of the total time required to use the function. Therefore, many "small" functions, e.g., CAR,

CDR, EQ, NOT, CONS are always compiled "open", i.e., they do not result in a function call. Other larger

18-10

INTERLISP-D REFERENCE MANUAL

functions such as PROG, SELECTQ, MAPC, etc. are compiled open because they are frequently used.

You can make other functions compile open via MACRO definitions. You can also affect the compiled

code via COMPILEUSERFN and COMPILETYPELST.

COMPILETYPELST

Most of the compiler’s mechanism deals with how to handle forms (lists) and variables (symbols).
You can affect the compiler’s behaviour with respect to lists and literal atoms in a number of ways,
e.g. macros, declarations, COMPILEUSERFN, etc. COMPILETYPELST allows you to tell the compiler

what to do when it encounters a data type other than a list or an atom. It is the facility in the compiler
that corresponds to DEFEVAL for the interpreter.

COMPILETYPELST [Variable]

A list of elements of the form (TYPENAME . FUNCTION). Whenever the compiler

encounters a datum that is not a list and not an atom (or a number) in a context where the
datum is being evaluated, the type name of the datum is looked up on COMPILETYPELST.

If an entry appears CAR of which is equal to the type name, CDR of that entry is applied to

the datum. If the value returned by this application is not EQ to the datum, then that value

is compiled instead. If the value is EQ to the datum, or if there is no entry on

COMPILETYPELST for this type name, the compiler simply compiles the datum as

(QUOTE DATUM).

Compiling CLISP

Since the compiler does not know about CLISP, in order to compile functions containing CLISP
constructs, the definitions must first be DWIMIFYed. You can automate this process in several ways:

1. If the variable DWIMIFYCOMPFLG is T, the compiler will always DWIMIFY

expressions before compiling them. DWIMIFYCOMPFLG is initially NIL.

2. If a file has the property FILETYPE with value CLISP on its property list, TCOMPL,

BCOMPL, RECOMPILE, and BRECOMPILE will operate as though DWIMIFYCOMPFLG is T

and DWIMIFY all expressions before compiling.

3. If the function definition has a local CLISP declaration, including a null declaration,

i.e., just (CLISP:), the definition will be automatically DWIMIFYed before compiling.

Note: COMPILEUSERFN is defined to call DWIMIFY on iterative statements, IF-

THEN statements, and fetch, replace, and match expressions, i.e., any

CLISP construct which can be recognized by its CAR of form. Thus, if the only

CLISP constructs in a function appear inside of iterative statements, IF

statements, etc., the function does not have to be dwimified before compiling.

18-11

If DWIMIFY is ever unsuccessful in processing a CLISP expression, it will print the error message

UNABLE TO DWIMIFY followed by the expression, and go into a break unless DWIMESSGAG = T. In

this case, the expression is just compiled as is, i.e. as though CLISP had not been enabled. You can exit
the break in one of these ways:

1. Type OK to the break, which will cause the compiler to try again, e.g. you could

define some missing records while in the break, and then continue

2. Type ↑, which will cause the compiler to simply compile the expression as is, i.e. as

though CLISP had not been enabled in the first place

 3. Return an expression to be compiled in its place by using the RETURN break

command.

Note: TCOMPL, BCOMPL, RECOMPILE, and BRECOMPILE all scan the entire file

before doing any compiling, and take note of the names of all functions that
are defined in the file as well as the names of all variables that are set by
adding them to NOFIXFNSLST and NOFIXVARSLST, respectively. Thus, if a

function is not currently defined, but is defined in the file being compiled,
when DWIMIFY is called before compiling, it will not attempt to interpret the

function name as CLISP when it appears as CAR of a form. DWIMIFY also

takes into account variables that have been declared to be LOCALVARS, or

SPECVARS, either via block declarations or DECLARE expressions in the

function being compiled, and does not attempt spelling correction on these
variables. The declaration USEDFREE may also be used to declare variables

simply used freely in a function. These variables will also be left alone by
DWIMIFY. Finally, NOSPELLFLG is reset to T when compiling functions from

a file (as opposed to from their in-core definition) so as to suppress spelling
correction.

Compiler Functions

Normally, the compiler is envoked through file package commands that keep track of the state of
functions, and manage a set of files, such as MAKEFILE. However, it is also possible to explicitly call

the compiler using one of a number of functions. Functions may be compiled from in-core definitions
(via COMPILE), or from definitions in files (TCOMPL), or from a combination of in-core and file

definitions (RECOMPILE).

TCOMPL and RECOMPILE produce "compiled" files. Compiled files usually have the same name as the

symbolic file they were made from, suffixed with DCOM (the compiled file extension is stored as the

value of the variable COMPILE.EXT). The file name is constructed from the name field only, e.g.,

(TCOMPL ’<BOBROW>FOO.TEM;3) produces FOO.DCOM on the connected directory. The version

number will be the standard default.

A "compiled file" contains the same expressions as the original symbolic file, except for the following:

18-12

INTERLISP-D REFERENCE MANUAL

 1. A special FILECREATED expression appears at the front of the file which contains

information used by the file package, and which causes the message COMPILED ON

DATE to be printed when the file is loaded (the actual string printed is the value of

COMPILEHEADER).

2. Every DEFINEQ in the symbolic file is replaced by the corresponding compiled

definitions in the compiled file.

3. Expressions following a DONTCOPY tag inside of a DECLARE: that appears in the

symbolic file are not copied to the compiled file.

The compiled definitions appear at the front of the compiled file, i.e., before the other expressions in
the symbolic file, regardless of where they appear in the symbolic file. The only exceptions are expressions
that follow a FIRST tag inside of a DECLARE:. This "compiled" file can be loaded into any Interlisp

system with LOAD.

Note: When a function is compiled from its in-core definition (as opposed to
being compiled from a definition in a file), and the function has been modified
by BREAK, TRACE, BREAKIN, or ADVISE, it is first restored to its original state,

and a message is printed out, e.g., FOO UNBROKEN. If the function is not

defined by an expr definition, the value of the function’s EXPR property is

used for the compilation, if there is one. If there is no EXPR property, and the

compilation is being performed by RECOMPILE, the definition of the function

is obtained from the file (using LOADFNS). Otherwise, the compiler prints

(FN NOT COMPILEABLE), and goes on to the next function.

(COMPILE X FLG) [Function]

X is a list of functions (if atomic, (LIST X) is used). COMPILE first asks the standard

compiler questions, and then compiles each function on X, using its in-core definition.

Returns X.

If compiled definitions are being written to a file, the file is closed unless FLG = T.

(COMPILE1 FN DEF) [Function]

Compiles DEF, redefining FN if STRF = T (STRF is one of the variables set by COMPSET).

COMPILE1 is used by COMPILE, TCOMPL, and RECOMPILE.

If DWIMIFYCOMPFLG is T, or DEF contains a CLISP declaration, DEF is dwimified before

compiling.

(TCOMPL FILES) [Function]

TCOMPL is used to "compile files"; given a symbolic LOAD file (e.g., one created by

MAKEFILE), it produces a "compiled file". FILES is a list of symbolic files to be compiled

(if atomic, (LIST FILES) is used). TCOMPL asks the standard compiler questions, except

for "OUTPUT FILE:". The output from the compilation of each symbolic file is written on

a file of the same name suffixed with DCOM, e.g., (TCOMPL ’(SYM1 SYM2)) produces

two files, SYM1.DCOM and SYM2.DCOM.

18-13

TCOMPL processes the files one at a time, reading in the entire file. For each

FILECREATED expression, the list of functions that were marked as changed by the file

package is noted, and the FILECREATED expression is written onto the output file. For

each DEFINEQ expression, TCOMPL adds any nlambda functions defined in the DEFINEQ

to NLAMA or NLAML, and adds lambda functions to LAMS, so that calls to these functions

will be compiled correctly. NLAMA, NLAML, and LAMS are rebound to their top level values

(using RESETVAR) by all of the compiling functions, so that any additions to these lists

while inside of these functions will not propagate outside. Expressions beginning with
DECLARE: are processed specially. All other expressions are collected to be subsequently

written onto the output file.

After processing the file in this fashion, TCOMPL compiles each function, except for those

functions which appear on the list DONTCOMPILEFNS (initially NIL), and writes the

compiled definition onto the output file. TCOMPL then writes onto the output file the

other expressions found in the symbolic file. DONTCOMPILEFNS might be used for

functions that compile open, since their definitions would be superfluous when operating
with the compiled file. Note that DONTCOMPILEFNS can be set via block declarations.

Note: If the rootname of a file has the property FILETYPE with value

CLISP, or value a list containing CLISP, TCOMPL rebinds

DWIMIFYCOMPFLG to T while compiling the functions on FILE, so the

compiler will DWIMIFY all expressions before compiling them.

TCOMPL returns a list of the names of the output files. All files are properly terminated

and closed. If the compilation of any file is aborted via an error or Control-D, all files are
properly closed, and the (partially complete) compiled file is deleted.

(RECOMPILE PFILE CFILE FNS) [Function]

The purpose of RECOMPILE is to allow you to update a compiled file without recompiling

every function in the file. RECOMPILE does this by using the results of a previous

compilation. It produces a compiled file similar to one that would have been produced by
TCOMPL, but at a considerable savings in time by only compiling selected functions, and

copying the compiled definitions for the remainder of the functions in the file from an
earlier TCOMPL or RECOMPILE file.

PFILE is the name of the Pretty file (source file) to be compiled; CFILE is the name of the

Compiled file containing compiled definitions that may be copied. FNS indicates which

functions in PFILE are to be recompiled, e.g., have been changed or defined for the first

time since CFILE was made. Note that PFILE, not FNS, drives RECOMPILE.

RECOMPILE asks the standard compiler questions, except for "OUTPUT FILE:". As with

TCOMPL, the output automatically goes to PFILE.DCOM. RECOMPILE processes PFILE

the same as does TCOMPL except that DEFINEQ expressions are not actually read into core.

Instead, RECOMPILE uses the filemap to obtain a list of the functions contained in PFILE.

The filemap enables RECOMPILE to skip over the DEFINEQs in the file by simply resetting

the file pointer, so that in most cases the scan of the symbolic file is very fast (the only
processing required is the reading of the non-DEFINEQs and the processing of the

DECLARE: expressions as with TCOMPL). A map is built if the symbolic file does not

18-14

INTERLISP-D REFERENCE MANUAL

already contain one, for example if it was written in an earlier system, or with
BUILDMAPFLG = NIL.

After this initial scan of PFILE, RECOMPILE then processes the functions defined in the

file. For each function in PFILE, RECOMPILE determines whether or not the function is to

be (re)compiled. Functions that are members of DONTCOMPILEFNS are simply ignored.

Otherwise, a function is recompiled if :

1. FNS is a list and the function is a member of that list

2. FNS = T or EXPRS and the function is defined by an expr definition

3. FNS = CHANGES and the function is marked as having been changed in the

FILECREATED expression in PFILE

4. FNS = ALL

If a function is not to be recompiled, RECOMPILE obtains its compiled definition from

CFILE, and copies it (and all generated subfunctions) to the output file, PFILE.DCOM. If

the function does not appear on CFILE, RECOMPILE simply recompiles it. Finally, after

processing all functions, RECOMPILE writes out all other expressions that were collected

in the prescan of PFILE.

Note: If FNS = ALL, CFILE is superfluous, and does not have to be

specified. This option may be used to compile a symbolic file that has
never been compiled before, but which has already been loaded (since
using TCOMPL would require reading the file in a second time).

If CFILE = NIL, PFILE.DCOM (the old version of the output file) is used for copying

from. If both FNS and CFILE are NIL, FNS is set to the value of RECOMPILEDEFAULT,

which is initially CHANGES. Thus you can perform his edits, dump the file, and then

simply (RECOMPILE ’FILE) to update the compiled file.

The value of RECOMPILE is the file name of the new compiled file, PFILE.DCOM. If

RECOMPILE is aborted due to an error or Control-D, the new (partially complete)

compiled file will be closed and deleted.

RECOMPILE is designed to allow you to conveniently and efficiently update a compiled

file, even when the corresponding symbolic file has not been (completely) loaded. For
example, you can perform a LOADFROM to "notice" a symbolic file, edit the functions he

wants to change (the editor will automatically load those functions not already loaded),
call MAKEFILE to update the symbolic file (MAKEFILE will copy the unchanged functions

from the old symbolic file), and then perform (RECOMPILE PFILE).

Note: Since PRETTYDEF automatically outputs a suitable DECLARE:

expression to indicate which functions in the file (if any) are defined as
NLAMBDAs, calls to these functions will be handled correctly, even

though the NLAMBDA functions themselves may never be loaded, or

even looked at, by RECOMPILE.

18-15

Block Compiling

In Interlisp-10, block compiling provides a way of compiling several functions into a single block.
Function calls between the component functions of the block are very fast. Thus, compiling a block
consisting of just a single recursive function may be yield great savings if the function calls itself many
times. The output of a block compilation is a single, usually large, function. Calls from within the
block to functions outside of the block look like regular function calls. A block can be entered via
several different functions, called entries. These must be specified when the block is compiled.

In Medley, block compiling is handled somewhat differently; block compiling provides a mechanism
for hiding function names internal to a block, but it does not provide a performance improvement.
Block compiling in Medley works by automatically renaming the block functions with special names,
and calling these functions with the normal function-calling mechanisms. Specifically, a function FN

is renamed to \BLOCK-NAME/FN. For example, function FOO in block BAR is renamed to \BAR/FOO.

Note that it is possible with this scheme to break functions internal to a block.

Block Declarations

Block compiling a file frequently involves giving the compiler a lot of information about the nature
and structure of the compilation, e.g., block functions, entries, specvars, etc. To help with this, there is
the BLOCKS file package command, which has the form:

(BLOCKS BLOCK1... BLOCKN)

where each BLOCKi is a block declaration. The BLOCKS command outputs a DECLARE: expression,

which is noticed by BCOMPL and BRECOMPILE. BCOMPL and BRECOMPILE are sensitive to these

declarations and take the appropriate action.

Note: Masterscope includes a facility for checking the block declarations of a file or
files for various anomalous conditions, e.g. functions in block declarations
which aren’t on the file(s), functions in ENTRIES not in the block, variables

that may not need to be SPECVARS because they are not used freely below the

places they are bound, etc.

A block declaration is a list of the form:

(BLKNAME BLKFN1 ... BLKFNM
 (VAR1 . VALUE1) ... (VARN . VALUEN))

BLKNAME is the name of a block. BLKFN1 ... BLKFNM are the functions in the block and correspond

to BLKFNS in the call to BLOCKCOMPILE. The (VARi . VALUEi) expressions indicate the settings for

variables affecting the compilation of that block. If VALUEi is atomic, then VARi is set to VALUEi,

otherwise VARi is set to the UNION of VALUEi and the current value of the variable VARi. Also,

expressions of the form (VAR * FORM) will cause FORM to be evaluated and the resulting list used as

described above (e.g. (GLOBALVARS * MYGLOBALVARS)).

18-16

INTERLISP-D REFERENCE MANUAL

For example, consider the block declaration below. The block name is EDITBLOCK, it includes a

number of functions (EDITL0, EDITL1, ... EDITH), and it sets the variables ENTRIES,

SPECVARS, RETFNS, and GLOBALVARS.

(EDITBLOCK
EDITL0 EDITL1 UNDOEDITL EDITCOM EDITCOMA
EDITMAC EDITCOMS EDIT]UNDO UNDOEDITCOM EDITH
(ENTRIES EDITL0 ## UNDOEDITL)
(SPECVARS L COM LCFLG #1 #2 #3 LISPXBUFS)
(RETFNS EDITL0)
(GLOBALVARS EDITCOMSA EDITCOMSL EDITOPS))

Whenever BCOMPL or BRECOMPILE encounter a block declaration, they rebind RETFNS, SPECVARS,

GLOBALVARS, BLKLIBRARY, and DONTCOMPILEFNS to their top level values, bind BLKAPPLYFNS and

ENTRIES to NIL, and bind BLKNAME to the first element of the declaration. They then scan the rest of

the declaration, setting these variables as described above. When the declaration is exhausted, the
block compiler is called and given BLKNAME, the list of block functions, and ENTRIES.

If a function appears in a block declaration, but is not defined in one of the files, then if it has an in-
core definition, this definition is used and a message printed NOT ON FILE, COMPILING IN CORE

DEFINITION. Otherwise, the message NOT COMPILEABLE, is printed and the block declaration

processed as though the function were not on it, i.e. calls to the function will be compiled as external
function calls.

Since all compiler variables are rebound for each block declaration, the declaration only has to set
those variables it wants changed. Furthermore, setting a variable in one declaration has no effect on
the variable’s value for another declaration.

After finishing all blocks, BCOMPL and BRECOMPILE treat any functions in the file that did not appear

in a block declaration in the same way as do TCOMPL and RECOMPILE. If you wish a function

compiled separately as well as in a block, or if you wish to compile some functions (not blockcompile),
with some compiler variables changed, you can use a special pseudo-block declaration of the form

(NIL BLKFN1 ... BLKFNM (VAR1 . VALUE1) ... (VARN . VALUEN))

which means that BLKFN1 ... BLKFNM should be compiled after first setting VAR1 ... VARN as

described above.

The following variables control other aspects of compiling a block:

RETFNS [Variable]

Value is a list of internal block functions whose names must appear on the stack, e.g., if
the function is to be returned from RETFROM, RETTO, RETEVAL, etc. Usually, internal calls

between functions in a block are not put on the stack.

18-17

BLKAPPLYFNS [Variable]

Value is a list of internal block functions called by other functions in the same block using
BLKAPPLY or BLKAPPLY* for efficiency reasons.

Normally, a call to APPLY from inside a block would be the same as a call to any other

function outside of the block. If the first argument to APPLY turned out to be one of the

entries to the block, the block would have to be reentered. BLKAPPLYFNS enables a

program to compute the name of a function in the block to be called next, without the
overhead of leaving the block and reentering it. This is done by including on the list
BLKAPPLYFNS those functions which will be called in this fashion, and by using

BLKAPPLY in place of APPLY, and BLKAPPLY* in place of APPLY*. If BLKAPPLY or

BLKAPPLY* is given a function not on BLKAPPLYFNS, the effect is the same as a call to

APPLY or APPLY* and no error is generated. Note however, that BLKAPPLYFNS must be

set at compile time, not run time, and furthermore, that all functions on BLKAPPLYFNS

must be in the block, or an error is generated (at compile time), NOT ON BLKFNS.

BLKAPPLYFNS [Variable]

Value is a list of functions that are considered to be in the "block library" of functions that
should automatically be included in the block if they are called within the block.

Compiling a function open via a macro provides a way of eliminating a function call. For
block compiling, the same effect can be achieved by including the function in the block. A
further advantage is that the code for this function will appear only once in the block,
whereas when a function is compiled open, its code appears at each place where it is
called.

The block library feature provides a convenient way of including functions in a block. It is
just a convenience since you can always achieve the same effect by specifying the
function(s) in question as one of the block functions, provided it has an expr definition at
compile time. The block library feature simply eliminates the burden of supplying this
definition.

To use the block library feature, place the names of the functions of interest on the list
BLKLIBRARY, and their expr definitions on the property list of the functions under the

property BLKLIBRARYDEF. When the block compiler compiles a form, it first checks to

see if the function being called is one of the block functions. If not, and the function is on
BLKLIBRARY, its definition is obtained from the property value of BLKLIBRARYDEF, and

it is automatically included as part of the block.

Block Compiling Functions

There are three user level functions for block compiling, BLOCKCOMPILE, BCOMPL, and BRECOMPILE,

corresponding to COMPILE, TCOMPL, and RECOMPILE. Note that all of the remarks on macros,

globalvars, compiler messages, etc., all apply equally for block compiling. Using block declarations,

you can intermix in a single file functions compiled normally and block compiled functions.

18-18

INTERLISP-D REFERENCE MANUAL

(BLOCKCOMPILE BLKNAME BLKFNS ENTRIES FLG) [Function]

BLKNAME is the name of a block, BLKFNS is a list of the functions comprising the block,

and ENTRIES a list of entries to the block.

Each of the entries must also be on BLKFNS or an error is generated, NOT ON BLKFNS. If

only one entry is specified, the block name can also be one of the BLKFNS, e.g.,

(BLOCKCOMPILE ’FOO ’(FOO FIE FUM) ’(FOO)). However, if more than one entry

is specified, an error will be generated, CAN’T BE BOTH AN ENTRY AND THE BLOCK

NAME.

If ENTRIES is NIL, (LIST BLKNAME) is used, e.g., (BLOCKCOMPILE ’COUNT ’(COUNT

COUNT1))

If BLKFNS is NIL, (LIST BLKNAME) is used, e.g., (BLOCKCOMPILE ’EQUAL)

BLOCKCOMPILE asks the standard compiler questions, and then begins compiling. As

with COMPILE, if the compiled code is being written to a file, the file is closed unless FLG

= T. The value of BLOCKCOMPILE is a list of the entries, or if ENTRIES = NIL, the value

is BLKNAME.

The output of a call to BLOCKCOMPILE is one function definition for BLKNAME, plus

definitions for each of the functions on ENTRIES if any. These entry functions are very

short functions which immediately call BLKNAME.

(BCOMPL FILES CFILE) [Function]

FILES is a list of symbolic files (if atomic, (LIST FILES) is used). BCOMPL differs from

TCOMPL in that it compiles all of the files at once, instead of one at a time, in order to

permit one block to contain functions in several files. (If you have several files to be
BCOMPLed separately, you must make several calls to BCOMPL.) Output is to CFILE if

given, otherwise to a file whose name is (CAR FILES) suffixed with DCOM. For example,

(BCOMPL ’(EDIT WEDIT)) produces one file, EDIT.DCOM.

BCOMPL asks the standard compiler questions, except for "OUTPUT FILE:", then

processes each file exactly the same as TCOMPL. BCOMPL next processes the block

declarations as described above. Finally, it compiles those functions not mentioned in one
of the block declarations, and then writes out all other expressions.

If any of the files have property FILETYPE with value CLISP, or a list containing CLISP,

then DWIMIFYCOMPFLG is rebound to T for all of the files.

The value of BCOMPL is the output file (the new compiled file). If the compilation is

aborted due to an error or Control-D, all files are closed and the (partially complete)
output file is deleted.

It is permissible to TCOMPL files set up for BCOMPL; the block declarations will simply

have no effect. Similarly, you can BCOMPL a file that does not contain any block

declarations and the result will be the same as having TCOMPLed it.

18-19

(BRECOMPILE FILES CFILE FNS —) [Function]

BRECOMPILE plays the same role for BCOMPL that RECOMPILE plays for TCOMPL. Its

purpose is to allow you to update a compiled file without requiring an entire BCOMPL.

FILES is a list of symbolic files (if atomic, (LIST FILES) is used). CFILE is the compiled

file produced by BCOMPL or a previous BRECOMPILE that contains compiled definitions

that may be copied. The interpretation of FNS is the same as with RECOMPILE.

BRECOMPILE asks the standard compiler questions, except for "OUTPUT FILE:". As with

BCOMPL, output automatically goes to FILE.DCOM, where FILE is the first file in FILES.

BRECOMPILE processes each file the same as RECOMPILE, then processes each block

declaration. If any of the functions in the block are to be recompiled, the entire block must
be (is) recompiled. Otherwise, the block is copied from CFILE as with RECOMPILE. For

pseudo-block declarations of the form (NIL FN1 ...), all variable assignments are made,

but only those functions indicated by FNS are recompiled.

After completing the block declarations, BRECOMPILE processes all functions that do not

appear in a block declaration, recompiling those dictated by FNS, and copying the

compiled definitions of the remaining from CFILE.

Finally, BRECOMPILE writes onto the output file the "other expressions" collected in the

initial scan of FILES.

The value of BRECOMPILE is the output file (the new compiled file). If the compilation is

aborted due to an error or Control-D, all files are closed and the (partially complete)
output file is deleted.

If CFILE = NIL, the old version of FILE.DCOM is used, as with RECOMPILE. In

addition, if FNS and CFILE are both NIL, FNS is set to the value of RECOMPILEDEFAULT,

initially CHANGES.

Compiler Error Messages

Messages describing errors in the function being compiled are also printed on the terminal. These
messages are always preceded by *****. Unless otherwise indicated below, the compilation will

continue.

(FN NOT ON FILE, COMPILING IN CORE DEFINITION)

From calls to BCOMPL and BRECOMPILE.

(FN NOT COMPILEABLE)

An EXPR definition for FN could not be found. In this case, no code is produced for FN,

and the compiler proceeds to the next function to be compiled, if any.

18-20

INTERLISP-D REFERENCE MANUAL

(FN NOT FOUND)

Occurs when RECOMPILE or BRECOMPILE try to copy the compiled definition of FN from

CFILE, and cannot find it. In this case, no code is copied and the compiler proceeds to the

next function to be compiled, if any.

(FN NOT ON BLKFNS)

FN was specified as an entry to a block, or else was on BLKAPPLYFNS, but did not appear

on the BLKFNS. In this case, no code is produced for the entire block and the compiler

proceeds to the next function to be compiled, if any.

(FN CAN’T BE BOTH AN ENTRY AND THE BLOCK NAME)

In this case, no code is produced for the entire block and the compiler proceeds to the next
function to be compiled, if any.

(BLKNAME - USED BLKAPPLY WHEN NOT APPLICABLE)

BLKAPPLY is used in the block BLKNAME, but there are no BLKAPPLYFNS or ENTRIES

declared for the block.

(VAR SHOULD BE A SPECVAR - USED FREELY BY FN)

While compiling a block, the compiler has already generated code to bind VAR as a

LOCALVAR, but now discovers that FN uses VAR freely. VAR should be declared a

SPECVAR and the block recompiled.

((* --) COMMENT USED FOR VALUE)

A comment appears in a context where its value is being used, e.g. (LIST X (* --)

Y). The compiled function will run, but the value at the point where the comment was

used is undefined.

((FORM) - NON-ATOMIC CAR OF FORM)

If you intended to treat the value of FORM as a function, you should use APPLY* (Chapter

10). FORM is compiled as if APPLY* had been used.

((SETQ VAR EXPR --) BAD SETQ)

SETQ of more than two arguments.

(FN - USED AS ARG TO NUMBER FN?)

The value of a predicate, such as GREATERP or EQ, is used as an argument to a function

that expects numbers, such as IPLUS.

18-21

(FN - NO LONGER INTERPRETED AS FUNCTIONAL ARGUMENT)

The compiler has assumed FN is the name of a function. If you intended to treat the value

of FN as a function, APPLY* (Chapter 10) should be used. This message is printed when

FN is not defined, and is also a local variable of the function being compiled.

(FN - ILLEGAL RETURN)

RETURN encountered when not in PROG.

(TG - ILLEGAL GO)

GO encountered when not in a PROG.

(TG - MULTIPLY DEFINED TAG)

TG is a PROG label that is defined more than once in a single PROG. The second definition

is ignored.

(TG - UNDEFINED TAG)

TG is a PROG label that is referenced but not defined in a PROG.

(VAR - NOT A BINDABLE VARIABLE)

VAR is NIL, T, or else not a literal atom.

(VAR VAL -- BAD PROG BINDING)

Occurs when there is a prog binding of the form (VAR VAL1 ... VALN).

(TG - MULTIPLY DEFINED TAG, LAP)

TG is a label that was encountered twice during the second pass of the compilation. If this

error occurs with no indication of a multiply defined tag during pass one, the tag is in a
LAP macro.

(TG - UNDEFINED TAG, LAP)

TG is a label that is referenced during the second pass of compilation and is not defined.

LAP treats TG as though it were a COREVAL, and continues the compilation.

(TG - MULTIPLY DEFINED TAG, ASSEMBLE)

TG is a label that is defined more than once in an assemble form.

(TG - UNDEFINED TAG, ASSEMBLE)

TG is a label that is referenced but not defined in an assemble form.

(OP - OPCODE? - ASSEMBLE)

OP appears as CAR of an assemble statement, and is illegal.

18-22

INTERLISP-D REFERENCE MANUAL

(NO BINARY CODE GENERATED OR LOADED FOR FN)

A previous error condition was sufficiently serious that binary code for FN cannot be

loaded without causing an error.

